Design and “As Flown” Radiation Environments for Materials in Low Earth Orbit

Joseph I. Minow
NASA, Marshall Space Flight Center, Huntsville, AL USA

Richard L. Altstatt
Jacobs Sverdrup, MSFC Group, Huntsville, AL USA

Brett McWilliams
Universities Space Research Associates, Huntsville, AL USA

Steven L. Koontz
NASA, Johnson Space Center, Houston, TX USA

International Symposium on “Materials in a Space Environment”
Collioure, France
19-23 June 2006
Overview

- Introduction
 - ISS materials qualified for ~10 years on orbit to design environment
 - Some materials have now been exposed to periods of ~7 years
 - Can they be used longer to save replacement cost, effort?

- ISS Design Environments

- Constructin of “As Flown” reference environment

- Summary
Issue

- SSP 30512 provides a conservative proton, electron environment for use in estimating radiation dose effects on materials

- ISS has been on orbit now for ~5 years
 - How does the "as-flown" environment compare to the (conservative) design environment?
 - How are materials qualified for 10 years holding up?
 - If design environment was conservative, can space exposed materials on exterior of ISS qualified for 10 years be used for longer periods before replacement is required
 - Significant program impact if replacement activities can be reduced (or eliminated)

- Add "as-flown" radiation environment to SSP-30512 to supplement the design environment for studies of on-orbit performance of materials
30512 Design Environment

SSP-30512 Revision C
"Radiation Environment for Design"

- Electron, proton environments for dose are conservative by design
 - 500 km, 51.6 deg inclination
 - AE-8 max, AP-8 max
 - Recommend 2x dose environment to account for solar particle events, cosmic rays, secondary particles, other sources not included in environment

- Dose in Si as function of depth in Al for:
 - Sphere electronics
 - Semi-infinite slabs surface coatings
 - Surface materials
30512 Design Environment

Table 3.1.3-1 AERMAX DIFFERENTIAL AND INTEGRAL FLUX

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Integral Flux (electrons/cm²·day)</th>
<th>Differential Flux (electrons/cm²·MeV·day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.97E+10</td>
<td>1.70E+11</td>
</tr>
<tr>
<td>0.04</td>
<td>1.51E+10</td>
<td>1.31E+11</td>
</tr>
<tr>
<td>0.07</td>
<td>1.17E+10</td>
<td>1.00E+11</td>
</tr>
<tr>
<td>0.10</td>
<td>9.12E+09</td>
<td>8.29E+10</td>
</tr>
<tr>
<td>0.20</td>
<td>3.43E+09</td>
<td>3.10E+10</td>
</tr>
<tr>
<td>0.30</td>
<td>1.59E+09</td>
<td>1.47E+10</td>
</tr>
<tr>
<td>0.50</td>
<td>4.09E+08</td>
<td>3.53E+10</td>
</tr>
<tr>
<td>0.70</td>
<td>2.34E+08</td>
<td>2.04E+10</td>
</tr>
<tr>
<td>0.90</td>
<td>1.60E+08</td>
<td>1.34E+10</td>
</tr>
<tr>
<td>1.00</td>
<td>1.24E+08</td>
<td>1.07E+10</td>
</tr>
<tr>
<td>1.10</td>
<td>1.06E+08</td>
<td>8.97E+09</td>
</tr>
<tr>
<td>1.20</td>
<td>9.07E+07</td>
<td>7.56E+09</td>
</tr>
<tr>
<td>1.30</td>
<td>7.66E+07</td>
<td>6.45E+09</td>
</tr>
<tr>
<td>1.40</td>
<td>6.35E+07</td>
<td>5.30E+09</td>
</tr>
<tr>
<td>1.50</td>
<td>5.01E+07</td>
<td>4.91E+09</td>
</tr>
<tr>
<td>1.60</td>
<td>4.39E+07</td>
<td>4.05E+09</td>
</tr>
<tr>
<td>1.70</td>
<td>4.14E+07</td>
<td>3.80E+09</td>
</tr>
<tr>
<td>1.80</td>
<td>3.53E+07</td>
<td>3.27E+09</td>
</tr>
<tr>
<td>1.90</td>
<td>3.01E+07</td>
<td>2.83E+09</td>
</tr>
<tr>
<td>2.00</td>
<td>2.58E+07</td>
<td>2.42E+09</td>
</tr>
<tr>
<td>2.20</td>
<td>2.19E+07</td>
<td>2.00E+09</td>
</tr>
<tr>
<td>2.50</td>
<td>1.93E+07</td>
<td>1.73E+09</td>
</tr>
<tr>
<td>2.75</td>
<td>1.74E+07</td>
<td>1.52E+09</td>
</tr>
<tr>
<td>3.00</td>
<td>1.65E+07</td>
<td>1.37E+09</td>
</tr>
<tr>
<td>3.25</td>
<td>1.58E+07</td>
<td>1.31E+09</td>
</tr>
<tr>
<td>3.50</td>
<td>1.51E+07</td>
<td>1.25E+09</td>
</tr>
<tr>
<td>4.00</td>
<td>1.42E+07</td>
<td>1.15E+09</td>
</tr>
<tr>
<td>4.50</td>
<td>1.36E+07</td>
<td>1.10E+09</td>
</tr>
<tr>
<td>5.00</td>
<td>1.31E+07</td>
<td>1.05E+09</td>
</tr>
<tr>
<td>6.00</td>
<td>1.26E+07</td>
<td>1.00E+09</td>
</tr>
</tbody>
</table>

Table 3.1.3-2 ONE YEAR DOSE IN SEMICONDUCTOR ALUMINIUM MEDIUM

<table>
<thead>
<tr>
<th>Shielding (MILS)</th>
<th>Shielding (GAMMA)</th>
<th>Protons</th>
<th>Total Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E-01</td>
<td>0.08E+00</td>
<td>8.08E+00</td>
<td>1.91E+00</td>
</tr>
<tr>
<td>2.00E-01</td>
<td>0.16E+00</td>
<td>8.16E+00</td>
<td>3.60E+00</td>
</tr>
<tr>
<td>3.00E-01</td>
<td>0.24E+00</td>
<td>8.24E+00</td>
<td>5.30E+00</td>
</tr>
<tr>
<td>4.00E-01</td>
<td>0.32E+00</td>
<td>8.32E+00</td>
<td>7.00E+00</td>
</tr>
<tr>
<td>5.00E-01</td>
<td>0.40E+00</td>
<td>8.40E+00</td>
<td>8.70E+00</td>
</tr>
</tbody>
</table>

Note: The above tables provide the integral and differential fluxes for trapped electrons and protons, along with the corresponding one-year dose in a semiconducting aluminum medium. These values are critical for the design of radiation-hardened electronic systems in space environments.
30512 Design Environment

Differential Flux
Electrons

Integral Flux
Electrons

Differential Flux
Protons

Integral Flux
Protons

Electron Energy (MeV)

Proton Energy (MeV)

J. Minow [256] 544-2850
Joseph.Minow@nasa.gov
AE-8/AP-8, Mean Altitude

- **Quick analysis:**
 - 2 years (May 2000-May 2002) ISS radiation fluence
 - Mean 390 km altitude used to compute dose in material

- No attempt to determine dose variations due to changes in ISS altitude
ISS Design, “As-Flown” Dose

- ISS cables insulated by 7 mil to 9 mil PTFE overwrap
 - (~0.2 mm per layer)

- 2 layers
 - 0.2 to 0.4 mm PTFE depending on whether cables are wrapped once or twice

- “As flown” dose ~10X design dose in 0.2 to 0.4 mm

- Suggests that 10 year estimated life of cables could be much longer

J. Minow [256] 544-2850
Joseph.minow@nasa.gov
Need additional predicted vs measured dose information for electron energies <70 keV

ISS "As Flown" Orbit

- **ISS ephemeris data:**
 - ISS two line element sets provide orbit information

- **Satellite Tool Kit (STK) Merged Simplified General Perturbations (MSGP4) propagator used to compute orbit:**
 - *SGP4* propagators required to compute ephemeris using NORAD (USSPACECOM) TLE set format
 - Propagator model considers secular and periodic variations in orbit parameters due to Earth oblateness, solar and lunar gravitational effects, gravitational resonance effects and drag induced orbital decay

- **Generated ephemeris with MSGP4 propagator**
 - Period: 20 November 1998 to 1 June 2006
 - Time step: 60 seconds
 - Orbit file exported from STK as a geodetic longitude, latitude, and altitude text file for input to AE-8, AP-8

J. Minow [256] 544-2850
Joseph.minow@nasa.gov
ISS “As flown”

AE-8/AP-8
Min

Time (UT)
ISS "As flown"

AE-8/AP-8
Max
Objective Assignment of Solar Min or Max Models

- AE/AP models for solar maximum, minimum only

- Strategies typically adopted for use include
 - Most severe model for conservative design use
 - 7 yrs max, 5 yrs min for 11 year solar cycle
Solar Min/Max Weighting

- Objective technique used for determining when to use solar minimum or solar maximum version of AE-8/AP-8 models [Watts et al., 1996]

\[\Phi = \alpha \Phi_{\text{max}} + (1-\alpha)\Phi_{\text{min}} \]

where \(\Phi_{\text{max}} = \) AE-8, AP-8 max

\(\Phi_{\text{min}} = \) AE-8, AP-8 min

\(\alpha = \) F107 weighting factor

\(\alpha = 0 \) for solar min

\(\alpha = 1 \) for solar max
20%/80%
25%/75%
ISS “As flown”

AE-8/AP-8
Min
Max
ISS “As flown”

AE-8/AP-8
Min
Max
Modules
“As-flown” Fluences

- Trapped electrons
- 30512 Design Environment

- Trapped protons
- GOES solar protons (GEO)
- GOES solar protons (LEO)
- 30512 Design Environment
Solar Protons

<table>
<thead>
<tr>
<th>Event</th>
<th>>30 MeV fluence (#/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000/07/12</td>
<td>4.3 x 10^9</td>
</tr>
<tr>
<td>2000/08/00</td>
<td>3.2 x 10^9</td>
</tr>
<tr>
<td>2001/09/24</td>
<td>1.2 x 10^9</td>
</tr>
<tr>
<td>2001/11/04</td>
<td>3.4 x 10^9</td>
</tr>
<tr>
<td>2003/10/28</td>
<td>3.4 x 10^9</td>
</tr>
<tr>
<td>2005/01/15</td>
<td>1.0 x 10^9</td>
</tr>
<tr>
<td>Total</td>
<td>16.5 x 10^9</td>
</tr>
</tbody>
</table>

Sources: Reedy, 2006

![Graph showing proton rigidity vs. transmission](graph.png)
"As-flown" Dose

Zarya Dose Evaluation

As-flown Environment
- Trapped γ + brem
- Trapped p^+
- Solar p^+
- Total Dose

SSP-30512 Design Environment
- Trapped γ + brem
- Trapped p^+
- Total Dose

Dose in Silicon (rads)

Aluminum Shielding Thickness (mm)
"As-flown" Dose Ratios

Zarya Dose Evaluation

SSP-30512/As-flown
- Trapped $e^+ +$ bremsstrahlung
- Trapped + Solar p^+
- Total Dose
- $2 \times$ Total Dose

Graph showing the relationship between aluminum shielding thickness (mm) and dose ratios for Zarya Dose Evaluation.
NOAA MEPED Data vs AE-8 Model

- NOAA 0 deg
- NOAA 90 deg
- AE-8
NOAA Data vs AE-8

0 deg

90 deg
Daily Fluence Example

NOAA/MEPED vs AE-8 Fluence

Mean AE-8 Annual Fluence
Mean AE-8 Daily Fluence

AE-8
90 deg
0 deg

Date

1.0 1.2 1.4 1.6 1.8 2.0

J. Minow [256] 544-2850
Joseph.minow@nasa.gov
AE-8 omnidirectional flux
NOAA electrons measured in two orthogonal directions
-- 0 deg in zenith on zenith-nadir line
-- 90 deg perpendicular to velocity
Summary

- SSP 30512 design environment for dose over estimates actual flight dose
 - SSP 30512/as flown reference environment
 - ~2x to 4x for 0.01 mm to 100 mm
 - ~2x at minimum between 2 to 8 mm over qualification
 - 2x SSP 30512/as flown reference environment
 - ~4x to 8x for 0.01 mm to 100 mm
 - ~4x at minimum between 2 to 8 mm over qualification

- Dose includes
 - Trapped electrons, bremsstrahlung x-rays
 - Trapped protons, solar protons

- Materials originally qualified for ~10 to 15 years anticipated to be acceptable for use for periods of up
 - 20 to 30 years based on SSP-30512
 - 40 to 60 years based on 2x SSP-30512