
AIAA 2006-6478

American Institute of Aeronautics and Astronautics

1

General Aviation Data Framework

Elaine M. Blount*
Unisys Corporation, NASA Langley Research Center, Hampton, VA, 23681

Victoria I. Chung†

Flight Simulation and Software Branch, NASA Langley Research Center, Hampton, VA, 23681

The Flight Research Services Directorate at the NASA Langley Research Center (LaRC)
provides development and operations services associated with three general aviation (GA)
aircraft used for research experiments. The GA aircraft includes a Cessna 206X Stationair, a
Lancair Colombia 300X, and a Cirrus SR22X. Since 2004, the GA Data Framework
software was designed and implemented to gather data from a varying set of hardware and
software sources as well as enable transfer of the data to other computers or devices. The
key requirements for the GA Data Framework software include platform independence, the
ability to reuse the framework for different projects without changing the framework code,
graphics display capabilities, and the ability to vary the interfaces and their performance.
Data received from the various devices is stored in shared memory. This paper concentrates
on the object oriented software design patterns within the General Aviation Data
Framework, and how they enable the construction of project specific software without
changing the base classes. The issues of platform independence and multithreading which
enable interfaces to run at different frame rates are also discussed in this paper.

I. Introduction
HE Flight Research Services Directorate at the NASA Langley Research Center (LaRC) provides design,
development, implementation, and testing services for simulation and flight aerospace experiments. This

support enables researchers to develop and test research ideas to enhance aviation safety, aviation capacity, and the
operational needs of the national airspace system1. FRSD develops, operates, and maintains three general aviation
(GA) research airplanes: Cessna 206H Stationair, Lancair Columbia 300, and Cirrus SR22X in addition to several
other types of airplanes to support flight experiments. FRSD designed and built a GA baseline research system for
these GA research airplanes at LaRC. The Flight Simulation and Software Branch (FSSB) of the FRSD developed a
Generic Aviation Data Framework for the GA baseline research system in order to support experiments performed
in all three of these research GA airplanes. The Generic Aviation Data Framework is designed to operate on both
Windows and Linux platforms to gather data from hardware devices for use by experimental equipment, data
gathering and analysis, and graphics display.

The goal of the GA research system is “to provide a generic research system for the three NASA GA aircraft
using as many common features/components as possible to minimize the specific hardware and software necessary
for experiments envisioned within the next three to five years.”2 Various objectives within this goal include
minimizing the costs and time in reconfiguring aircraft between experiments and the ability to use interchangeable
research system components between the aircraft.3 The original requirements included the hardware, software, and
various other components of the planes. Figure 1 depicts the hardware research system components which consist of
Air Data Attitude Heading Reference System (ADAHRS), Data Acquisition System, data link system, General
Purpose Computers, Global Positioning System, and Universal Access Transceiver (UAT).

Derived requirements were written to detail software design goals that include the ability to vary the interfaces,
use the software on both Windows and Linux platforms, use both mouse and bezel button inputs to communicate

* Software Engineer, Unisys Corporation, NASA Langley Research Center/Mail Stop 169, and AIAA Member
† Software Group Lead, FSSB, NASA Langley Research Center/Mail Stop 125B, and AIAA Lifetime Senior
Member.

T

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

2

with the system, check the status of interfaces, view the data received by the various interfaces and display
graphics.4 The GA Data Framework was designed to meet the requirements of the GA research system.

Figure 1. Research System with its Components

II. Overall Design

The GA Framework is written in object oriented design and C++ computer language. Framework code does not
change from project to project. Projects consist of different experiments that require specific changes to the code
that are not reusable for other experiments. The “framework” code is designed so that “project” code can be derived
from key classes to make changes to the system. Figure 2 shows the general architecture of the various classes. The
object ga_main instantiates GAMain; GAMain, in turn instantiates Shared Memory Classes for data storage, GAGui
for a Graphical User Interface, and the various data interfaces (GADataInterface). Classes reused from the Langley
Standard Real-time Simulation in C++ (LaSRS++) framework are implemented for shared memory, graphics, and
the SeparateThreadGui5 class. Classes executing as separate threads include the various interfaces, GAGui and
GAMain. All of the Data Interfaces are derived from GADataInterface to ensure that they possess properties
specific to GADataInterface. All of the GADataInterfaces are contained in a vector within GAMain after
instantiation, and they are acted upon by GAMain in an iterative fashion using the GADataInterface virtual and non-
virtual methods.

Data Acquisition
System

CAN Aerospace / AGATE Bus

Video Camera(s)

Experimental Power

Experimental
Instrumentation

Alternator
Battery
Dist. Box

Video
Recording

&
Distribution

PFD

Athena
ADAHRS

Pitot

Misc. Sensors

ADS-B
GPS

Capstone - UAT

TCP/IP

Ashtech
GPS/DGPS

VHF
D-Link

High End
General Purpose

Computer (GPC-1)

Network
HUB/Switch

RS232

RS232

I/F Pending
Development

RS232

Airborne Internet
VDL

Mode-SATS ND

GPC-2

Bezel
RS232

RS232

RS232 From
Garmin GPS

Static

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

3

SeparateThreadGui

GADataInterface

SharedMemoryImplFactory

MemoryBlockManager

GraphicsDriver

MemoryBlock

GADataDriverInterface

BezelButtonInterface

ga_main

GAGui

GraphicsProcess

BezelButtonRS232Interface

DASInterface

GAUatInterface

GAMain

GAArincInterface

Figure 2. Overall Design of GA Data Framework

 Instantiation of the General Aviation Software is straightforward as shown in Figure 3. Shared Memory

items are created, Graphics Driver is instantiated, the interface initial conditions file is read and parsed to create the
appropriate interfaces. The Graphics Process is executed as a separate process to display graphics, when graphics are
requested. In addition to providing the different interfaces required by the system, the initial conditions file also
provides the type of the plane to the GA Framework for setting plane specific variables.

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

4

 : GAMain SharedMemoryImplFactory MemoryBlockManager : GraphicsDriver

parseCommandLine()

virtual createAllMemorySegments ()

createMemoryBlock()

parseInterfaceFile()

createInterface()

makeSharedMemoryImpl()
new

createInterfaceThread()

new

startGAGUI

Figure 3. Instantiation of General Aviation Framework

A. General Interface Design and Multi-Threading
All data interfaces are derived from the class GADataInterface regardless of whether the interface receives data

from a socket connection, ARINC board, serial connection, or calculates its own data. A data transfer rate of one
hertz is specified during construction within the code according to the interface. GADataInterface polls the data
transfer rate specified if the data rate is greater than zero. A data rate of zero tells the GADataInterface to perform
blocked reads.

An example of the initial conditions file is as follows:

#Plane Types
#---------------
#CESSNA_206X_STATIONAIR PLANE
#LANCAIR_COLUMBIA_300X PLANE
CIRRUS_SR22X PLANE

#Interface com port (/dev/ttys#) – linux) (com# windows)

#TestDriverInterface NA
#BezelButtonInterace NA

#UATInterface /dev/ttyS0
#RS232BezelButtonInterface /dev/ttyS0
#AthenaAdahrsInterface com1
#SeagullAdahrsInterface /dev/ttyS0

#interface com port, fileout/in baud hertz record size

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

5

#SerialInputReceiveInterface com5 hardware.out 57600
#SerialInputSendInterface com5 hardware.out 57600 2 83

Figure 4 below shows the general contents of a GADataInterface from which all interfaces are derived. GAMain
has a static method updateMemory(void* raw_args) used to start threads which execute the GADataInterface virtual
method updateSharedMemoryBlocks(). Every interface receives data and updates shared memory using
updateSharedMemoryBlocks() and methods called within it. UpdateSharedMemoryBlocks() also keeps track of the
time between reads to enable connection checks and to store frame rate statistics. Virtual method
GADataInterface::makeDataInvalid() marks data received by the interface and stored in shared memory invalid for
use when applicable. Each GADataInterface creates a standard GAAutoRaiseWindow as a stub to view data, but
interfaces often create classes derived from GAAutoRaiseWindow to display the specific interface data.

GADataInterface
Chronograph* chronograph
Chronograph* frame_chronograph
string interface_title
double max_time_elapsed
bool is_active
bool is_connected
int error_count
int iterations
int bytes_lost
double timeout
Histogram* frame_time_histogram

virtual updateSharedMemoryBlocks()
virtual makeDataInvalid()
virtual GAAutoRaiseWindow* createInterfacePage()
bool checkConnection()
resetConnectionTimer()
putInterfaceWindow()
GAAutoRaiseWindow* getInterfaceWindow()
addTimingPoint()
double getCalculatedFrameRate()
sleepRestOfFrame()
putActive()
putConnected()
putErrorCount()
incrementBytesLost()
incrementIterations()
incrementErrorCount()
bool isActive()
bool isConnected()
int bool getErrorCount()
int getInterations()

BezelButtonInterface

GADataDriverInterface

Socket

ArincChannelGarminArinc429Interface

ExtendedPosixSerialCommunication

Win32SerialCommunication

SerialCommunicationFactory

DASInterface SockDgramClient

GAUatInterface

GAAdahrsInterface
SerialCommunication

BezelButtonRS232Interface

Figure 4. General Interface Design

As shown below in Figure 5, method GAMain::cycle() continuously executes to iteratively check the

connections of the interfaces, mark the data invalid if the interface is not connected, send graphics information data
via Ethernet to displays if the –ethernet_graphics option is selected, increment the timer and iterations, then sleep the
rest of the time frame based on the data transfer rate selected for the GAMain class. Each of the interfaces operates
on a separate thread according to desired options, including an individual data transfer rate specified upon interface
creation. GAMain manages the interfaces by checking on each interface thread using the method
GADataInterface::checkConnection(). GADataInterface::checkConnection() queries the time elapsed since the last
update against the maximum time for that interface. If the maximum time has been breached, all of the data updated
by the interface is set to invalid: it is too old to be used. During each cycle of update by the interfaces, using
GADataInterface::updateSharedMemory() the data is set to valid. Thus, if the hardware is turned off, the timeout
would be detected by checkConnection() which would set the data invalid. Once the hardware is turned on, the data

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

6

is updated and flagged as valid. During shutdown, GAMain sends messages to all of the interfaces to stop, and
destroys all objects created.

 During the design phase, there was concern about order of processes and how to prevent potential issues
regarding process priority and competition for resources. Thus far, there have been no problems with processes
competing for resources. Shared memory blocks are created to store data from specific interfaces. Processes do not
update shared memory unless that memory block is created for them. All processes can read data from the shared
memory blocks, but they only update their own memory blocks. Due to this design rule, GAMain does not currently
use mutexes or locks to access the data in shared memory.

 : GAMain GADataInterface() : GraphicsDriver Timer

cycle()

checkConnection()

sleepRestOfFrame()

makeDataInvalid()

putConnected(false)

IF elapsed > max_time_elapsed

if (ethernet_graphics) sendData()

increment()

interations++

Figure 5. GAMain::cycle() Update for General Aviation Frame

B. GUI Design
The GUI screens shown in Figure 6 are designed to receive data through the class Bezel Buttons or a mouse and

are created using GTK. GAGui is created using method GAMain::startGui() and is derived from the LaSRS++ class
SeparateThreadGui shown in Figure 2. All of the GA GUI’s inherit from GAAutoRaiseWindow (from LaSRS++)
except for GABezelButtonWindow and GADataInterfaceGuiSection. The GAAutoRaiseWindow (derived from
LaSRS++ GuiAutoRaiseWindow class), contains attributes and methods that enable the GUI’s to keep track of the
bezel button selected, the buttons displayed on the GUI, and various other features required by all of the GA GUI’s.
The classes filled in blue: DataSourceWindow, DiwplayControlWindow, GAMainWindow, and
ViewMemoryWindow are all derived from GAAutoraiseWindow. The grey boxes containing GAManager,
GAMainWindowBuilder, and GAViewMemoryBuilder are used to create project specific derived GUI classes when
desired.

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

7

GAAutoRaiseWindow
int but ton_selec ted
int prior_but ton_selected
int number_of_selec tions
string window_ti tle
BezelBut tons* bezel_buttons
Gtk_VBox* main_box
Gtk_Style* default_style
Gtk_Style* default_highl ight_style
Gtk_Button* close_but ton
Gtk_Button prior_menur_but ton
GAAutoRaiseW indow* prior_menu
vector<Gtk_Button*> sc reen_buttons
vector<st ring> button_titles

virtual updateComponents()
BezelBut tons* getBezelButtons()
int getCurrentSelect ion()
int getNumberOfSelect ions ()
int getPriorSelect ion()
string getW indowTit le()
virtual checkForKnobPush()
virtual closeDialog()
virtual priorMenuDialog()
incrementNumberOfSelections()
resetSelections()
createButtonInformation()

GuiAutoRaiseWIndow

GAMain
GABezelButtonWIndow

GAViewMemoryBuilder

GAManager

GAGui

DisplayControlWindow

ViewMemoryWindow

GAMainWindowBuilder

GAMainWindow

DataSourceWindow

GADataInterfaceGuiSection

Figure 6. GUI Design

III. Project Code Derivation
Projects often require specific tasks of software necessitating the use of code that could function in an

undesirable manner for other projects. The General Aviation Framework reuses some of the general patterns used by
the LaSRS++ framework vehicles. Figure 7 shows GARegistration and GAManager along with three builders
(GABuilder, GAMainWindowBuilder, GAViewMemoryBuilder) that were created to satisfy the need for project
related code. The design shown is based on LaSRS++ method of creating project code for its framework.
GAManager is a singleton6 which is a design pattern according to objected oriented design methodology.
GARegistration is a statically created class. Within the constructor for GARegistration, the standard builders for the
GAFramework are created, and GAManager is instanced and stores the builders. The builders instantiate classes that
are likely to change for projects. In this case, GABuilder creates GAMain, which creates and interacts with
interfaces, GAViewMemoryBuilder creates a GUI for viewing memory blocks in shared memory,
GAMainWindowBuilder creates the main GUI that may have different options added to perform project work.
There is an equivalent class for GARegistration and the builders for each project. GAManager stores builders for all
of the projects that have been created. The class G23Main is project software, and the classes used to create the G23
project software are G23Registration, G23ViewMemoryBuilder, G23MainWindowBuilder, and G23Builder.
G23Registraion, like GARegistration is static and creates the builders and places them in GAManager. When the
GA framework is started, a command line option specifies the project, which calls the correct builders from
GAManager.

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

8

G23Main

GAViewMemoryBuilder
virtual ViewMemoryNotebook* bui ld()

GAMainWindowBuilder
virtual GAMainWindow* build()

ga_main
parseCommandLine()
signalHandler()

GAMain

GABuilder
virtual GAMain* build()

xxx.ic file with list of
interfaces to create

Command
line options

G23ViewMemoryBuilder G23MainWindowBuilder

GARegistration

G23Builder

G23Regist raion

GAManager
map<string,GABuilder*> ga_builders
map<string,GAVeiwMemoryBuilder* ga_view_memory_builders
map<string,GAMainWindowBuilder*, ga_main_window_builders
vector<string> available_ga_projects

static GAManager* instance()
destroyInstance()
addGABuilders()
GABuilder* getGABuilder()
GAViewMemoryBuilder* getGAViewMemoryBuilder()
GAMainWindowBuilder* getGAMainWindowBuilder()
vector<string>& getAvailableGAProjects()

Figure 7. Project Code Deriviation

IV. Graphics Capabilities
The GA Framework has three different command line options for graphics: -nographics, -graphics, and –

ethernet_graphics. When –nographics is used, graphics driver is still created, as it creates several needed shared
memory blocks that are also commonly used by graphics classes to contain display information. When –graphics is
used, the class ProcessHandler is created using the singleton factory ProcessHandlerFactory. ProcessHandler creates
separate process and stores information needed to manage the processes. The graphics software is all written for
LaSRS++ and reused within the GA Framework. The –ethernet_graphics option causes GraphicsDriver to open a
socket connection to a specified host and send the graphics information via the socket. This enables the display of
the graphics at a separate location form the computer running the GA Framework.

V. Platform Independence
Whenever possible, current LaSRS++ platform independent software was reused for GA Framework such as the
software written for multi-threads7 and shared memory8. Functions that interact with the operating system and are
platform dependent are embedded in classes specific to the platform function and use a factory type of creation for
serial connections, loading shared objects/dynamic linked libraries, and starting and checking on processes. These
classes are written specifically for General Aviation, but with reuse in mind for other applications. All three have the
same general pattern shown in Figure 8: a singleton pattern is used to create a factory7, and the factory contains a
method to create the platform specific implementation. When the GA Framework needs a Process Handler, the GA
Framework instances the singleton ProcessHandlerFactory, and then calls makeProcessHandler() to get the correctly
implemented ProcessHandler to create and manage a process. C++ #if defined statements which query standard
LaSRS++ platform compile variables are used within ProcessHandlerFactory::makeProcessHandler() to ensure the
correct ProcessHandler is instantiated.

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

9

ExtendedPosixProcessHandler
int process_id
string host_name

virtual int createProcess()
virtual int terminateProcess()
virtual int waitForProcess()
virtual int setSignalAction()
virtual int duplicateStdInputHandle()
virtual void setLocationOPfProcess()
virtual string& getProcessorName()

Win32ProcessHandler
bool duplicate_stdin_child
int socket_fd
STARTUPINFO startup_information
string host_name
void* timer_procedure

virtual int createProcess()
virtual int terminateProcess()
virtual int waitForProcess()
virtual int setSignalAction()
virtual int duplicateStdInputHandle()
virtual void setLocationOfProcess()
virtual string& getProcessorName()

ProcessHandlerFactory
stat ic ProcessHandlerFactory* process_handler_factory

stat ic ProcessHandlerFactory* instance()
stat ic void destroyInstance()
ProcessHandler* makeProcessHandler()

ProcessHandler
bool child_process_started

virtual int createProcess()
virtual int terminateProcess()
virtual int waitForProcess()
virtual int setSignalAction()
virtual int duplicateStdInputHandle()
virtual void setLocationOfProcess()
virtual cons t string& getProcessorName()
bool isChildProcessRunning()
void setChildProcessRunning()

GAMain
ProcessHandler* process_handler
ProcessHandlerFactory* process_handler_factory

Figure 8. Platform Independent Classes

VI. Conclusion
The General Aviation Framework was successfully used for the Synthetic Vision Systems – General Aviation

Equivalent Safety Experiment (SVS-GA-ESE) Project. Changes that were needed specifically for the SVS-GA-ESE
Project, were implemented using builders to create the project code as described in Project Code Derivation section.
The framework successfully reused many of the LaSRS++ components and patterns and generated new classes that
can also be reused by the LaSRS++ framework. The goal and objective of having generic GA research software
framework to support maximum hardware systems; minimizing the costs and time in reconfiguring aircraft between
experiments; and the ability to use interchangeable components between the aircraft were being met successfully.
The General Aviation Framework was designed with for long-term benefits of maximum re-usability, portability,
testability, and maintainability through methodical, organized, and thoughtful planning, design, development,
verification, and validation throughout the software lifecycle.

Acknowledgments
The authors would like to extend the appreciation and gratitude to Jim Barnes, Project Lead of the SVS-GA-ESE

project, for his implementation of the GA Framework within the SVS-GA-ESE project; and Regina Tober, Wei
Anderson, and Jerry Karwac for their contributions towards the General Aviation Framework and the SVS-GA-ESE
project using the GA Data Framework.

The authors would like to also thank all fellow Flight Simulation and Sosftware Branch (FSSB) software
developers as they continually maintain and evolve the LaSRS++ framework used by the simulation and flight
projects.

AIAA 2006-6478

American Institute of Aeronautics and Astronautics

10

References
1”Flight Research Services Directorate” [online website] URL:http://simulators.larc.nasa.gov/ [cited May 31, 2006].
2Fisher, Bruce D. and Knox, Charles E., “Baseline General Aviation Aircraft Research System Requirements Document,”

Version 2.2, September 12. 2003, page. 5, Internal NASA document
3Fisher, Bruce D. and Knox, Charles E., “Baseline General Aviation Aircraft Research System Requirements Document,”

Version 2.2, September 12. 2003, page. 5, Internal NASA document
4Blount, Elaine M., “Derived Requirements for Interfaces,” Version 1.1, November 2, 2004, Internal FSSB document
5Geyer, David W, “The Use of Multiple Threads in An Object-Oriented Real-Time Simulation,” AIAA-99-4338
6Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissides, John, “Design Patterns,”
7Sugden, Paul C., Rau, Melissa A., “Platform-Independence And Scheduling in a Multi-Threaded Real-Time Simulation,”

AIAA-2001-4244
8Geyer, David W., Madden, Michael M, Glaab, Patricia C, Cunningham, Kevin, Kenney, P. Sean, and Leslie, Richard A,

“Managing Shared Memory Spaces in an Object-Oriented Real-Time Simulation”, AIAA-98-4532,.

