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This paper proposes a methodology for the analysis and design optimiza-
tion of models subject to parametric uncertainty, where hard inequality
constraints are present. Hard constraints are those that must be satisfied
for all parameter realizations prescribed by the uncertainty model. Em-
phasis is given to uncertainty models prescribed by norm-bounded pertur-
bations from a nominal parameter value, i.e., hyper-spheres, and by sets of
independently bounded uncertain variables, i.e., hyper-rectangles. These
models make it possible to consider sets of parameters having comparable
as well as dissimilar levels of uncertainty. Two alternative formulations for
hyper-rectangular sets are proposed, one based on a transformation of vari-
ables and another based on an infinity norm approach. The suite of tools
developed enable us to determine if the satisfaction of hard constraints is
feasible by identifying critical combinations of uncertain parameters. Since
this practice is performed without sampling or partitioning the parameter
space, the resulting assessments of robustness are analytically verifiable.
Strategies that enable the comparison of the robustness of competing de-
sign alternatives, the approximation of the robust design space, and the
systematic search for designs with improved robustness characteristics are
also proposed. Since the problem formulation is generic and the solution
methods only require standard optimization algorithms for their implemen-
tation, the tools developed are applicable to a broad range of problems in
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several disciplines.
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List of Acronyms

CPV Critical Parameter Value

CSR Critical Similitude Ratio

FDS Feasible Design Space

PSM Parametric Safety Margin

RDS Robust Design Space

I. Introduction

Design under uncertainty arises in numerous disciplines including Engineering, Eco-
nomics, Finance, and Management. Achieving balance between robustness and performance
is one of the fundamental challenges faced by scientists and engineers. Trade-offs must be
made to reach acceptable levels of performance with adequate robustness to uncertainty.

Literature in probabilistic controls,1 stochastic programming2,3 and stochastic approxi-
mations4 provides several mathematical tools for optimization under uncertainty. The algo-
rithms at our disposal can be classified according to the way they enforce inequality con-
straints that depend on the uncertain parameters. Hard Constraints5–9 are those that, for
a given uncertainty model, must be satisfied for all possible realizations of the uncertain
parameter (a realization is any possible value within the uncertainty model). Strategies to
solve the resulting semi-infinite optimization problem usually require nested searches where
approximations to the worst-parameter-realization5,10 are made in a inner optimization loop
and a growing number of constraints, which depend on this approximation, are sequentially
added to the outer loop. These strategies however, not only become computationally in-
tractable for uncertain parameters of large dimension; but more importantly, are unable to
provide guarantees of constraint satisfaction.

For high risk decisions, the achievement and formal verification of strict constraint fea-
sibility are crucial tasks. This paper builds new techniques to address these needs by devel-
oping a comprehensive methodology for robustness analysis and robust-design based on the
calculation of certain indicators, called Parametric Safety Margins (PSMs), Critical Param-
eter Values (CPVs), and Critical Similitude Ratios (CSRs). The methodology enables us
to determine if strict feasibility is possible. Besides, the tools derived allow for quantifying
and comparing the robustness characteristics of competing design alternatives. Those tools
are also extended and used for the systematic search of solutions with improved robustness.
The ideas proposed do not require sampling/partitioning the parameter space. Instead, they
are based on the numerical solution to an optimization problem. Hence, the results are as
verifiable as is the convergence to the global optima.

This paper is organized as follows. An informal overview of the paper is given. Then the
mathematical formulation is motivated and introduced. Following that, robustness analysis
tests for hyper-spherical and hyper-rectangular uncertainty sets are presented. The concepts
and tools used for analysis are then extended and applied to robust design. A low-dimensional
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example is used for illustration. Finally, some concluding remarks are given.

II. Informal Overview

This paper is concerned with questions of analysis and design asked about a system which
is described by a parametric mathematical model. The parameters which specify the system
are of two sorts – some uncertain parameters which are denoted by the vector p and some
design parameters which are denoted by the vector d.

The model of uncertainty used in this paper is composed of a support set ∆p and a
designated point p̄ ∈ ∆p which will be used as an anchor point for defining expansions and
contractions of the support set. The value of the uncertain parameter p is not specified but is
assumed to belong to the support set ∆p. The choices of ∆p and p̄ are made by some subject
matter expert. However, the theory presented in this paper tacitly acknowledges that such a
choice may be fairly arbitrary. The problem of when an acceptable design remains acceptable
if the uncertainty support set is enlarged (signaling robustness to uncertainty in the original
design) is addressed. Conversely, the problem of how much an uncertainty support set must
be reduced to make an unacceptable design acceptable (indicating a situation in which it
becomes necessary to reduce uncertainty to accomplish design goals) is also addressed.

For analysis purposes, d is assumed to take on a fixed value. For design purposes, d is
to be chosen to achieve some design goal(s).

For the purposes of this paper, the salient part of the system model is a finite collection of
(real valued) constraint functions which depend on both the uncertain and design parameters.
The system is deemed acceptable at given values of the uncertain and design parameters if all
constraint functions values are non-positive there. For each value of the design parameter,
these functions partition the uncertain parameter space into two regions, a failure region
where at least one of the functions takes on a positive value and a region of acceptable
uncertain parameter values which comprises everything not in the failure region. The Feasible
Design Space is the set of design points (i.e., points in the space of design parameters) for
which the constraints are satisfied at the designated point. From this point of view, the
designated point is functioning as a nominal value for the uncertain parameter.

One of our tasks is to assign a measure of robustness to a feasible design point based
on measuring how much the uncertainty support set can be expanded without encroaching
on the failure region. This requires specifying what we mean by expanding the support set.
This is where the designated point enters in. Expansion by a factor of α can be viewed in
the following way. Imagine standing at the designated point and looking at any other point
of the support set. Denote the distance from the designated point to the other point by
δ. Then a point will be placed in the expansion set by looking in the same direction, and
placing a point at a distance of αδ from the designated point. Note that if α is less than
1, this actually represents a contraction of the support set. In either case, the geometric
terminology is that the new set is homothetic11 to the original. By limiting our attention
to hyper-spherical and hyper-rectangular support sets, we are able to cast the problem of
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finding the maximal feasible expansion of the support set in terms of a problem that standard
nonlinear constrained optimization algorithms are applicable to.

The failure domain changes as the design parameter changes. For each different feasible
design point, a measure of robustness can be calculated. One can then search for a design
which has the greatest measure of robustness. Once again, we show how to cast this search
in the form of a nonlinear optimization problem so that existing optimization techniques
may be applied.

The first task of this paper is to specify conditions on support set geometry and on the
constraint functions so that optimization tools may be applied.

III. Framework

Definition 1 (Uncertainty Model). The uncertainty model of a vector uncertain parame-
ter p is the pair 〈∆p, p̄〉, where ∆p ⊂ Rdim(p) is the support set and p̄ ∈ ∆p is the designated
point.

The uncertainty model is specified by the analyst/designer. The intent is that the set ∆p

be chosen so that the actual value of the uncertain parameter p lies somewhere within it.
A realization of the uncertain parameter is a value of the parameter selected from ∆p. The
designated point, whose selection is subjective, can be interpreted as the realization that
best represents p, such as a nominal value.

Consider now the situation that a system depends on an uncertain parameter p ∈ Rdim(p)

and a design variable d ∈ Rdim(d). Suppose that g : Rdim(p) × Rdim(d) → Rdim(g) is a
set of constraint functions on the system, which have been normalized so that positive
values represent constraint violations. If these are considered hard constraints, the system
corresponding to given values of d and ∆p will be judged acceptable if, g(p, d) ≤ 0, ∀p ∈ ∆p.
The failure region (or infeasible region), denoted as F(d, g) ⊂ Rdim(p), is composed of the
parameters that do not satisfy all the constraints. For a fixed design d, F(d, g) either overlaps
the set ∆p, case in which the design d is non-robust; or F(d, g) and ∆p are disjoint, case in
which the design d is robust. In the latter case, the degree of robustness can be quantified
by using the Critical Similitude Ratio (see Definition 4) to measure the separation between
the two sets.

Selecting the set ∆p usually involves some engineering judgment. One reasonable choice
might be to confine each component of p to a bounded interval. This leads to the choice of
∆p as a hyper-rectangle. A natural choice for the designated point p̄ is the geometric center
of ∆p. If m is the vector of half-lengths of the sides of the hyper-rectangle, the rectangle is
represented by the notation Rp(p̄, m), and defined by

Rp(p̄, m) = {p : pi ∈ [p̄i −mi, p̄i + mi], 1 ≤ i ≤ dim(p)} .

Another reasonable choice for ∆p is a hyper-sphere. The hyper-sphere of radius R centered
at p̄ will be denoted as Sp(p̄, R).
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Definition 2 (Homothetic Sets11). In Euclidean geometry, two sets A and B are called
homothetic with respect to the center x at a similitude ratio α if

B = {b : b = α(a− x) + x, a ∈ A} .

Such a set B is completely determined by A, x, and α. We use the notation B = H(A, x, α)
to express this relationship.

B = H(A, x, α) means that B can be created from A by forming every vector from the
homothetic center point x to each point of A; stretching or shrinking it by a factor of α;
and, with the root-points of the stretched or shrunk vectors all fixed at x, collecting all the
new endpoints to form the set B.

For purposes of this paper, two uncertainty models will be called proportional if they
have the same designated point and they are homothetic with respect to that designated
point as homothetic center. This means that one of the two support sets can be formed from
the other by expansion or contraction by some positive factor, which is the similitude ratio
α, about the common designated point. For instance, the hyper-rectangles Rp(p̄, m) and
Rp(p̄, αm) are proportional sets for positive similitude ratios α.

The notions of CPV, PSM, and CSR are now introduced. For the sake of clarity , the
presentation of the material will concentrate on the case where the designated point is in the
non-failure region. The converse case is considered in Section IV.D. Intuitively, one imagines
that a set proportional to the support set of the uncertainty model is being expanded homo-
theticly with respect to its designated point until its boundary just touches the boundary of
the failure region. The point(s) where the expanding set touches the infeasible region is (are)
the CPV(s). The CSR is the similitude ratio of that expansion, and the PSM is a metric
that quantifies the size of the set proportional to the support set that has the CPV on its
surface. Both the CSR, which is defined for all support sets, and the PSM, which is defined
for support sets which are hyper-spheres or hyper-rectangles, provide a measure of robustness
of a design to parameter uncertainty. The larger they are, the larger the variation from its
designated point to which the uncertain parameter can be subjected without encountering
a constraint violation. The CSR is non-dimensional, but depends on both the shape and
the size of the support set. The PSM has the same units as the uncertain parameters, and
depends on the shape, but not the size, of the support set. The geometry of support sets and
their homothetic transforms and of constraint violation sets, and particularly the boundaries
of these sets, plays a critical role in the results in this paper. The mathematical background
for these notions is now presented.

Definition 3 (Constraint Violation Set). Suppose that g : Rdim(p)×Rdim(d) → Rdim(g) is
a set of constraint functions. Represent the constraint violation set at design point d by

F(d, g) =

dim(g)⋃
i=1

Fi(d, g), (1)
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where, for 1 ≤ i ≤ dim(g),

Fi(d, g) =
{
p ∈ Rdim(p) : gi(p, d) > 0

}
. (2)

When the arguments d and g are understood from context, they will be omitted.

Notation. Recall that a point is a boundary point of a set if every neighborhood of the
point touches both the set and its complement. The boundary of the set is the set of all its
boundary points. The symbol ∂ represents the topological boundary operator; i.e., if A is a
set, ∂A is its set of boundary points.

Lemma 1. Let d be a fixed design. Suppose that the constraint set g : Rdim(p) × Rdim(d) →
Rdim(g) is composed of continuous functions of p for a fixed d. If p ∈ ∂F , gi(p, d) = 0 for
some i.

Proofs are provided in the Appendix.

Remark. The converse of this Lemma is not true. That is to say, if gi(p, d) = 0 for some
i, it does not follow with mathematical certainty that p ∈ ∂F . For example, if dim(g) = 1

and g1(p, d)
∆
= (p1− 1)2(p1− 2), any p∗ with p∗1 = 1 has g1(p

∗, d) = 0, but all p ∈ F1 must
have p1 > 2, so p∗ 6∈ ∂F .

Constructing this counterexample required creating the juxtaposition of mathematical
events; in this case, a constraint function achieved the transition value of 0 between feasibility
and infeasibility while at the same point its gradient also became 0. We believe that, in a
realistic engineering setting, this is unlikely. So, this counterexample notwithstanding, we
will assume in this paper that the boundary of each constraint function violation region Fi

is exactly described by the points where that constraint function has value zero; i.e.,

∂Fi(d, g) = {p : gi(p, d) = 0} . (3)

We expect that there is little loss of generality in making this assumption. This assumption
provides a formula for ∂Fi.

Definition 4 (Critical Similitude Ratio (CSR)). Let d be a fixed design and let ∆p

and p̄ be the support set and designated point of the uncertainty model of p. The set of
expansion/contraction factors which produce homothets of ∆p with respect to p̄ which contain
points in the failure region is denoted

Ã(p̄, ∆p, d, g)
∆
=

{
α ≥ 0 : H(∆p, p̄, α)

⋂
F(d, g) 6= ∅

}
. (4)

The greatest lower bound (also called infimum) of Ã(p̄, ∆p, d, g), represented by

α̃(p̄, ∆p, d, g)
∆
= inf

(
Ã(p̄, ∆p, d, g)

)
, (5)

will be called the Critical Similitude Ratio. When the arguments p̄, ∆p, d, and g are under-
stood from context, they will be omitted.
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Remark. Standard mathematical convention is that the greatest lower bound of the empty
set is ∞. This is consistent with the proper value for α̃ in case Ã is empty.

Lemma 2 (Properties). Let d be a fixed design and let ∆p and p̄ be the support set and
designated point of the uncertainty model of p. Suppose that g : Rdim(p) × Rdim(d) → Rdim(g)

is a set of constraint functions. This Lemma considers possible consequences of the following
hypotheses:

i. The uncertainty set ∆p is a closed and bounded set (a.k.a. a compact set).

ii. The constraint functions g(p, d) are continuous functions of p for the fixed d.

iii. The designated point p̄ is an interior point of ∆p.

iv. The constraints are violated at some point; i.e., F 6= ∅.

v. The constraints are strongly satisfied at the designated point; i.e., g(p̄, d) < 0.

The following conclusions may be drawn:

a. (i), (ii), & (v) ⇒ 0 < α̃.

b. (iii) & (iv) ⇒ α̃ < ∞.

c. (ii) & (0 < α̃) ⇒ H(∆p, p̄, α̃)
⋂
F = ∅.

d. (i), (ii) & (0 < α̃ < ∞) ⇒ ∂H(∆p, p̄, α̃) ∩ ∂F 6= ∅.

Remarks. At least under the hypotheses (i), (ii), and (v), H(∆p, p̄, α̃) is the homothetic
expansion (or, perhaps, contraction) of ∆p which, starting from a contraction so small that it
contains no constraint violation points, has grown as large as possible without encroaching on
the constraint violation region. Conclusion (a) asserts conditions under which H(∆p, p̄, α̃) is
not trivially small (the single point p̄). Conclusion (b) asserts conditions under which some
homothet H(∆p, p̄, α) of ∆p touches the constraint violation region. Conclusion (c) gives
conditions under which no point of H(∆p, p̄, α̃) violates any constraint. Conclusion (d) gives
conditions under which a CPV exists; see Definition (5).

Definition 5 (Critical Parameter Value (CPV)). Let d be a given design and let ∆p,
p̄, and g be as stated in Lemma 2. Any p̃ lying in ∂H(∆p, p̄, α̃)∩∂F will be called a Critical
Parameter Value for this design, uncertainty model, and constraint set.

By Lemma 2(d), whenever ∆p is compact, the components of g are continuous func-
tions, and some homothet of ∆p with positive similitude ratio is disjoint from the constraint
violation set, the existence of a CPV is guaranteed. Note also that the CPV might not
be a realization of the uncertain parameter; i.e., p̃ might not belong to ∆p. Further note
that the CPV might not be uniquely determined; i.e., ∂H(∆p, p̄, α̃) ∩ ∂F might contain
several points. Figures 1 and 2 show sketches with relevant metrics for hyper-spherical and
hyper-rectangular supports respectively.
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Definition 6 (Feasible Design Space (FDS)). The Feasible Design Space (FDS) is the
set of designs satisfying all the constraints at the designated point.

Definition 7 (Robust Design Space (RDS)). The Robust Design Space (RDS) is the
set of designs satisfying the hard constraints for all points of the uncertainty set of a given
uncertainty model. Each member of the RDS set is called a Robust Design.

Note that if the RDS exists, it is a subset of the FDS.
Formal definitions of the PSM for hyper-spherical and hyper-rectangular supports are

provided in Section IV, as are expressions for the calculation of these PSMs. In general, the
PSM is uniquely specified by the design point d, the support set ∆p, the designated point
p̄, the constraint functions g, and the CSR α̃. The PSM is proportional to the degree of
robustness of d to uncertainty in p for a given geometry of the uncertainty model. If the
PSM assumes the value of zero, the designated point p̄ is on the boundary of the constraint
violation region. This means that there is no robustness to uncertainty in p since at least
one of the constraints is active for p̄, i.e., there exist arbitrarily small perturbations of p
from p̄ leading to a constraint violation. The PSM assumes non-negative values in the FDS.
Negative PSM values are attained by designs outside the FDS.

IV. Robustness Analysis

Problem Statement: Does the design d satisfy the hard constraints g(p, d) ≤ 0 for
each p ∈ ∆p?

The uncertainty set can have arbitrary shape, size and connectivity. However, when the
uncertainty model is more restricted in its structure a simple test for robustness can be
established. We recall a definition from mathematical convexity theory.

Definition 8 (Star Convexity12). The set A is star convex with respect to a point x if,
for each a ∈ A, the entire line segment connecting a and x is a subset of A.

The five pointed star as used, for example, on the United States flag, is not convex, but
is star convex with respect to its geometric center.

A property related to homothetic expansion and contraction of uncertainty models is
introduced next.

Definition 9 (Homothetic Monotonicity). An uncertainty model 〈∆p, p̄〉 is said to
be homotheticly monotone if, whenever 0 ≤ α1 < α2, it is also true that H(∆p, p̄, α1) ⊂
H(∆p, p̄, α2).

An example of a set which is not homotheticly monotone is a set shaped like a capital
“S” with its designated point at the inflection point. Note that all convex sets, including
hyper-spheres and hyper-rectangles, are homotheticly monotone with respect to any of their
points. These two notions are intimately connected.
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Lemma 3. The uncertainty model 〈∆p, p̄〉 is homotheticly monotone if and only if ∆p is
star convex with respect to p̄.

So, while it will be more natural in the context of the present work to view this property
as homothetic monotonicity, it is seen to be an equivalent restatement of the standard
mathematical notion of star convexity.

For uncertainty models with this structure, the following robustness test can be applied.

Lemma 4 (Robustness Test). Let 〈∆p, p̄〉 be a homotheticly monotone uncertainty model
such that ∆p is compact. Let d be a fixed design point and let the constraint functions g(p, d)
be continuous functions of p. Suppose that the CSR α̃ satisfies 0 < α̃ < ∞. Then the design
d is robust if and only if α̃ ≥ 1.

Remark. The significance of the lower bound 1 for α̃ is that H(∆p, p̄, 1) = ∆p.

Implementing this test to establish robustness of a design is facilitated by the calculation
of the CSR and a CPV. For this, it helps to restrict the geometry of the uncertainty model
a little more. To this end, we have created the following variation on the notion of star
convexity:

Definition 10 (Strict Star Convexity). The set A is strictly star convex with respect to
a point x ∈ A if, for each a ∈ A, every interior point of the segment connecting a and x is
an interior point of A.

For example, all hyper-spheres and hyper-rectangles are strictly star convex with respect
to any of their interior points. For an uncertainty model which is strictly star convex with
respect to its designated point, alternate expressions for the CSR are presented next since
they will be useful in numerical calculations.

Lemma 5 (Alternate CSR Expressions). If 〈∆p, p̄〉 is an uncertainty model for which
∆p is closed, bounded, and strictly star convex with respect to p̄ and p̄ is an interior point
of ∆p, and, for the fixed design point d, the constraint functions g are continuous functions
of p, and the CSR α̃ satisfies 0 < α̃ < ∞, the following are alternate characterizations of α̃:

α̃ = min
{

α : H(∆p, p̄, α)
⋂
F 6= ∅

}
(6)

α̃ = min

α : ∂H(∆p, p̄, α)
⋂ dim(g)⋃

k=1

∂Fk

 6= ∅

 (7)

α̃ = min
1≤k≤dim(g)

[
min

{
α : ∂H(∆p, p̄, α)

⋂
∂Fk 6= ∅

}]
(8)

α̃ = min
1≤k≤dim(g)

[
min

{
α : ∂H(∆p, p̄, α)

⋂
Fk 6= ∅

}]
(9)

where F = F
⋃

∂F is the topological closure of F .
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Remarks.

1. In this lemma, the hypothesis of strict star convexity cannot be weakened to simply
star convexity.

2. Recall that the mathematical statement “x = min A” is a shorthand for the two asser-
tions “x = inf A” and “x ∈ A”.

3. Compare Equation (6) with

α̃ = inf
α

{
α : H(∆p, p̄, α)

⋂
F 6= ∅

}
which is a restatement of Definition 4.

4. Compare Equation (7) with Lemma 2(d) which uses the (in general) smaller boundary
set ∂F .

5. The assumption in Equation (3) motivates the inclusion of the characterization of α̃ in
Equation (8).

The calculation of the CSR and a CPV can now be stated in the form of an optimization
problem.

Lemma 6 (CSR and CPV calculation). If 〈∆p, p̄〉 is an uncertainty model for which
∆p is closed, bounded, and strictly star convex with respect to p̄ and p̄ is an interior point
of ∆p, and, for the fixed design point d, the constraint functions g are continuous functions
of p, and the CSR α̃ satisfies 0 < α̃ < ∞, the following are optimization characterizations
of the CPV p̃ and the CSR α̃:

〈p̃, α̃〉 = argmin
〈p,α〉

{
α : p ∈ H(∆p, p̄, α)

⋂
F

}
; (10)

〈p̃, α̃〉 = argmin
〈p,α〉

α : p ∈ ∂H(∆p, p̄, α)
⋂ dim(g)⋃

k=1

∂Fk

 ; (11)

〈p̃, α̃〉 = 〈p̃(n), α̃n〉, (12)

where n = argmin
1≤k≤dim(g)

{α̃k} , and, for 1 ≤ k ≤ dim(g),

〈p̃(k), α̃k〉 = argmin
〈p,α〉

{
α : p ∈ ∂H(∆p, p̄, α)

⋂
∂Fk

}
; and

〈p̃, α̃〉 = 〈p̃(n), α̃n〉, (13)

where n = argmin
1≤k≤dim(g)

{α̃k} , and, for 1 ≤ k ≤ dim(g),

〈p̃(k), α̃k〉 = argmin
〈p,α〉

{
α : p ∈ ∂H(∆p, p̄, α)

⋂
Fk

}
.
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Remark. In addition to being a restatement of Lemma 5, this Lemma adds the information
that any point in the non-empty sets of Lemma 5 at which the various minima are attained
is a CPV. Recall that the notation

argmin
v

{f(v) : v ∈ X}

represents the value of v at which the objective function f takes on its smallest value subject
to the constraint v ∈ X .

Support sets with hyper-spherical and hyper-rectangular geometries are studied next.
These strategies are then used to handle supports with other geometries.

IV.A. Hyper-Spheres

Hyper-spherical support sets result from uncertainty models where uncertainty is described
by norm bounded perturbations from the nominal parameter value p̄. This implies that ∆p

is a hyper-sphere and p̄ is its geometric center. Problems with this class of support sets are
the simplest since the CPV is calculated by solving a minimum norm problem in p-space.
Under the assumption in Equation (3), the CPV for ∆p = Sp(p̄, R) is given by

p̃ = argmin
p

‖p− p̄‖ :

dim(g)∏
k=1

gk(p, d) = 0

 . (14)

This is the application of Lemma 6, Equation (11) to this particular ∆p. The condition
p ∈ ∂H(∆p, p̄, α) becomes ‖p − p̄‖ = αR. Under the assumption in Equation (3), the

constraint above is a restatement of the requirement that p ∈ ∪dim(g)
k=1 ∂Fk. Because of the

difficulty which the constraint
∏dim(g)

k=1 gk(p, d) = 0 would present to standard gradient based
numerical optimization software (at any point where two or more of the constraints are zero,

the gradient of
∏dim(g)

k=1 gk(p, d) = 0 also vanishes), the formula for the CPV p̃ is restated in
the Lemma 6, Equation (12), form:

p̃ = p̃(n), (15)

where
n = argmin

1≤k≤dim(g)

{
‖p̃(k) − p̄‖

}
, (16)

and, for each k with 1 ≤ k ≤ dim(g),

p̃(k) = argmin
p

{‖p− p̄‖ : gk(p, d) = 0} . (17)

That is, the CPV problem is solved for each individual constraint function, and the answer
is selected which is closest to the designated point. By applying Lemma 6, Equation (10)
or Equation (13), in the preceding, we see that the equality constraints may be replaced
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by the inequality constraints
∏dim(g)

k=1 gk(p, d) ≥ 0 and gk(p, d) ≥ 0, respectively. This can
be useful if the optimization algorithm being used to solve the optimization problem works
better with, or even requires, inequality constraints instead of equality constraints.

Lemma 4 can be readily used once the CPV is found; since, for a hyper-spherical support
set of radius R and center p̄, the CSR can be calculated from the CPV.

Definition 11 (Spherical PSM). The Spherical Parametric Safety Margin corresponding
to the design d for ∆p = Sp(p̄, R) is defined as

ρS(p̄, p̃, d)
∆
= ‖p̃− p̄‖, (18)

where p̄ is the designated point of the uncertainty model and p̃ is a corresponding CPV.

Lemma 7. ρS = α̃R.

Note that α̃ is inversely proportional to R, so that ρS is independent of R, i.e., if the PSM
is calculated for two different spherical support sets centered at the same designated point,
both calculations give the same value for the PSM. The CSR can be thought of as a non-
dimensional measure of robustness to parameter uncertainty while the PSM has a value
which relates to the units of the parameters in the vector p.

Lemma 4 for hyper-spherical supports can now be reformulated as follows.

Lemma 8 (P-Test). Let g ≤ 0 describe a set of continuous inequality constraints and
∆p = Sp(p̄, R) be the support of the uncertain parameter p. The design d is robust if and
only if ρS ≥ R.

A sketch showing relevant quantities is displayed in Figure (1).
The exact boundary of the RDS corresponding to a hyper-spherical support set is given

by an iso-spherical-PSM manifold, i.e., surface in the design space prescribed by ρS = c,
where c is a constant.

IV.B. Hyper-Rectangles

When each component of the uncertain parameter is confined to a prescribed interval, the
support set is a hyper-rectangle. Note that this geometry allows for the manipulation of sets
of parameters having different units and levels of fidelity. Recall that if p̄ is the geometric
center of the hyper-rectangle, and m is the vector of half-lengths of its sides, the resulting
hyper-rectangle is denoted as Rp(p̄, m). A robustness test for supports with this geometry
is introduced subsequently. The mathematical background for this is presented next. It is
based on the definition of a mapping which we call a Q-transformation which distorts p-space
so that the hyper-rectangle is distorted into a sphere.
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Figure 1. Relevant metrics for a circular support.

Definition 12 (Q-Transformation). Let ∆p = Rp(p̄, m) be the support of the uncertain
parameter p. The Q-Transformation is denoted as q = Q(p) and is given by Q(p̄) = 0 and,
for p 6= p̄,

q
∆
=

max{|k|}k
‖k‖

where (19)

k = diag{m}−1 (p− p̄) , (20)

Lemma 9 (Q-Transformation Properties). The Q-Transformation maps Rp(p̄, m) into
a unit hyper-sphere in q-space. The inverse transformation, p = Q−1(q), is given by

p = p̄ +
‖q‖diag{m}q

max{|q|}
. (21)

The proof of this Lemma is routine, and is omitted. The Q-Transform is designed to
have the following properties:

1. Q is continuous at p̄.

2. The image under Q of a line through p̄ is a parallel line through 0. Distances between
points on the image line are proportional to the distances between their pre-images.

3. The proportionality constant used in mapping these lines changes from one line to
another in such a manner that the image under Q of Rp(p̄, m) is exactly Sq(0, 1).

4. Q maps homothets of the hyper-rectangle to homothets of the hyper-sphere preserving
similitude ratio, i.e.,

Q(H(Rp(p̄, m), p̄, α)) = H(Sq(0, 1),0, α) = Sq(0, α).
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Differentiable functions on p-space are transformed into functions on q-space which can have
derivative discontinuities at points corresponding to p-space points where faces of homothets
of the hyper-rectangle meet.

The Q-Transformation allows identification of the corresponding CPV by solving the
following minimum norm problem in q-space:

p̃ = argmin
p

‖Q(p)‖ :

dim(g)∏
k=1

gk (p, d) = 0

 (22)

Under the assumption given in Equation (3), this is another application of Lemma 6, Equa-

tion (11). Equation (3) implies that p ∈
[⋃dim(g)

k=1 ∂Fk

]
is equivalent to

∏dim(g)
k=1 gk (p, d) = 0.

And, if we set α = ‖Q(p)‖, then p ∈ ∂H(∆p, p̄, α). This calculation must be implemented
with the caveat posed following Equation (14), justified by Lemma 6, Equation (12). As
before, Lemma 6, Equation (10) or Equation (13), allows us to replace equality constraints
with inequality constraints.

Definition 13 (Rectangular PSM). The Rectangular Parametric Safety Margin corre-
sponding to the design d for ∆p = Rp(p̄, m), is defined as

ρR(p̄, p̃, m, d)
∆
= α̃‖m‖. (23)

As always, H(R, p̄, α̃) is the maximal homothet of the uncertainty model which contains
no constraint violation points. The rectangular-PSM is related to the diagonal measure
of this hyper-rectangle. This provides comparability between rectangular-PSMs measured,
for example, for different design points and therefore different constraint geometries and
different locations of the CPV. Note that H(R, p̄, α̃) is inscribed in a hyper-sphere centered
at p̄ of radius equal to its rectangular-PSM. Lemma 4 can be restated for hyper-rectangular
supports as follows.

Lemma 10 (Q-Test). Let g ≤ 0 describe a set of continuous inequality constraints, and
∆p = Rp(p̄, m) be the support of the uncertain parameter. The design d is robust if and

only if ‖q̃‖ ≥ 1, where q̃
∆
= Q(p̃); i.e. ρR ≥ ‖m‖.

A sketch showing relevant quantities is displayed in Figure (2). Note that p̂ = p̄ + α̃m
and q̂ = Q(p̂), so q̂ = α̃ ·1 is the vector all of whose components are α̃. Recall that the CPVs
in Equations (14) and (22) are p values, not necessarily realizations in ∆p, on the surface of
a hyper-sphere and a hyper-rectangle at the verge of violating at least one of the constraints.
As before, the boundary of the RDS is given by an iso-rectangular-PSM manifold.

Throughout this paper the designated point p̄ is chosen to be the geometric center of
the support set. This however, might not always be desirable. For instance, if the uncertain
variables are strictly positive, by placing the designated point on the surface of the support
set, dilations to the negative p subspace can be prevented in the search for the CPV.
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Figure 2. Relevant metrics for a rectangular support.

Infinity Norm Formulation

An alternative way to search for the CPV for hyper-rectangular supports is presented
here. This formulation allows us to circumvent the problems caused by discontinuities in the
gradient of the Q-Transformation.

Recall that the infinity norm in a finite dimensional space is defined as ‖x‖∞ = supi{|xi|}.
Let us define the m-scaled infinity norm as ‖x‖∞m = supi{|xi|/mi}. A distance between the
vectors x and y can be defined as ‖x− y‖∞m. Using this distance, the unit ball centered at
p̄ is just R(p̄, m).

The problem of finding, for a fixed design d, the CPV for the vector g(p, d) of constraint
functions and the uncertainty model with designated point p̄ becomes the problem of finding
a vector p̃ of minimal distance in this m-scaled infinity norm from p̄ such that p touches
the failure set. This can be expressed in the form of a constrained optimization problem

p̃ = argmin
p

{‖p− p̄‖∞m : p ∈ ∂F}

This optimization problem is restated as p̃ = p̃(n) where

n = argmin
k

{
‖p̃(k) − p̄‖∞m

}
, (24)

p̃(k) = argmin
p

{‖p− p̄‖∞m : p ∈ ∂Fk} . (25)

That is, the CPV problem is solved for each individual constraint function, and the answer
is selected which is closest to the designated point in the m-scaled infinity norm. It should
be pointed out that, in the preceding discussion, if the m-scaled infinity norm is replaced
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by the standard Euclidean norm, what results is a formulation of the CPV calculation for
spherical support sets.

Assuming that g(p̄, d) < 0 and ∂Fk = {p : gk(p, d) = 0}, the problem in Equation (25)
can be formulated as

p̃(k) = argmin
p

{‖p− p̄‖∞m : gk(p, d) = 0}.

Rewriting this using the definition of the m-scaled infinity norm gives

p̃(k) = argmin
p

{
max

1≤i≤dim(p)

|pi − p̄i|
mi

: gk(p, d) = 0

}
.

The “max” can be eliminated and the objective function made differentiable by introducing
the similitude ratio α defined earlier

〈p̃(k), α̃k〉 = argmin
p,α

{α : gk(p, d) = 0, |pi − p̄i| ≤ αmi, 1 ≤ i ≤ dim(p)}.

This eliminates non-differentiabilities in the objective functions. The problem is turned into
an “inequality constraint only” optimization problem which is more “optimizer friendly” by
changing the constraint on gk from gk = 0 to gk ≥ 0 (assuming that the constraint functions
g are continuous) since the optimum must occur on ∂Fk. If n is given by (24) and α̃ = α̃(n),
p̃ = p̃(n) is the CPV and Rp(p̄, α̃m) is the largest hyper-rectangle proportional to Rp(p̄, m)
which fits inside the non-failure region of the p-space for d. Another interpretation is that
α̃ is the radius of the largest unit sphere (in the m-scaled infinity norm metric) centered at
p̄ which fits inside the p-space feasible set for the given design d.

IV.C. Bounding Sets

We next look at how the techniques developed so far can be leveraged to provide robust-
ness tests for support sets with other geometries. The tests and margins above enable a
rigorous assessment of hyper-spherical and hyper-rectangular sets. In this section we use
these geometries as bounding sets of support sets having arbitrary shapes. Studies on the
bounding sets will be used to infer properties of the support set. Evidently, conservatism is
unavoidably introduced since the design requirements apply to the actual support set, not
to the bounding set.

Lemma 11 (Bounding Test). Let the support set ∆p be of arbitrary shape. Define an outer
bounding set Op as one satisfying ∆p ⊆ Op. If the design d satisfies the hard constraints
for the bounding set Op, the design d satisfies the hard constraints for ∆p; i.e., the design is
robust. On the other hand, if the design d does not satisfy the hard constraints for as much
as one realization p ∈ ∆p, the design d does not satisfy the hard constraints for ∆p; i.e., the
design is not robust.
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The P- and the Q-tests can be used to assess the robustness of hyper-spherical and
hyper-rectangular bounding sets respectively. Obviously, conservatism is reduced by using
tighter bounding sets. Constraint violations caused by parameter values in the intersection
between Op and the complement set of ∆p might cause a robust design to fail the Bounding
Test. A conservative approximation to the RDS corresponding to ∆p is given by an iso-PSM
manifold. For instance, if Op = Sp(p̄, Rout), the design set determined by ρS ≥ Rout is a
subset of the actual RDS.

IV.D. Converse Case

Thus far we have only considered the case in which the designated point satisfies all the
constraints in g. An extension to the converse case, for which g(p̄, d) has at least one positive
component, is introduced next. One situation in which a need for this extension might arise
is if an automated, optimization driven design procedure varies the design parameter so much
that constraint boundaries move enough to make p̄ a constraint violation point. If p̄ ∈ F c

(where the super-script c denotes the set complement operator), the CPV for hyper-spherical
support sets is given by

p̃ = argmin
p

{‖p− p̄‖ : p ∈ F c} , (26)

= argmin
p

{‖p− p̄‖ : gi(p, d) ≤ 0, i = 1, · · · , dim(g)} .

Expressions for hyper-rectangular support sets are obtained by using ‖Q(p)‖ instead of
‖p− p̄‖ in Equation (26). The corresponding PSMs result from multiplying the right hand
side of Equations (18) and (23) by minus one. Therefore, designs outside the FDS will have
negative PSMs. Results must be interpreted accordingly.

Whereas hard constraints are required to be satisfied for all values of the uncertain pa-
rameters in the support set, soft constraints are only required to be satisfied for most such
values. Metrics are introduced to quantify this idea. For example, the uncertain param-
eters could be modeled as random variables of given distributions, and restrictions could
be placed on the probability of constraint violation. Numerical techniques typically used
to handle soft constraints, such as sampling and reliability methods, are unable to provide
conclusive solutions to the problem statement which opens section IV. Tools for handling
soft constraints are based on the estimation of the probability of constraint violation. To sat-
isfy hard constraints, this probability must be zero. Sampling-based methods can wrongly
predict zero failure probabilities as a result of using a finite number of samples. On the
other hand, methods based on asymptotic approximations such as FORM and SORM,13

will not converge since the limit state in the standard normal space does not exist. Notice
that PSMs allow for the unbiased comparison of the robustness characteristics of competing
design alternatives. Such a comparison does not require a unifying constraint structure, i.e.
the design variables as well as the way in which the constraints depend on them might be
different.

17 of 30

American Institute of Aeronautics and Astronautics Paper 2006-7035



V. Robust-Design

Problem Statement: For a given uncertainty set ∆p and a given designated point p̄,
find a design d∗ which is robust for as large as possible an uncertainty model proportional

to 〈∆p, p̄〉; i.e., a design d∗ whose CSR α̃∗ is as large as possible. The set M ∆
= H(∆p, p̄, α̃∗)

is the largest expansion (or, perhaps, contraction) of ∆p about p̄ for which a design can be
found with the property that M is disjoint from the constraint violation set of this design.
M can be called the Maximal Feasible Homothet of the Support Set, or Maximal Homothet
for short. If ∆p were a hyper-sphere or hyper-rectangle with p̄ at its center, it follows from
Lemma 7 or Definition 13, respectively, that M can be equivalently characterized as arising
from a design d∗ whose PSM is as large as possible. This problem can be posed as follows:

M(∆p, p̄, g)
∆
= H(∆p, p̄, α̃∗)

where
α̃∗ = α̃(p̄, ∆p, d

∗, g)

and
d∗ = argmax

d
{α̃(p̄, ∆p, d, g)} .

When ∆p, p̄, and g are understood from context, M(∆p, p̄, g) will be abbreviated as M.
Solving for the optimal design requires identifying M. Obviously, if M contains the

support set ∆p, the design is robust. In other words, the largest support set for which a
robust design exists is given by M. Note that if the solution to this problem is unique, the
RDS corresponding toM is a singleton. Strategies for hyper-spherical and hyper-rectangular
support sets are presented next. In the first one, called the P-Search, the support is the
hyper-sphere Sp(p̄, R). In the second one, called the Q-Search, the support is the hyper-
rectangle Rp(p̄, m). The uniqueness of the solution to the problem statement of interest
cannot be guaranteed unless restrictions5,14 on the way in which g depends on p apply. More
importantly, it may be possible to find designs whose CPV does not exist, i.e., designs for
which M is unbounded. In these cases, where the constraints have no effect, the design is
able to fully eliminate the dependence of the constraints on the uncertain parameter.

V..1. Hyper-Spheres

P-Search: If g ≤ 0 is a set of constraints and Sp(p̄, R) is the support set, a design with the
best robustness characteristics, namely dS , and the corresponding M are given by

dS = argmin
d

{−ρS(p̄, p̃, d)} , (27)

M = Sp

(
p̄, ρS(p̄, p̃, dS)

)
. (28)

A trivial example of the case in which th CPV does not exist is given by g = pT d − 1 and
dS = 0. This results in ρS = ∞ and M = Rdim(p).
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V..2. Hyper-Rectangles

Q-Search: If g ≤ 0 is a set of constraints and Rp(p̄, m) is the support set, a design with
the best robustness characteristics, namely dR, and the corresponding M are given by

dR = argmin
d

{−ρR(p̄, p̃, m, d)} , (29)

M = Rp

(
p̄,

ρR(p̄, p̃, m, dR)

‖m‖
m

)
. (30)

Note that −‖q̃‖ can also be used as the objective of the optimization problem in Equation
(29). Equation (30) is derived as follows. Let Sq(0, ‖q̃‖) be the hyper-sphere associated

to dR. According to Equation (19), q̂ = (‖q̃‖ · 1)/
√

dim(p), on the surface of the hyper-
sphere, corresponds to a vertex of a hyper-rectangle via p̂ = Q−1(q̂). Since p̂ = ρRm/‖m‖,
M = Rp(p̄, p̂).

V..3. RDS Existence

The results of the P- and Q-Searches can be used to determine if the RDS corresponding to
a support with arbitrary shape exists. This is attained by using M as a reference.

Lemma 12 (RDS Existence). Let ∆p have an arbitrary geometry. If ∆p ⊆M, where M
results from either Equation (28) or Equation (30), the RDS for the support set ∆p is non-
empty. Conversely, if there exists a hyper-sphere Sp(p̄, R) ⊂ ∆p such that R ≥ ρS(p̄, p̃, dS),
or if there exists a hyper-rectangle Rp(p̄, m) ⊂ ∆p such that ‖m‖ > ρR(p, m, dR), the RDS
for the support set ∆p is empty.

VI. Example

The analysis and design techniques presented in this paper are potentially applicable to
a wide range of engineering problems. For instance, the parameterization of a model of a
flexible structure includes modal frequencies and damping ratios which typically are only
approximately known. In analyzing the dynamics of a spacecraft, there can be uncertainty
in the designer’s knowledge of the inertias and mass. In such cases, the constraint functions
can be based on performance metrics. For purposes of illustration, however, some constraint
functions will be given by mathematical formula with no underlying physical model assumed.

Several of the concepts proposed are illustrated hereafter. A problem which is two-
dimensional in the design variables and in the uncertain parameter has been selected to
facilitate visualization. Let the set of constraints be prescribed by

g =


3d2 − 4p2

1 − 4d1p2 sin (p2d1 − p2
1)

− sin (p2
1p2 − sin(2p1 − 2))− d1d2p1 − p2

d1 + p2
1d

2
2 − 4p2

2p1 − 4 sin (2p1 − 2p2)

2(p1 + p2) sin(p2
1 − d2)− 2p1p2 (d2 + 2p2

1 − 2) + d1 − 6p1

 ,
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and the designated point be p̄ = [1, 1]T . The contour of the corresponding FDS, which (Def-
inition 6) is independent of the choice of ∆p, is marked with a solid thick line in subsequent
figures.

This first illustration makes use of a spherical support set, ∆p, centered at p̄. This choice
of support set might indicate the analyst’s judgment that the uncertainty in the uncertain
parameter is geometrical in nature with no distinctions made based on the direction of
perturbation from the designated point. For different design points in the FDS, the PSM
ρS is calculated. As noted following Lemma 7, the PSM is independent of the radius of the
spherical support set. Since by Definition 11 the PSM is determined by the CPV, the PSM
is calculated by using Equations (15 - 18). The resulting PSMs are shown as a function of
the design point [d1, d2]

T in Figure 3. Recall that, for a given design point, its PSM is the
size of the largest perturbation to p̄ allowed before a constraint might be violated. For ease
of comparability, the color scale used in Figure 3 is the same as that in subsequent figures for
rectangular PSMs. Figure 3 illustrates that the design with best robustness characteristics is
able to tolerate uncertainty in p = p̄+u with ‖u‖ ≤ .53. Therefore, variations of less than .53
lead to non-empty RDSs. The boundary of the FDS is given by the ρS = 0 contour. Notice
that multiple PSM maxima occur (there are local maxima in the vicinity of [−1, 0]T and of
[−2.2,−2.4]T ). More importantly, notice that designs further in from the boundary of the
FDS are not necessarily more robust. For instance, the comparison of d(1) = [−2.25,−2.4]T

and d(2) = [−1,−1]T shows that ρS(d
(1)) � ρS(d

(2)) even though d(1) is much closer to a
constraint limiting the FDS than d(2).

Figure 3. Spherical PSMs, ρS , in the FDS.

Now we consider the rectangular support set ∆p = Rp(p̄, m(1)) for m(1) = [1, 1]T .
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This choice of support set might indicate the analyst’s judgment that the uncertainties in
the components of the uncertain parameter are independent of each other, but of about
the same magnitude. The corresponding rectangular-PSMs are shown in Figure 4. Larger
margins are now attained than for the Spherical PSMs. Similarities in the distribution
of PSMs arise since the offset between the circle, i.e., two-dimensional hyper-sphere, and
the square, i.e., two dimensional regular hyper-rectangle, used is relatively small. Figure
5 shows the rectangular-PSM values for Rp(p̄, m(2)) where m(2) = [1, 4]T . This choice of
support set might indicate the analyst’s judgment that the uncertainties in the components
of the uncertain parameter are independent of each other, and that the level of uncertainty
in the second component is about 4 times that of the first. Considerable differences in
the distribution and magnitude of the PSMs, as compared to the previous two figures, are
apparent. This indicates a strong dependence of the robustness on the geometry of the
support set.

Figure 4. Rectangular PSMs, ρR, for R(p̄, m(1)).

An application of Bounding sets, as introduced in Section IV-IV.C, is now presented.
Consider the triangular support set shown in the left of Figure 6 with a solid line. The
tightest bounding circle and rectangle are superimposed. Clearly, the rectangle is a better
approximation to the triangular support set. The RDSs corresponding to both bounding
sets, calculated via spherical-PSMs and rectangular-PSMs, are shown in the right subplot
of Figure 6. The RDS for the bounding circle is filled in with black while the RDS for the
bounding rectangle is colored in dark gray. As expected, the RDS for the rectangle contains
the RDS for the sphere. We have no such tools for the determination of the true RDS for
the triangular support set, so we apply an approximation technique. For this, a probability
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Figure 5. Rectangular PSMs, ρR, for R(p̄, m(2)).

density function having the triangle as the support set is assumed. By picking a fixed design
point d and using a computationally intensive sampling procedure in p-space, we can get
a strong indication of whether or not d is in the RDS for the triangular support set. By
repeating this for a sufficiently large number of design points, we obtain an approximation
to the RDS. In a probabilistic model, the RDS is characterized by P [F(d, g)] = 0. In
theory, this approximation depends on the support set only, not on the probability density
function assumed. In practice, this is not the case due to the numerical error caused by
using a sample set of finite size. The corresponding RDS is colored with light gray. The
approximations to the RDS for the triangular support set resulting from using the bounding
sets are both subsets of the sampling based approximation, {d : P [F(d, g)] = 0}, to the RDS.
The conservatism introduced by using the bounding circle leads to a considerably smaller
RDS approximation. Note that the portion of the RDS in the vicinity of d = [−2,−2.25]T is
completely omitted by the approximation based on the circular bounding set. Obviously, the
RDS corresponding to the rectangle is a better approximation since the offset between the
rectangle and the triangle is smaller. As expected, bounding of the uncertainty set introduces
conservatism by artificially reducing the design space available. This conservatism might lead
to an empty approximation of the RDS, even though the actual RDS is non-empty. Notice
however, that while the P [F ] = 0 contour is the best approximation to the boundary of the
RDS shown, only the iso-PSM contours resulting from bounding provide a formal guarantee
of the existence of the RDS. Recall that when the support set is a hyper-sphere or a hyper-
rectangle, the actual RDS, providing it exists, can be calculated exactly using PSMs. In
such a case, the P [F ] = 0 and an iso-PSM contours coincide.
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Figure 6. Left: triangular support and two bounding sets. Right: corresponding RDS approximations.

A robust design of Section V is generated next. While the search for the design with best
robustness characteristics corresponding to a circular support leads to dS = [−1.65,−0.33]T

and M = Sp(p̄, 0.53), the one corresponding to the rectangular support set Rp(p̄, m(2))
leads to dR = [0.718, 0.631]T and M = Rp(p̄, 0.26m(2)). These sets are shown in Figures
7 and 8 along with the corresponding CPVs. Note that changing the design point has
altered the constraint boundaries. Three CPVs exist in both cases. Recall that support sets
proportional and larger than M lead to an empty RDS.

VII. Concluding Remarks

A methodology for robustness analysis and robust-design of systems subject to para-
metric uncertainty is proposed herein. Emphasis is given to uncertainty sets prescribed (or
bounded) by hyper-spheres or hyper-rectangles since such sets are commonly used in engi-
neering applications. Formal assessments of robustness are possible since these sets admit a
rigorous mathematical manipulation. The robustness tests proposed should precede studies
based on the propagation of probabilistic uncertainty models. Failure to do so might lead to
inefficient numerical implementations. The efficient inclusion of hard inequality constraints
into design optimization schemes is made possible because the sampling/partitioning of the
parameter space is avoided. Many of the developments proposed extend the state of the art
on the subject matter. The scope of the ideas proposed is generic, making them applicable
to a broad spectrum of engineering problems and disciplines.

There are several directions which future research could take. For example, more freedom
could be given to the geometry of the uncertainty model such as more general shapes for the
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Figure 7. M for a circular support.

Figure 8. Left: M proportional to R(p̄, m(2)). Right: corresponding set in q-space.

support set and/or non-central placement of the designated point. Also, the uncertain pa-
rameters could be assigned probability distributions, and the geometric techniques presented
here could be applied to the problem of estimating probability of failure.
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VIII. Appendix

Proof of Lemma 1. Since the components of g are continuous, each Fi is an open set, and
therefore F is also. Thus, p ∈ ∂F implies that p 6∈ F ; so gi(p, d) ≤ 0 for all i. On
the other hand, p ∈ ∂F implies that there is a sequence of points {p(n)} ⊂ F such that
limn→∞ p(n) = p. By taking a subsequence and renaming it {p(n)}, we may assume that
there is some i for which all p(n) ∈ Fi. This means that gi(p

(n), d) > 0 for all n, so, again
by continuity, gi(p, d) = limn→∞ gi(p

(n), d) ≥ 0. This shows that there is an i for which
gi(p, d) = 0.

Proof of Lemma 2. Conclusion (a): It must be shown that for some α̂ > 0, no point of
the interval [0, α̂) touches Ã. Using the hypotheses (ii) and (v) it follows that there is a
neighborhood of p̄ which contains no constraint violations. (A neighborhood of p̄ is a set of
the form {p : ‖p− p̄‖ < δ} for some positive value of δ.) But, using the boundedness from
hypothesis (i), it follows that for all sufficiently small α, there are no constraint violations
in H(∆p, p̄, α).

Conclusion (b): Since (hypothesis iii) p̄ is interior to ∆p, ∆p contains a ball of positive
radius centered at p̄. Thus, any point in Rdim(p) is covered by H(∆p, p̄, α) for sufficiently
large α. Since (hypothesis iv) F is not empty, Ã is not empty, and conclusion (b) follows.

Conclusion (c): Since (hypothesis ii) the constraint functions are continuous, and the
constraint violation set F is defined by strict positivity of one of the component constraint
functions, it follows that, whenever a positive α is in Ã, there is also a smaller α′ which is
also in Ã. Thus, if the infimum of Ã is positive, it cannot be a member of Ã. Conclusion (c)
follows.

Conclusion (d) is established by constructing a point p̃ which is then proven to be a
member of both ∂H(∆p, p̄, α̃) and ∂F . By definition of α̃ and since α̃ < ∞, there must
be a sequence α(n) ↓ α̃ such that H(∆p, p̄, α(n)) ∩ F 6= ∅. Pick p(n) ∈ H(∆p, p̄, α(n)) ∩ F .
For each n, there must be an i for which gi(p

(n), d) > 0. Since there are only finitely many
possible values of i, a subsequence of {p(n)} may be extracted, and {p(n)} and {α(n)} will
now refer to that subsequence and the corresponding α subsequence, for which there is a
single i that makes gi(p

(n), d) > 0 for all n. Now, since {p(n)} ∈ H(∆p, p̄, α(n)), there must
exist a q(n) ∈ ∆p such that p(n) = α(n)(q(n) − p̄) + p̄. Rewrite this equation as

p(n) = α̃(q(n) − p̄) + p̄ + (α(n) − α̃)(q(n) − p̄). (31)

Since q(n) ∈ ∆p, a compact set, some subsequence of the q sequence converges, say to q̃.
Once again, rename things so that {q(n)} now refers to this subsequence and {p(n)} and
{α(n)} are the corresponding subsequences. Then the first term on the right hand side of
Equation (31) converges to α̃(q̃ − p̄) and the third term converges to zero. Thus, p(n)

converges. Call the limit p̃. It follows that

p̃ = α̃(q̃ − p̄) + p̄ ∈ H(∆p, p̄, α̃).
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Recall that points on the boundary of a set are characterized by the property that each
ball of positive radius, no matter how small, which is centered at such a point intersects
both the set and its complement. Each such ball is called a neighborhood of the point. Since
p̃ ∈ H(∆p, p̄, α̃), each neighborhood of p̃ intersects both H(∆p, p̄, α̃) and, since conclusion
(c) holds under the present hypotheses, the complement of F . Also, each neighborhood of p̃
contains some p(n), and so intersects both F and, again by conclusion (c), the complement
of H(∆p, p̄, α̃). This shows that p̃ is in both ∂H(∆p, p̄, α̃) and ∂F .

Proof of Lemma 3. “If”: Suppose ∆p is star convex with respect to p̄, 0 ≤ α1 < α2, and
p ∈ H(∆p, p̄, α1). Then for some q ∈ ∆p, p = α1(q − p̄) + p̄. But then

p = α2

[
α1

α2

q +

(
1− α1

α2

)
p̄

]
+ p̄ ∈ H(∆p, p̄, α2),

since the bracketed quantity is a convex combination of q and p̄ and so, by star convexity,
is in ∆p.

“Only if”: Suppose ∆p is not star convex with respect to p̄. Then for some p ∈ ∆p and

some α with 0 ≤ α < 1, q
∆
= αp + (1 − α)p̄ 6∈ ∆p. But, q = α(p − p̄) + p̄ ∈ H(∆p, p̄, α).

This implies that H(∆p, p̄, α) 6⊂ H(∆p, p̄, 1) contradicting the homothetic monotonicity of
the uncertainty model 〈∆p, p̄〉.

Proof of Lemma 4. “Only if”: Suppose d is a robust design. Then ∆p ∩ F = ∅. Since
∆p = H(∆p, p̄, 1) and 〈∆p, p̄〉 is homotheticly monotone, [0, 1] ∩ Ã = ∅. Thus, α̃ ≥ 1.

“If”: It will be shown that if d is not a robust design, α̃ < 1. But, if d is not a robust

design, ∆p ∩ F 6= ∅. Let p be an element of this intersection. Then p(α) ∆
= α(p− p̄) + p̄ ∈

H(∆p, p̄, α). Now, p− p(α) = (1− α)(p− p̄), so p(α) can be placed arbitrarily close to p by
choosing α close enough to 1. Since F is an open set, a choice of α < 1 can be made so that
p(α) ∈ F . For this α, H(∆p, p̄, α) ∩ F 6= ∅. Therefore, α ∈ Ã, so α̃ ≤ α < 1.

Proof of Lemma 5. Under the present hypotheses, Lemma 2(d) may be applied. Thus, there
is a p̃ ∈ ∂H(∆p, p̄, α̃) ∩ ∂F . Since ∆p is compact, it follows that H(∆p, p̄, α) are compact
for all α. Therefore,

∂H(∆p, p̄, α) ⊂ H(∆p, p̄, α).

Also, since F = ∪dim(g)
k=1 Fk, and these are all open sets, it follows that

Fk ⊂ F , ∂F ⊂
dim(g)⋃
k=1

∂Fk ⊂ F and ∂Fk ⊂
dim(g)⋃
k=1

∂Fk ⊂ F for all k.

Recall that the definition of α̃ can be written

α̃
∆
= inf

{
α : H(∆p, p̄, α)

⋂
F 6= ∅

}
.
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Make the definitions

α̂
∆
= inf

{
α : H(∆p, p̄, α)

⋂
F 6= ∅

}
,

α′
∆
= inf

α : ∂H(∆p, p̄, α)
⋂ dim(g)⋃

k=1

∂Fk

 6= ∅

 ,

α′′
∆
= min

{
α1, α2, · · · , αdim(g)

}
, where

αk
∆
= inf

{
α : ∂H(∆p, p̄, α)

⋂
∂Fk 6= ∅

}
for 1 ≤ k ≤ dim(g), and

ᾱ
∆
= min

{
ᾱ1, ᾱ2, · · · , ᾱdim(g)

}
, where

ᾱk
∆
= inf

{
α : ∂H(∆p, p̄, α)

⋂
Fk 6= ∅

}
for 1 ≤ k ≤ dim(g).

One by one, the inequalities

α̂ ≤ α′, α′ ≤ α′′, α̂ ≤ ᾱ, ᾱ ≤ α′′, α′′ ≤ α̃, and α̃ ≤ α̂

will be established, showing that all these αs are equal.
α̂ ≤ α′: The set inclusions stated at the beginning of this proof imply that, for all α,

∂H(∆p, p̄, α)
⋂ dim(g)⋃

k=1

∂Fk

 ⊂ H(∆p, p̄, α)
⋂
F .

It follows thatα : ∂H(∆p, p̄, α)
⋂ dim(g)⋃

k=1

∂Fk

 6= ∅

 ⊂
{

α : H(∆p, p̄, α)
⋂
F 6= ∅

}
.

The inequality α̂ ≤ α′ is an immediate consequence.
α′ ≤ α′′: A similar argument based on which sets are subsets of which other sets yields

the result that, for each k, α′ ≤ αk. It follows immediately that α′ ≤ α′′.
α̂ ≤ ᾱ: Similarly, α̂ ≤ ᾱk for each k, so α̂ ≤ ᾱ.
ᾱ ≤ α′′: Similarly, αk ≤ ᾱk for each k, so ᾱ ≤ α′′.
α′′ ≤ α̃: Under the present hypotheses, Lemma 2(d) holds. Thus, there exists a point

p̃ ∈ ∂H(∆p, p̄, α̃) ∩ ∂F . Then, for some k, p̃ ∈ ∂H(∆p, p̄, α̃) ∩ ∂Fk. Therefore, αk ≤ α̃. It
follows that α′′ ≤ α̃.

α̃ ≤ α̂: This is true if, for every α for which H(∆p, p̄, α)
⋂
F 6= ∅, it is also true that

α̃ ≤ α. Fix such an α and let p ∈ H(∆p, p̄, α)
⋂
F . If p ∈ F , then α̃ ≤ α. So, suppose

p ∈ ∂F . We will show that α̃ ≤ α by showing that, for every α◦ > α, α̃ ≤ α◦. So, fix
α◦ > α. To show that α̃ ≤ α◦, we need to show that H(∆p, p̄, α◦) ∩ F 6= ∅.
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Now, since p ∈ H(∆p, p̄, α), there is a q ∈ ∆p for which

p = α(q − p̄) + p̄.

Set
r =

α

α◦
q + (1− α

α◦
)p̄.

Then
p = α◦(r − p̄) + p̄ ∈ H(∆p, p̄, α◦).

Since α < α◦, either r is an interior point of the line segment joining p̄ and q, in which case
r is an interior point of ∆p by strict star convexity of ∆p with respect to p̄, or r = p̄, in
which case r is an interior point of ∆p by hypothesis. In either case, there is a neighborhood
Nr of r which is a subset of ∆p. Then,

Np
∆
= α◦(Nr − p̄) + p̄

is a neighborhood of p which is a subset of H(∆p, p̄, α◦). Since p ∈ ∂F , it follows that
H(∆p, p̄, α◦) ∩F 6= ∅. This shows that α̃ ≤ α◦ which was what was needed to complete the
proof that α̃ ≤ α̂.

We now know that α̃ = α̂ = α′ = α′′ = ᾱ. Since the point p̃ introduced earlier in this

proof is in both the sets H(∆p, p̄, α) ∩ F and ∂H(∆p, p̄, α) ∩
[
∪dim(g)

k=1 ∂Fk

]
, α̃ is an element

of the sets whose infima define α̂ and α′. So, in those definitions, “inf” can be replaced by
“min.” Since everything which has been proven so far can be applied to the case that the set
of constraint functions g contains the single function gk, the “inf” in each of the definitions
of α′′ and ᾱ can also be replaced by “min.” This completes the proof of this Lemma.

Proof of Lemma 6. As noted in the Remark following the statement of this Lemma, it is
the burden of Lemma 5 that these minima all produce α̃ as an answer. What needs to be
proven is that any p value in the sets corresponding to α = α̃ in the “constraint” portion
of the optimization problem statements in Equations (10) - (13) is actually a CPV; i.e., is
in ∂H(∆p, p̄, α̃) ∩ ∂F . E.g., to establish the characterization (10), it must be shown that if
p ∈ H(∆p, p̄, α̃)

⋂
F then p ∈ ∂H(∆p, p̄, α̃) ∩ ∂F , thus satisfying the definition of a CPV

(Definition (5)).
Proof of (10): Let p̂ ∈ H(∆p, p̄, α̃)

⋂
F . It is first shown that p̂ ∈ ∂F . Suppose the

contrary. Then p̂ ∈ F . Since F is an open set, there is some neighborhood Np̂ of p̂ which
is a subset of F . Thus, the line segment from p̄ to p̂ intersects Np̂ and, therefore F not
only at p̂, but at additional points closer to p̄ than p̂. Let p′ be one such point. Then both
p′ ∈ F and p′ ∈ H(∆p, p̄, α′) for some α′ < α̃. This last membership is a consequence of p′

being on the line segment joining p̄ and p̂, and being closer to p̄ than p̂, together with the
star convexity of ∆p with respect to p̄. This contradicts the defining property of α̃ which
shows that p̂ must have been in ∂F in the first place. Now suppose that p̂ 6∈ ∂H(∆p, p̄, α̃).
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Then some neighborhood Np̂ of p̂ is a subset of H(∆p, p̄, α̃). Since it has just been shown
that p̂ ∈ ∂F , Np̂ intersects F , i.e., there is a point p′ which is an interior point of both
F (since all of its points are interior points) and of H(∆p, p̄, α̃) (since p′ is in the open
subset Np̂ of H(∆p, p̄, α̃). But this means that we can move a small positive distance along
the line segment from p′ to p̄ without leaving either F or H(∆p, p̄, α̃). But, by doing this,
just as before we find a point which is in both F and H(∆p, p̄, α′) for some α′ < α̃. Once
again, this contradicts the defining property of α̃ which shows that p̂ must also have been
in ∂H(∆p, p̄, α̃). This completes demonstrating (10).

Proof of (11): This is immediate from (10) since ∂H(∆p, p̄, α)
⋂

∂F ⊂ H(∆p, p̄, α)
⋂
F .

Proof of (12): Since (Lemma 5, Equation(8)) α̃n = α̃,

p̃(n) ∈ ∂H(∆p, p̄, α̃)
⋂

∂Fn ⊂ ∂H(∆p, p̄, α̃)
⋂ dim(g)⋃

k=1

∂Fk

 .

Thus, by (11), p̃(n) is a CPV.
Proof of (13): By repeating the argument used in proving (10) for each “single constraint”

problem, we see that each pair 〈p̃(k), α̃k〉 found solving problem (13) is also a solution to
corresponding “single constraint” problem in (12), so the previously proven result establishes
the present one.

Proof of Lemma 7. By Lemma 2(d), p̃ ∈ ∂H(Sp(p̄, R), p̄, α̃) which is a hyper-sphere with

center p̄ and radius α̃R. Thus, ρS
∆
= ‖p̃− p̄‖ = α̃R.

Proof of Lemma 8. Immediate from Lemma 4 and ρS = α̃R since ρS ≥ R ⇔ α̃R ≥ R ⇔
α̃ ≥ 1.

Proof of Lemma 10. This is immediate from Lemma 4, the earlier observation that α̃ =
Q(p̃) = q̃ and the definition of ρR given in Equation (23).

Proof of Lemma 11. If d is robust for Sp(p̄, Rout), Lemma 4 and Lemma 8 imply that d
is robust for ∆p since ∆p ⊆ Sp(p̄, Rout). Conversely, if d is non robust for Sp(p̄, Rin),
∃p∗ ∈ Sp(p̄, Rin) for which g(p∗, d) > 0. Since p∗ ∈ ∆p and Sp(p̄, Rin) ⊆ ∆p, d is
non-robust.

Proof of Lemma 12. If ∆p ⊂ M, the RDS corresponding to M is a subset of the RDS of
∆p. Since the RDS for M set M is non-empty, so it is the one for ∆p. The implication of
an empty RDS results from using Lemma 8 or Lemma 10 and using M⊂ ∆p.
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