Autonomous Soaring Flight Results

Michael J. Allen
NASA Dryden Flight Research Center
ESA Western Workshop
September 03, 2006
Outline

• Background
• Thermal soaring flight results
• Autonomous dolphin soaring
• Future plans
Background

- Small and medium size UAVs have similar mission constraints to birds and sailplanes.
 - Surveillance
 - Point to point flight with minimal energy
 - Increased ground speed
- Drawbacks
 - UAV performance is dependant on weather
 - Unsteady flight can degrade sensor performance

John Wharington first proposed autonomous soaring for UAVs in 1998.

- Recursive learning was used to center updrafts. Neural networks were used to identify updraft positions.
- Algorithms were too intensive for real-time use.
- Very simple updraft model was used
Background

- Alan Cocconi flew the Solong UAV for 48hr using solar energy on June 1-3, 2005
 - Span = 15.6ft
 - Weight = 28.2lb
 - One conclusion was that “the energy budget requires riding thermals.”
 - Cocconi also stated that the pilots/UAV operators were exhausted after 48hr of flying.
 - Moving map display with aircraft path was used by the pilots to soar in thermals.
Flight Test, Guidance and Control for Thermal Soaring

- Total Energy Estimation
- Updraft Identification
- Circle Guidance
- Controller
- Mode Switching

Inputs:
- Static Pressure
- Impact Pressure
- Throttle
- Latitude
- Longitude
- Waypoint Tracking

Outputs:
- Energy acceleration
- Energy rate
- Position Error
- Velocity Error
- Steady-state Turn Rate
- Soaring Turn Rate Command
- Turn Rate Command

Test Hardware

- Cloud Swift Aircraft
 - Span: 4.26m (14ft)
 - Weight: 6.58kg (14.5lb)
 - Stall speed: 18kt
 - Mission speed: 25kt

- Piccolo Autopilot
 - Weight: 212g (7.5 oz)
 - Sensors:
 - Rate gyros
 - Accelerations
 - Static & total pressure
 - GPS position & velocity
 - Custom software developed for this project
Flight Test Plan

Soaring research flights
- 4,000ft AGL altitude restriction
- Conducted on the edge of Rogers Dry Lakebed
Flight Test Results

- 23 updrafts were autonomously detected and used
- Average height gain was 172m (567ft)

- Play cloudSwift_flt08_pr.mp2v
Thermal Drift Estimation

- Drift velocity was estimated from previous values of energy rate.
- Drift was used to re-cast the flight path to appear as though the thermal were stationary.
Flight Test Results

- Typical soaring flight in light lift.
- Delays in energy rate measurement degraded the thermal centering performance.
- Altitude gain = 300ft
Flight Test Results

- Thermal radius was estimated by fitting a thermal shape to the flight data.
- Chosen thermal shape was adequate for thermal radius estimation.
Mode Logic

- The mode logic was able to determine when to soar and when to search most of the time.
- Possible improvements:
 - Quicker estimate of aircraft energy
 - Additional mode that would allow the UAV to “Investigate” the thermal before moving on.

Flight Test Results

Flight 12, Updraft 2

- Highest climb in a single updraft
- Sept 9, 2005
- 844m (2770ft) altitude gain

Play: cloudSwift_flt12_up2.igc

Flight Test Results

cloudSwift_flt12_up2

- Aircraft Path
- Updraft Position Estimate

Start

Flight Test Results

Flight Test Results

![Flight Test Result Graph](cloudSwift_flt12_up2)

- **Updraft detection**
- **Disengagement**

Time, sec

<table>
<thead>
<tr>
<th>Yaw angle, deg</th>
<th>Pitch angle, deg</th>
<th>Roll angle, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>-50</td>
<td>-50</td>
<td>-50</td>
</tr>
</tbody>
</table>

Flight Test Results

Simulation Update

• The aircraft inertia model was derived from test data.
• Cloud Swift 2 aircraft will be used to gather data for the aerodynamics model.
• Cloud Swift 2 instrumentation:
 – Accelerations
 – Angular rates
 – Gps
 – Static & total pressure
 – Angle of attack & sideslip
 – Surface positions
 – power consumption of the motor
Autonomous Dolphin Soaring

• References:
 – “Control Law Design for Improving UAV Performance Using Wind Turbulence” Chinmay Patel

• Modes:
 – Minimum energy, arrive on-time
 – Maximum range
 – Best cross-country speed
Autonomous Dolphin Soaring, Method 1

- Vertical wind velocity and vertical wind gradient can be estimated on-board the aircraft
 - Input: accelerations, angular rates, Euler angles, static and total pressure.
- Wind velocity can be used to determine speed to fly.
- Wind gradient can be used to determine the pull-up rate used to achieve new airspeed.
Autonomous Dolphin Soaring, Method 2

- Alternative method uses estimate of thermal spacing to calculate best speed to fly.
- Calculations have been verified with a simple simulation.
Future Plans

- Flight test dolphin soaring algorithms
- Improve thermal model
- Investigate other ways to soar
 - Cooperative thermal soaring
 - Ridge soaring
 - Soaring for planetary aircraft
Questions?