Development of a Low-Cost and High-Speed Single Event Effects Testers based on Reconfigurable Field Programmable Gate Arrays (FPGA)

J.W. Howard¹, H. Kim¹, M. Berg¹, K.A. LaBe², S. Stansberry³, M. Friendlich¹ and T. Irwin¹

1. GSFC/MEI Technologies, Seabrook, MD
2. NASA GSFC, Greenbelt, MD
3. Information Sciences Institute, Arlington, VA

Outline

- Introduction
- Objectives
- Tester Descriptions
 - Overview
 - Features
 - Device Under Test (DUT) Interface
- Tester Validations and Demonstrations
- Future Work
- Summary
Introduction

- NASA missions continue to push the technology limits requiring the use of state-of-the-art devices
- Increasingly complex devices need to be qualified for flight
- Speed of device operations are continuing to increase and studies have shown the importance of test “at speed”
- Costs associated with development of test fixtures, specific to the device under test, for flight qualification are growing
- "Generic" test hardware is even becoming more difficult with the rapidly changing technologies
- Answer - Develop test fixtures that are reusable and reconfigurable

Tester Concept

- Tester FPGA contains both test board and DUT VHDL
- DUT VHDL is written to control the test on the DUT technology and pass data to the test board VHDL
- Test board VHDL controls all tester systems and takes telemetry from the DUT VHDL and packages it in a form for the Test Controller running LabView
Objectives

- Develop a low-cost (< $2k) tester that is based on a reconfigurable FPGA
- Develop a high speed (> 1 GHz) tester that is based on a reconfigurable FPGA
- Both testers will utilize daughter-cards that will allow at-speed testing of devices
- The low-cost tester will test in the 100's of MHz and still be considered “disposable” to allow proton testing
- The high-speed tester will allow testing of state-of-the-art devices at speed (up to low GHz)
- Fast-response latchup protection circuitry will be designed into both testers

Low-Cost Tester Features

- Xilinx Spartan III FPGA (XC3S1000-4FG456)
- On-tester regulated power at 1.2, 1.8, 2.5, and 3.3 Volts
- Communications with test controller via RS-232, USB or parallel header
- On-board SRAM (1M x 16)
- DUT connected via 6 x 60-pin low-noise high-speed micro-strip connectors and 1 x 70-pin low-speed header connector
- I/O Operational Speed to 200 MHz
- FPGA configurable via JTAG, on-board Flash memory, or parallel header
- 4 SMA Connector Clock inputs or user-supplied oscillator
- 4-channel ADC for current monitoring and latchup protection
- 4-channel (independent) latchup protection via the FPGA (Slow) or micro-strip flag line to DUT card (Fast)

To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
Low-Cost Tester Daughter Card

Example of Daughter Card Design

Daughter Card for SDRAM without Latchup Protection Transistor

High-Speed Tester Features

- Xilinx Virtex 2 Pro (XCV2VP50-5FF1152C)
 - 662 High Speed I/O (600 MHz)
 - 16 Very High Speed Rocket I/O (3 GHz)
 - PowerPC 405 processor core
- On-tester regulated power at 1.5, 1.8, 2.5, and 3.3 Volts
- Four programmable (via FPGA) regulators for DUT power
- Communications with test controller via RS-232, RS-422, USB, or 10/100 Ethernet
- On-board SRAM (1M x 32)
- On-board FIFO (256k x 32)
- DUT connected via 1156-pin PGA connector capable of I/O > 9 GHz
- FPGA configurable via JTAG or on-board Flash memory
- 4 SMA Connector Clock inputs or user-supplied oscillator
- 4-channel ADC for current monitoring and latchup protection
- 4-channel (independent) latchup protection via the FPGA (Slow) or microstrip flag line to DUT card (Fast)

To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
High-Speed Tester Daughter Card

Example of Daughter Card Design

Daughter Card for SDRAM without Latchup Protection Transistor

Verification Testing

Cross Section (cm²/μA) vs. Effective LET (MeV·cm²/mg)

- Aerospace
- JPL
- Maxwell

To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
Tests Completed/Scheduled

- **Low-cost tester**
 - Maxwell SDRAM
 - Actel RTSX & RTAX
 - SRAM & SDRAM (for NSWC Crane)
 - DRAM (for NRL)
 - LSI Arithmetic Logic Unit
 - Micron 2G Flash
 - Aeroflex Eclipse
 - Boeing HBD Test Chip
 - Xilinx SPARTAN III
 - To be tested
 - Honeywell & Freescale MRAM
 - Samsung 1G DDR SDRAM

- **High-speed tester**
 - Maxwell SDRAM

In Progress & Future Work

- **In Progress**
 - Tester Board VHDL is being "black boxed"
 - LabView Test Controller software is being converter to a stand-alone application
 - Tester documentation is currently in draft form and will be finalized upon completion of above

- **Future**
 - Validation testing of the high-speed tester operating at GHz
 - Version 2 of the high-speed tester under consideration that would be based on the Virtex 4 FPGA

To be presented by J. W. Howard at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA.
Summary

• Completed design, build and validation testing of a low-cost FPGA-based reconfigurable test board
• Completed design, build and validation testing of a high-speed FPGA-based reconfigurable test board
• Low-cost tester has become an integral part of the Single Event Effects testing done at GSFC
• Currently working on making testers “user-friendly” enough to allow for design and documentation distribution
• Considering design for Rev 2 of both testers and am interested in comments and suggestions

James W. Howard