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Abstract 

Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties 

into the design analysis model and then determining their influence on the design.  A high-level 

evaluation of one such stochastic simulation tool, the MSC.Robust Design1 tool by 

MSC.Software Corporation, has been conducted.  This stochastic simulation tool provides 

structural analysts with a tool to interrogate their structural design based on their mathematical 

description of the design problem using finite element analysis methods.  This tool leverages the 

analyst’s prior investment in finite element model development of a particular design.  The 

original finite element model is treated as the baseline structural analysis model for the stochastic 

simulations that are to be performed.  A Monte Carlo approach is used by MSC.Robust Design to 

determine the effects of scatter in design input variables on response output parameters.  The tool 

was not designed to provide a probabilistic assessment, but to assist engineers in understanding 

cause and effect.  It is driven by a graphical-user interface and retains the “engineer-in-the-loop” 

strategy for design evaluation and improvement.  The application problem for the evaluation is 

chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge 

panel under re-entry aerodynamic loading.  MSC.Robust Design adds value to the analysis effort 

                                                

1 MSC is a trademark of MSC.Software Corporation. 
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by rapidly being able to identify design input variables whose variability causes the most 

influence in response output parameters. 

Introduction 

Engineering design has evolved over the past decades as analysis tools and computing systems 

evolved.  The engineering design process has changed from merely determining a specific set of 

values for the design variables that meet certain design objectives (deterministic design process) 

to an assessment of design sensitivities that account for tolerances and uncertainty.   This trend in 

engineering design results in the quantification of risk (risk-based design process). Originally 

this design process was performed manually by relying on the intuition of the designer to explore 

the design space.  A single-point design is analyzed and perhaps a few parametric studies are 

evaluated.  Schedule and cost generally precluded any thorough evaluation of the structural 

analysis model to understand and assess how uncertainty may influence the design’s success (or 

failure).  Uncertainty is usually accounted for through the use of safety factors, and the trend in 

structural design is to rely more heavily on the analysis results to fill in the gaps where test data 

are not available.  Later, design optimization procedures using gradient- and non-gradient-based 

algorithms were coupled with engineering analysis tools and became available on high-

performance computing systems.  This evolution automated the previous manual design iteration 

process and permitted a more thorough search of the design space.  However, only recently have 

the influences of uncertainties due to manufacturing tolerances or material variability been 

accounted for in the engineering design analysis.   

Probabilistic design methodologies [1-4] that consider variability and tolerances in the design 

variables, rather than fixed or mean values alone, are becoming available and are migrating into 

the engineering design process.  In essence, the point-design process is morphing to a process 

leading to design success by accounting for tolerances and uncertainty.  As a result, the 

reliability of the design can be determined through statistical methods.  This type of engineering 

design approach is referred to as reliability-based design or risk-based design.  To support such a 

design approach, analysts need analysis tools to assist in establishing the credibility, accuracy, 

and robustness of the simulation and to identify potential problems associated with design 

variability early in the design process in order to guide the design process and to anticipate and 

reduce the testing requirements (i.e., better tests).   
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The impetus to reduce testing and prototype costs during the design cycle has resulted in an 

increased reliance on engineering analysis models.  This reliance places an ever-increasing 

responsibility on commercial software vendors as well as on engineering analysts to ensure the 

correctness and applicability of their analysis tools and models to simulate the design 

performance.  Computer systems and engineering analysis software, such as MSC.Nastran2 [5], 

are now so powerful and so readily available that it is common place for analysts and project 

stakeholders to accept large complicated finite element models as accurate.  Often the acceptance 

of a finite element model as accurate is based on perception and is not warranted.  A finite 

element model is perceived to be accurate and correct if:  (1) it involves a large number of nodes 

and finite elements to represent the design, (2) the geometry is represented accurately through 

the use of solid geometry definitions, (3) the analysis results can be visualized and animated 

(immersive technology may even be integrated with the analysis tool), and (4) the solutions 

required a significant amount of computational resources.  The analysis tool itself may be 

verified and validated.  However, each application of the analysis tool to a new design problem 

requires the development of a new engineering analysis model that needs to be assessed in order 

to establish the accuracy of the new model – not the tool.  Therefore analysts need to establish 

the credibility of their analysis model, verify the results through correlations with test data, and 

calibrate the simulation for variability in the design.  In addition, stakeholders need to be vigilant 

and require proof that the computational simulations obtained using a given analysis tool and a 

given engineering analysis model are in fact credible solutions. 

The question then is how do analysts establish the credibility of the engineering analysis model.  

A two-step process related to accuracy and robustness is suggested.  Accuracy refers to the 

ability of the analysis model to capture correctly the perceived important physical behavior of the 

design.  Robustness refers to understanding the sensitivities of the analysis model to design 

parameter variability and problem uncertainties.  These two steps contribute to establishing 

credibility in the computational simulation results.   

First, for an engineering analysis model to be accurate, it must represent the engineering science 

and mechanics of the design problem.  In a formal sense, engineering analysis models based on 

                                                

2 MSC.Nastran is a trademark of MSC.Software Corporation.  NASTRAN is a registered trademark of NASA. 
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fundamental mechanics principles (conservation laws, equilibrium principles) and cast in a 

computational framework are considered physics-based engineering analysis models. In an 

applied or working sense, engineering analysis models that (1) represent the physical geometry, 

boundary and initial conditions, and constraints; (2) replicate the constitutive behavior; (3) 

correlate with experimental data; and (4) provide credible predictive solutions within a bounded 

range of interest and within bounds of known data are defined as physics-based engineering 

analysis models.  Characteristics of physics-based engineering analysis models include a 

formulation based on basic principles of mechanics; the use of constitutive models correlated 

with test results over the range of interest; the use of a proven computational framework or 

analysis tool; an accurate representation of the physical problem (e.g., geometry, generalized 

imperfections, boundary and initial conditions including load introduction, constitutive models); 

working within established bounds and limits of applicability; and the generation of credible, 

consistent, and reliable predictions correlated with globally and locally observed experimental 

evidence.  Second, for an analysis to be robust, it needs to ensure that sensitivity of design 

performance metrics to tolerances and uncertainties are defined, understood, and mitigated, if 

possible.  These two steps have the potential to impact engineering design analysis in a positive 

way. 

MSC.Robust Design (or simply RD) [6,7] is a stochastic simulation tool that contributes to 

increasing the understanding of how uncertainty in a finite element analysis model may affect the 

design by performing stochastic simulations in a near-automatic fashion.  These stochastic 

simulations are based on a Monte Carlo approach that automatically generates a user-specified 

number of unique, independent combinations of the input variables.  In essence, a new analysis 

model is derived from the baseline analysis model for each combination of design input 

variables.  The collection of these combinations of design input variables and their corresponding 

response output parameters (observables) defines a “meta model” for the design based on a given 

finite element model.  RD submits an analysis task for each combination of the design input 

variables (i.e., generates a new *.bdf file) to MSC.Nastran [5] either serially or concurrently 

depending on the available computer system and software license agreements.  For conducting 

the MSC.Nastran runs concurrently, RD submits the *.bdf files to the MSC.Analysis Manager 

for distribution to the computer systems with MSC.Nastran available. The output performance 

metrics (or observables) from each finite element analysis are then implanted into the RD 
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database for subsequent post-processing.  RD post-processing through a graphical-user interface 

(GUI) is performed by the analyst to access the resulting meta-model. A meta-model contains 

large amounts of information with interrelationships between input design variables and 

observable output parameters.  The meta-model can be viewed by looking at any combination of 

two or three variables (i.e., two- and three-dimensional plots).  RD uses a decision map to 

provide a means to view the meta-model in a manner that can be quickly understood.  A decision 

map, described more in subsequent sections, shows the correlations between input design 

variables and observable output parameters. 

The objective of the present paper is to summarize a high-level evaluation of the MSC.Robust 

Design stochastic simulation tool. Various aspects of the stochastic simulation tool are described 

and illustrated through the use of an aerospace structural analysis problem of current interest.  

While other application problems were also studied during this evaluation, the evaluation 

reported here focuses on an application problem from the Space Shuttle program and the Return-

to-Flight activities.  The evaluation is performed using the historical two-dimensional shell finite 

element model of a Space Shuttle wing leading-edge (WLE) panel subjected to re-entry 

aerodynamic loading.  Background information on the application problem is provided in Refs. 

8-15. An outline of the present paper is as follows.  First, the present paper briefly describes the 

application problem.  Then features of the RD software are described using the application 

problem as an illustrative example.  Next, results and observations from the application problem 

are discussed.  The present paper closes with a summary. 

Application Problem 

The Space Shuttle Orbiter’s WLE panels provide the aerodynamic load-bearing capability and 

thermal-control capability for areas that exceed 2,300-degrees Fahrenheit [8-15].  There are 22 

panels of reinforced carbon-carbon (RCC) along the leading edge of each wing of the Space 

Shuttle Orbiter as indicated in Figure 1.  A typical RCC WLE panel assembly is shown in Figure 

2.  Because the shape of the wing changes from inboard to outboard, each RCC WLE panel is 

unique. RCC WLE panel thickness values range from 0.233-to-0.512-inches thick (i.e., 19 plies 

to 38 plies) depending on the location on the panel and the location along the wing (see Ref. 9). 

The historical, certified design finite element analysis models of the RCC WLE panel assemblies 

are defined as the set of MSC.Nastran finite element models developed during the early stages of 
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the Space Shuttle program (1970’s time frame).  The historical, certified finite element model of 

RCC WLE Panel 4 assembly is shown in Figure 3.  Not every WLE panel on the Space Shuttle 

Orbiter wing is modeled explicitly because several are geometrically similar.  Panels exposed to  

the highest loading during ascent and re-entry are analyzed.  The RCC WLE panel structural 

models are two-dimensional shell finite element models with selected airload pressure cases 

defined for the various panels. They are considered to be the “flight certified” models for loads 

and strength because the geometry, material process and properties, along with the metal clevis 

and interfaces including field-break mechanisms were verified for Space Shuttle missions.  

These analysis models were also test verified for air loads, temperature and mass loss per design 

requirement.3  

In these MSC.Nastran finite element models, the RCC WLE panel and adjacent T-seal (blue 

components in Figure 2) are modeled using two-dimensional shell finite elements (see Figure 3) 

with membrane and bending stiffness terms specified directly rather than implicitly through the 

usual engineering mechanical properties (i.e., elastic modulus and Poisson’s ratio).  These 

stiffness terms are “apparent” values based on the overall laminate dimensions, and hence the 

RCC material is assumed to be a linear elastic, homogeneous, transversely isotropic material, 

which is consistent with the available material data.  Apparent engineering material properties 

for different RCC laminate thickness values are given in Ref. 14.  As a result, the elastic moduli 

for tension, compression and bending are independently defined for different thickness values 

and also as a function of temperature based on the material data in Ref. 14.  RCC WLE panel 

thickness variations occur throughout the panel with thicker regions located near the edges.  

Material stiffness coefficients for membrane (tension and compression) and for bending are 

defined for various RCC thickness values within the RCC WLE panel finite element models. 

Input of the RCC material data to MSC.Nastran is through the MAT2, MATT2, and TABLEM1 

records of the bulk data file (*.bdf).  Interested readers should refer to Ref. 5 for details on 

these input records.  MAT2 input records define the room-temperature values of the stiffness 

coefficients Gij according to the equation: 

                                                

3 Based on personal communication with T. Ho, Lockheed-Martin, Dallas, TX. 
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where E is the elastic modulus (tensile or compressive), G is the shear modulus, and ! is 

Poisson’s ratio.  Values for the apparent elastic modulus are defined in Ref. 14 for tension, 

compression, and bending for different RCC thickness values and as a function of temperature.  

The A1, A2, and A12 coefficients define the coefficients of thermal expansion where A12 is taken 

as zero.  The reference temperature Tref is taken as room temperature.  No temperature effects are 

included in the analyses reported in this paper (i.e., T = Tref ). 

These finite element models are rather coarsely discretized for stress analysis and damage 

assessment.4 However, some trends may be determined by using these analysis models, and 

those trends should be confirmed using the more contemporary detailed finite element models 

developed under Return-to-Flight activities.  In the analysis models for these studies, the RCC 

material is defined using the MAT2 input records in terms of material stiffness coefficients Gij.  

Each load case is solved perhaps several times, and the material property assignments (tensile or 

compressive) are adjusted so that the shell elements with membrane compression stress use 

                                                

4 These finite element models were developed in the early 1970’s, and at that time, they were probably considered to 
be state-of-the-art finite element models that challenged the existing computational environment.   
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compression property data and shell elements with membrane tension stress use tension property 

data. 

The wing leading-edge front spar and its attachment hardware (non-blue components in Figure 

2) are modeled with equivalent stiffness terms defined using the DMIG input records at four 

attachment points on the RCC panel finite element model.  The air loads are defined using the 

PLOAD2 input records for distributed surface loading.  The T-seal is “attached” to the panel 

through a set of multi-point constraints (MPCs) and linear elastic spring elements (CELAS2).  

This attachment modeling is dependent on the load case considered, and the bearing surface 

between the T-seal flanges and the RCC panel edges also changes when the air loads change.  

The geometry for each wing leading-edge RCC panel is different thereby requiring finite element 

models for several panel assemblies. 

The historical MSC.Nastran finite element model for RCC WLE Panel 4 shown in Figure 3 has 

1,279 nodes, 41 CBAR elements, 130 CELAS2 elements, 34 MPC constraints, 1,067 CQUAD4 

elements and 132 CTRIA3 elements for the panel and T-seal combination.   This finite element 

model is used extensively in Ref. 15.  It is representative of a general finite element analysis 

model involving different finite element types, different material definitions (i.e., engineering 

mechanical properties and stiffness coefficients), different element properties definitions (i.e., 

shell element thicknesses and beam cross-sectional properties), both single- and multi-point 

constraints, and a distributed surface loading. 

Description of the MSC.Robust Design Tool 

MSC.Robust Design (RD) software tool [6,7] is a recent product of MSC.Software Corporation 

for assessing the solution variability of a given finite element analysis model to various random 

input design variables.  These design variables may include engineering material properties 

(individually or as a set), plate/shell thickness values, beam cross-sectional properties, and 

applied load magnitudes.  The structural response of the finite element model to random input of 

these design variables is then determined based on user-selected output response metrics such as 

a maximum resultant displacement, maximum or minimum stress component, lowest vibration 

frequency, or smallest buckling load.  The input variables and output response metrics (or 

observables) are currently limited (i.e., using RD Version 2004r3) to quantities directly 

accessible in the MSC.Nastran *.bdf input file and MSC.Nastran *.f06 output file.   
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RD is based on a graphical-user interface (GUI) for pre- and post-processing.  The primary RD 

display window shown in Figure 4 consists of three partitions:  the project tree (along the left 

side of the window), the design table (along the bottom edge of the window), and the graphical 

view port (remaining part of the window).  Each partition can be sized independently.  As with 

most GUI tools, a number of toolbars and pull-down menus are available (see Ref. 6).  RD has 

two primary functions.  One function is to perform stochastic simulations, and the other function 

is to perform stochastic design improvements.  Only the former function is evaluated in the 

present paper. 

RD does not assess the adequacy of the finite element model itself, but rather assumes that the 

imported finite element model has been verified by the analyst as an appropriate and credible 

engineering analysis model for the analysis task, as consistent with the analysis objectives, and 

produces credible solutions for the nominal baseline design as it is understood.  The analyst 

continues to bear the responsibility to assure that the choice of finite element mesh, selection of 

finite element types, selection of material models, imposition of boundary conditions, definition 

of coordinate systems, and application of loads are accurately and correctly defined.  RD 

examines the design based on a given baseline finite element model and determines the response 

variability to each of the input design variables. 

RD begins by reading the MSC.Nastran bulk data file (*.bdf) and automatically generates a 

“project tree” similar to the one shown in Figure 5.  The bulk data file for RCC WLE Panel 4 

was read, and the RD project tree was generated based on the MSC.Nastran bulk data file input 

record types.  For example, in Figure 5, the different finite element types found in the *.bdf file 

generate different branches on the project tree along with cascading branches for their associated 

material and property definitions.  Table input, loads, constraints, and other data from the *.bdf 

file are also indicated in the project tree.  In addition, the output requests by the analysis subcase 

are identified.  In this example, only a linear stress analysis is performed (Solution Sequence 101 

or SOL101 in MSC.Nastran [5]).  RD also supports the stochastic simulation of other 

MSC.Nastran solution sequences including SOL103 (eigenvalues analysis), SOL105 (linear 

buckling analysis), SOL108/111 (frequency response analysis, direct and modal), and SOL600 

(implicit nonlinear).  Finally, the results from executing RD are available under the “Results” 

branch of the project tree shown at the bottom of Figure 5.  
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Once RD reads the *.bdf file, the input finite element model and the project tree are displayed 

by RD in the graphical view port shown in Figure 4.  This display tool allows the analyst to view 

the finite element, rotate it, and zoom in or out on the finite element model as a whole. As the 

analyst selects a particular branch on the project tree (left side of the screen), the corresponding 

part of the finite element model is highlighted in the graphical view port.  Analysts can readily 

interrogate the finite element model without any prior knowledge of the analysis model.   Unlike 

using MSC.Patran5 to interrogate the finite element model, the RD GUI can be used to determine 

material property layout or thickness distributions by simply selecting the appropriate branch of 

the project tree (e.g., the analyst does not need to define groups of elements by property 

identification).  While RD does provide some basic graphical display tools for viewing the finite 

element model, it has limited functionality and is neither a replacement for nor an alternative to 

using MSC.Patran for finite element modeling and post-processing of analysis results (e.g., 

deformed geometry plots or contour plots of results). 

After RD develops the project tree, the analyst may then proceed to define the random variables 

for the simulation.  The random variables can be defined in three ways.  A single variable on an 

MSC.Nastran record can be defined as a random variable, all entries on an MSC.Nastran record 

can be defined as random variables, or all records in a select group can be defined as random 

variables.  These choices are made easily through the RD GUI by simply identifying the 

variable(s) on the project tree and assigning their variation a distribution (e.g., Gaussian, 

uniform, Weibull, logarithmic, or even a discrete distribution) and setting a coefficient of 

variation.  The coefficient of variation (CoV) is defined as the ratio of the standard deviation to 

the mean (or nominal) value multiplied by 100%.  The specific value in the MSC.Nastran bulk 

data file for each variable is considered as the mean or nominal value, and the range of values for 

each input design variable is then determined automatically by the original input value, the CoV, 

and the cutoff value in terms of the number of standard deviations. These choices are displayed 

in the design table at the bottom of the display window under the Simulation Input tab as shown 

along the bottom of Figure 4.  For example, if the analyst chooses to randomize the elastic 

modulus of a material type (see Figure 6a), then the type of random distribution needs to chosen, 

the cutoff value in terms of the number of standard deviations needs to be defined, and the 

                                                

5 MSC.Patran is a trademark of MSC.Software Corporation. 
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coefficient of variation needs to be specified (see Figure 6b).  Each distribution type has default 

values set for the cutoff and coefficient of variation that can be modified by the user.  The default 

values for a Gaussian distribution are a coefficient of variation of 5% and a cutoff of three 

standard deviations. 

The analyst selects the output response variables to be considered from those available in the 

MSC.Nastran output file (*.f06 file) in a similar way.  Options include selecting minimum 

and/or maximum values of the stresses either by component direction, principal values, or von 

Mises value as shown on the project tree partition of Figure 4.  Displacements, rotations, 

constraint forces, and eigenvalues (vibration frequencies and buckling factors) are also available 

depending on the solution sequence being executed.  In this example, only the linear elastic 

stress analysis (SOL101) is performed. 

In addition, the analyst needs to specify the number of stochastic simulations (or number of 

samples) to perform as indicated in Figure 7.  RD is based on a Monte Carlo approach and 

automatically generates a set of unique analysis models based on the uncertainty variables 

defined for the problem using an updated Latin hypercube sampling technique.  RD performs the 

number of complete MSC.Nastran simulations specified by this number-of-samples value plus 

one (i.e., 100 solutions in addition to the solution of the imported baseline finite element model).  

It is important to realize that each analysis represents a unique combination of the random input 

design variables – no combination sample is replicated.  Collectively the results for each 

combination define the meta-model for RD post-processing.  RD generates new MSC.Nastran 

bulk data files for each combination of the randomized variables, and each combination is then 

submitted to MSC.Nastran to be solved.  An option for saving each *.bdf file is also available 

but is not the default.    

RD submits these analysis models for solution using either a single computer or multiple 

computers that are networked or clustered together.  As each deterministic simulation based on 

each set of random input variables is performed, the results for the output metrics, not the entire 

MSC.Nastran analysis database, are automatically archived in the RD database.  A typical 

summary of archived results in the RD database is illustrated in Figure 8.  In this view, the 

project tree is shown on the left side of Figure 8 in its “collapsed state” whereas its “expanded 

state” is shown in Figure 4.  Along the bottom portion of Figure 8, some of the observable results 
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parameters are shown.  Different displacement results (maximum and minimum values for the 

resultant magnitudes and by component direction) are displayed in the design table portion of the 

display window.  Each output parameter has its minimum, maximum, mean, and most-likely 

values given as well as the coefficient of variation. 

After these independent analyses are completed and archived within the RD database, the 

solution set can be studied to examine the scatter in the output results metrics (observables) 

based on the scatter in the input design variables.  This collection of input and output values is 

defined by RD as the “meta-model” of the system, which is graphically displayed as a decision 

map (see Figures 9 and 15).  Large amounts of information are contained in these 

interrelationships, which are shown as links between design input variables and response 

parameters in terms of correlation factors [6].  For each combination of stochastic variables, RD 

computes a linear correlation coefficient (Pearson coefficient) and a nonlinear correlation 

coefficient (Spearman-rank coefficient) based on the specific stochastic variables and their mean 

values.  These correlation coefficients range from ±1.  Values close to ±1 indicate strong 

correlation, and values close to zero indicate very weak or no correlation.  Correlation is similar 

to a sensitivity analysis.  In a sensitivity analysis, the effect the variation of an input variable has 

on an output function is determined while generally holding all other variables constant.  A 

correlation is done the same way, but with all of the other variables changing within their defined 

ranges. 

Within RD, the meta-model data are presented to the analyst using three different display tools.  

The first display tool is a decision map, such as the one shown in Figure 9a.  A decision map is a 

graphical structuring of the information indicating the degree of interaction between input 

variables and output parameters.  Across the top of the display is information on the number of 

random design input variables, the number of response output parameters, the number of 

correlations greater than a specified value, and the effective minimum correlation factor.  Along 

a diagonal line in the display view port, one or more input variables (yellow or orange) followed 

by one or more output variables (red or blue) are displayed.  Interactions between input and 

output variables (referred to as a link) are indicated by the lines connecting individual variables 

(see Figure 9a).   As the cursor is placed on a diagonal symbol, the definition of that symbol is 

displayed.  Alternatively, the labels for all variable names can be activated as shown in Figure 

9b; however, this view tends to crowd the decision map.   
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The second display tool is the scatter plot, which is driven by selections made by the analyst 

using the decision map (like the one shown in Figure 9a). This scatter plot is also referred to as a 

“cloud” or a “two-dimensional ant-hill plot”. The analyst can view a scatter plot either by 

selecting a pair of interacting variables and choosing the scatter-plot-display option from the RD 

toolbar, or by clicking on the node on the decision map connecting the variables.  Then, the 

distribution of all deterministic solutions from the stochastic simulations (i.e., the 101 solutions 

in this case) are displayed as an xy-plot in Figure 10 for the selected pair of interacting input and 

output variables from the decision map shown in Figure 9.  A few of the combinations of random 

input design variables result in “outliers” (see Figure 10); that is, responses that are away from 

the majority of the solutions or on the edges of the cloud.  Understanding why certain 

combinations, within the bounds of the design variables, generate solutions on the fringes 

contributes to design improvement. 

In addition, a three-dimensional scatter or ant-hill plot as shown in Figure 11 can be generated by 

selecting a combination of three input and output variables.  This three-dimensional plot may be 

rotated and examined in different ways to determine if the combination set has solutions lying 

close to a plane, if the combination is truly three dimensional, or if the combination contains 

clusters or groupings of results.  These three-dimensional plots often expose non-intuitive 

interactions that may potentially impact the design performance and functionality. 

The third display tool is the pie-chart display as shown in Figure 12, which is driven by a 

response output parameter selection made by the analyst from the decision map. The pie-chart 

display gives an indication of how the scatter in all design input variables influences the scatter 

of a specific response output parameter.  The design input variables having the most influence on 

the scatter of the selected response output parameter are readily detected from the pie-chart 

display (i.e., those variables representing the larger pieces of pie).  A representative pie-chart 

display is shown in Figure 12.  Nine variables having the larger influence are presented 

separately, while the remaining input parameters are lumped together and labeled “Others” on 

the display.  Ideally, the scatter in the structural response should not be strongly dependent on 

any one, or even on a few, design input variables, and so a pie-chart display, like that shown in 

Figure 12, is desirable.  However, if one or more design input variables do strongly influence the 

scatter of the structural response, a pie-chart display will reveal that dependency. The pie-chart 
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display provides the analyst a tool to aid in understanding the importance of design variable 

tolerances and uncertainty. 

Results and Observations 

In the preceding sections, the MSC.Robust Design stochastic simulation tool and the application 

problem used in this evaluation are briefly described. Finite element linear stress analyses are 

performed using a desktop personal computer with a 3.19-GHz Xeon processor and 3 GB of 

memory and running Windows XP, MSC.Nastran Version 2005r2 [5], and MSC.Robust Design 

Version 2004r3.6 [6].  The original two-dimensional shell finite element model of RCC WLE 

Panel 4 assembly is selected as a representative aerospace structural analysis problem to use in 

the high-level assessment of MSC.Robust Design (or RD).  The RCC WLE Panel 4 finite 

element model, shown in Figure 3, has approximately 1,300 nodes and 1,200 two-dimensional 

shell elements.  Each MSC.Nastran linear stress analysis of this finite element model requires 

approximately 10 CPU seconds to execute on the desktop personal computer being used. 

The linear stress analysis of the baseline finite element model of RCC WLE Panel 4 assembly 

was performed using MSC.Nastran.  The loading case corresponds to a re-entry aerodynamic 

load case where an outward-directed pressure (burst pressure) is applied on the upper panel 

surface and an inward-directed pressure (crush pressure) is applied on the lower panel surface.  

The contour plot of the resultant displacement magnitude is shown in Figure 13.  The distribution 

shows the outward deflections on the upper panel surface.  Maximum resultant displacement 

magnitudes occur near the center of the upper panel surface.  Contour plots of the von Mises 

stress distribution for Panel 4 and T-seal 5 on the outer surface of the shell finite elements (Z1 

position through the thickness) are shown in Figures 14a and 14b, respectively.  The maximum 

value occurs at the ribs of the panel.  Additional results based on this finite element model are 

reported in Ref. 15. 

This finite element model, as defined in the MSC.Nastran bulk data file, was created during the 

Space Shuttle development period and still was readily read into RD without any difficulties.  

Input random variables were defined as the RCC thickness variation over the panel, the elastic 

mechanical properties of the RCC (in terms of the Gij stiffness coefficients on the MAT2 input 

record), the load amplitude of the aerodynamic pressure (not the spatial distribution of the 

aerodynamic pressure), the beam cross-sectional properties representing the spanner beams, and 
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the spring stiffness terms representing various RCC WLE panel attachment hardware.  The finite 

element model, shown in Figure 3 from MSC.Patran and shown in Figure 4 in the graphical view 

port of the RD display window, represents a single RCC WLE panel assembly.  A panel 

assembly includes the RCC WLE panel, its T-seal, the panel and T-seal attachment hardware, 

and spanner beams.  The attachment hardware that connects the panel assembly to the WLE front 

spar is referred to as the spar attachment hardware.  This hardware and the WLE front spar itself 

serve to provide the backup structural support for the RCC WLE panel assemblies.  In the finite 

element model, the resulting elastic structural support is provided by a set of stiffness 

coefficients (DMIG terms) defined at the field-break points on the RCC WLE panel assembly.   

The DMIG terms representing the stiffness of the backup structure could not be selected as 

random variables within this version of RD (Version 2004r3).  As a result, a total of 635 random 

design input variables were defined.  Although not required by RD, each random input variable 

was assumed to have a Gaussian (normal) distribution with a coefficient of variation (CoV) equal 

to five percent and a cutoff range set by three standard deviations (default settings).  Potentially 

each random variable can have a different statistical distribution type, mean, and CoV. 

Response output parameters (or observables) were selected from the RD project tree (see Figure 

4).   The maximum and minimum values of the von Mises stress, the principal stresses, and the 

stress components (normal and shear) at the element centroids were chosen.  The maximum and 

minimum values of the nodal displacements (by component direction and resultant magnitude) 

were also chosen as response output parameters.  A total of 28 response output parameters 

resulted; however, six of the 28 parameters are associated with the transverse stress components, 

which are neglected in these two-dimensional shell finite element analyses. 

MSC.Robust Design then computed 101 distinct solutions (by default), which required 

approximately twenty minutes of wall-clock time to complete using the desktop personal 

computer described previously.   One solution corresponds to the baseline finite element model 

of the imported MSC.Nastran bulk data input file, while the other 100 solutions correspond to 

unique permutations of the design input variables (Latin hypercube sampling) as generated by 

RD automatically.  The stochastic simulation results were then graphically displayed in three 

interrelated forms:  decision maps, clouds, and pie charts.  Decision maps give an indication of 

the interrelationship of the input variables and the output metrics.  Clouds display the distribution 

of these 101 solutions, which can be used to aid in identifying outliers in the design or 
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sensitivities to change.  Pie charts give a ranking of all input variables to the scatter in a single 

output parameter and provide a tool to identify input variables that dominate the scatter of an 

output parameter. 

A representative decision map for the RCC WLE Panel 4 analysis is shown in Figure 9 for a 

specified correlation factor r0 of 0.50.  Seven dominant design input variables are identified in 

Figure 9b for the re-entry aerodynamic load case considered.  These seven input variables, as 

described in Figure 9b, are associated with the elastic modulus of the beam elements (Material 

100), the beam cross-section properties (Bar 200), 19-ply-thick-tensile-regions thickness (Shell 

19), 19-ply-thick-compressive-regions thickness (Shell 119), 22-ply-thick-compressive-regions 

thickness (Shell 122), T-seal 20-ply-thick-compressive-regions thickness (Shell 220), and the 19-

ply-compressive G22 stiffness coefficient (Material 119).   Twenty-one response output 

parameters are also identified in Figure 9b, and the interactions between the input variables and 

output parameters are shown by the various links.  The links between the seven input variables 

and the twenty-one output parameters all have a correlation factor r equal to or greater than the 

specified value r0 of 0.50.  Links displayed above the diagonal have a correlation factor r larger 

than 2/)1( 0r+  (i.e., larger than 0.75 in this case), and those below the diagonal have a 

correlation factor r smaller than 2/)1( 0r+ . 

Specifying the correlation factor r0 on the RD toolbar, changes the amount of information 

displayed on the decision map.  This effect is illustrated by comparing the decision map shown 

in Figure 9b with the decision maps shown in Figure 15.  The decision map shown in Figure 9b 

is generated using a specified correlation factor r0 of 0.50 and has an effective minimum 

correlation factor of 0.507.  The effect of changing the specified correlation factor r0 from 0.50 

to 0.75 and then to 0.25 is illustrated in Figures 15a and 15b, respectively.  Increasing the 

specified correlation factor r0 leads to fewer interactions (or links) being displayed in the 

decision map as indicated in Figure 15a.  Decreasing the specified correlation factor r0 leads to 

an increase in the number of interactions (perhaps all) between the input random design input 

variables and the response output variables as indicated in Figure 15b.  As the specified 

correlation factor is decreased, the relative significance of the decision map links becomes less 

apparent because the relative significance of the interaction between input and output variables is 

blurred.  However, the use of a small specified correlation factor does clearly indicate the 
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number of possible interactions between input and output variables.  Changing the specified 

correlation factor helps the analyst identify “tall poles in the tent” quickly and guides the analyst 

in examining the design to determine the cause of these “tall poles” and finding alternatives that 

lead to design improvement.  These alternative designs may require changes to the baseline finite 

element model and the need to validate the new analysis model. 

By selecting the “Shell 19” input variable and the “Displacement Max Magnitude” response 

output parameter on the decision map (see Figure 9 or 15), the scatter plot or “cloud” shown in 

Figure 10 is obtained.  Again, this view shows the project tree on the left side, a subset of the 

simulation output parameters along the bottom in the design table, and the scatter plot for the 

chosen variables in the graphical view port.  The range of the input variable (19-ply-thick-

tensile-regions thickness) used in the stochastic analysis is displayed (0.204 – 0.262 inches based 

on values used in the stochastic analysis and bounded by  the user-specified input values – mean 

value, cutoff range, and CoV).  The computed bounds of the response output parameter 

(Displacement Max Magnitude) from the stochastic analysis are shown on the vertical axis 

(0.0778 – 0.0967 inches).  Every dot in the “cloud” represents one of the 101 deterministic 

solutions generated for each combination of random input design variables by the Monte Carlo 

analysis used by the RD software.   

A view of this “cloud” by itself is given in Figure 16.  The basic trend of the results indicates a 

reduction in displacement as the thickness increases, which is intuitive.  As a result, both the 

linear and nonlinear correlation factors are negative.  If the correlation was in fact linear, then the 

two correlation factors would be equal.  The closer these correlation factors are to ±1, the 

narrower the “cloud” will be and the stronger the correlation between the input and output 

variables.  The most-likely value is also identified on the cloud by the “+” symbol.  This value is 

defined as the centroid of the bounding polygon of the “cloud” of the solutions.  Outlier solutions 

from the stochastic simulation are also readily identified on the scatter plot as evident in Figure 

16.   

By selecting “Material 100-E” as the input variable and “Stress Max Principal C” as the output 

parameter on the decision map shown in Figure 9a, the scatter plot or cloud shown in Figure 17 

is obtained.  Again, the range of each input and output parameter is indicated on the plot.  In this 

case, the basic trend of the results indicates an increase in stress as the material modulus 
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increases, which again is intuitive.  Hence, both correlation factors are positive.  However, for 

this pair of variables, significantly more scatter is evident in the plot, and the correlation factors 

are smaller than those observed for the case shown in Figure 16. 

Representative pie-chart displays are shown in Figure 18.  The scatter in the maximum von 

Mises stress (as a response output parameter) is influenced more by scatter in the nine design 

input variables listed in Figure 18a.  The most influential design input variable on the maximum 

von Mises stress is “Shell 19”.  This variable is associated with the thickness of the WLE panel 

region of the finite element model having a 19-ply RCC laminate.  However, less than 2% of the 

scatter in the maximum von Mises stress is attributed to the “Shell 19” design input variable.  

Nearly 94% of the scatter is attributed to the remaining 626 design input variables with each 

contributing less than 0.5%.   Similarly, the scatter in the maximum displacement magnitude (as 

a response output parameter) is influenced more by the scatter in the nine design input variables 

listed in Figure 18b.  Again, the most influential design input variable on the maximum 

displacement magnitude is “Shell 19”.  However, less than 2% of the scatter is influenced by the 

“Shell 19” design input variable.  Nearly 94% of the scatter is attributed to the remaining 626 

design input variables. 

Applying stochastic simulation tools to debris impact assessment on the Space Shuttle WLE 

panels is another possible application.  Additional design variables would then include the 

discrete loading event caused by potential debris impact of the WLE panels.  Random input 

variables would include debris velocity, debris mass, debris shape and orientation, and impact 

location on the WLE panel.  Output response parameters could be peak stress, threshold damage 

indicator, or some other performance metrics.  Integration of RD with other engineering analysis 

tools would need to be developed to accommodate such an evaluation. 

Summary 

MSC.Robust Design (RD) is a GUI-driven stochastic simulation tool to examine existing 

MSC.Nastran finite element models and to assess response sensitivities to finite element model 

input design parameter variability and uncertainty.  Design input variations due to uncertainties 

(e.g., loads), material property variations, or manufacturing tolerances can be considered.  

Random variable input definitions and user-selected output response metrics are currently 

limited to those defined in the MSC.Nastran bulk data file (*.bdf file) and written to the 
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MSC.Nastran output file (*.f06 file). RD automatically generates and manages a number of 

unique solutions as defined by the analyst and displays the results in several formats to assist the 

analyst in assessing the design based on the given finite element model. 

Solutions that appear to be outliers in the collection or cloud of solutions then need to be 

examined by the analyst to understand why it is an outlier (i.e., is it something due to a response 

change or is it an issue related to finite element model limitations or is it a problem that needs to 

be fixed in the design).  The application of the software is geared to having an “engineer in the 

loop”.  It is not a tool that will assess the finite element modeling correctness or adequacy, 

although the ability to run 100 or more analyses using the same finite element discretization 

provides some confidence in the robustness of the engineering analysis model.  It should also be 

noted that by running these stochastic simulations, a finite element modeling error may be 

uncovered.   

The MSC.Robust Design stochastic simulation tool leverages existing MSC.Nastran finite 

element models and does not require the generation of new finite element models in order to 

perform the stochastic simulation.  Examination of RD results can provide confidence in the 

finite element model for the intended application and identify potential design issues related to 

the design variables (outliers in the design space).  By keeping the “engineer in the loop”, RD 

has the potential for increasing design quality by the analyst’s understanding of how 

uncertainties influence the design response using the given analysis model.  Establishing the 

credibility of the given baseline finite element model used in the stochastic simulations still 

resides with the analyst. 
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Figure 1.  RCC WLE panel numbering on each wing (from CAIB report, Ref. 13, p. 55). 
 

 
Figure 2.  Typical RCC WLE panel assembly (blue parts) and  

WLE attachment hardware and front spar (non-blue parts). 
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Figure 3.  MSC.Nastran shell element model for RCC WLE Panel 4 and T-seal 5 
– complete finite element model, panel model only, and T-seal model only (left to right). 
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Figure 4.  Primary display of MSC.Robust Design after reading 

in the MSC.Nastran bulk data file.
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Figure 5.  Representative “Project Tree” formed by MSC.Robust Design 
upon reading the MSC.Nastran bulk data file. 
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(a)  Selecting a single material parameter to be randomized. 

 

(b) Setting the distribution type, cutoff, and coefficient of variation. 

Figure 6.  Randomizing input design variables for the stochastic 
simulation using MSC.Robust Design. 
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Figure 7.  Setting the number of stochastic simulations (samples) for MSC.Robust Design. 

 

 

Figure 8.  MSC.Robust Design display of the Design Panel tab  
showing typical simulation results. 
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(a) Decision map without labels. 

 

(b) Decision map with labels. 

Figure 9.  Representative decision map from MSC.Robust Design for specified correlation 

factor r0 of 0.50. 
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Figure 10.  Representative scatter plot or cloud from MSC.Robust Design. 
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Figure 11.  Representative three-dimension ant-hill plot – shell thick, maximum displacement 

magnitude, maximum principal stress B. 

 

Figure 12.  Typical pie-chart distribution for specific output variable in terms of the input 

variables. 
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Figure 13.  Contour plot of the resultant displacement magnitudes for the RCC WLE Panel 4 

assembly subjected to a re-entry aerodynamic load case, in inches. 
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(a)  Stress distribution on the panel, in psi. 

 

(b)  Stress distribution of the T-seal, in psi. 

Figure 14. Contour plots of the von Mises stress distributions on the outer surface (Z1) of 

RCC WLE Panel 4 assembly subjected to a re-entry aerodynamic load case.
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(a) Increasing the specified correlation factor to 0.75. 

 

(b) Decreasing the specified correlation factor to 0.25. 

Figure 15.  Effect of specified correlation factor r0 on decision map. 
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Figure 16.  Representative scatter plot of displacement results. 

 

Figure 17.  Representative scatter plot of stress results. 
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(a) Pie-chart distribution for the maximum von Mises stress. 

 

(b)  Pie-chart distribution for the maximum resultant displacement. 

Figure 18.  Representative pie-chart distributions for different response output variables. 
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