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Introduction

- Foam used to insulate cryogenic tanks experiences a significant amount of
stress due to a CTE mismatch with the substrate and tank pressurization

- Additional stress risers can cause cracks to form

- Additional local loading, geometric discontinuities, or regions of thick foam
 Cracks become potential sites for a substrate delamination to occur
 Cracks are also potential paths and volumes to ingest liquid air

« Understanding when and how cracks form can help to eliminate unnecessary
cracking through careful design.
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Introduction

- External Tank foam experiences multiple loads during pre-launch and ascent
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e The primary loads are the CTE mismatch with the aluminum, the tank
substrate pressurization strain, and the internal pressure/external vacuum

« The peak stresses occur at the substrate

Additional foam-over-foam increases
the through thickness stress in the
acreage foam underneath
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Stress and Temperature Profiles

- Temperature Distribution Through the NCFI Layer Thickness
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Stress-Temperature Relationship
Temperature vs In-plane Stresses within NCFI with Covering PDL
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Crack Initiation

LH2 Tank Pre-Launch Stress Profiles

Peak stress at the substrate
is not a good indicator for
crack initiation. Strength at

Foam failure strength the substrate may be higher
A £ o due to increased density.
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Foam Fracture

Foam Failure
« Rigid polyurethane foams fail in a brittle fashion under tensile loads,
particularly at cold temperatures
- Fracture mechanics is used to predict the crack growth of pre-existing cracks
- LEFM successfully correlated with critical defect testing results
- Adequately predicted when a circular or slotted flaw would fail under a
external vacuum and aero-heating load as a function of flaw diameter and
depth

Analytical Assumptions

- Transversely isotropic properties used to model TPS

- Linear elastic fracture parameter K, used to predict onset of cracking

- Stress intensity calculated using crack face opening displacements assuming
isotropic properties |



Linear Elastic Fracture Mechanics

Experimental Substantiation of LEFM as an Engineering Tool

* Correlation of failure
« Stress intensity factor, K, predicts failure load accurately
« Consistent measure of toughness across geometries and loading conditions
» Toughness found to be consistent, within expected material variability,
for all cracked geometries tested. Provides substantiation for use of a
single parameter fracture criterion (K).
 Linear load-displacement records during test
« Linear elasticity prevails for all standard test geometries
at temperatures <= 70F. |
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Toughness (psi*sqrt(in))

25 1
%
_g_ A
20 T g— ————————————————————————————
) l
| 444
L y . 19 % O
& !
¢ FF
. A o 799
10 RaR g
o C(T) X SEN(B) I Notch Bar AM(T)
5

Linear Elastic Fracture Mechanics

LEFM Consistency Across Geometries
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Anisotropic Effects

- Experimental substantiation tests indicate that application of the stress intensity
factor using isotropic homogenous assumptions is a valid engineering approach as
long as all length scales for the cracked body (crack length, ligament, thickness,
etc.) are very large compared to the cellular microstructure.

» The effects of anisotropic material behavior on the K-field and mixed-mode
contributions have been modestly investigated and found to introduce error on the

order of 10%.
o
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@/ Flat Panel Crack Growth Resistance

Subsurface Normal Crack Resistance Curves

« Determined using simple 3D FE model
« Foam on a flat 0.25” substrate
« Through crack normal to the substrate
« Symmetry boundary conditions

simulating an infinite acreage

* Linear thermal gradient
« -420°F at the substrate
« 75 or 0°F at the outer surface

- Substrate uniaxial stress (60ksi) applied in some cases

« Orthotropic material properties (rise direction normal to substrate)
« Crack in 1-3 orientation

« NCFI alone and NCFI under PDL or BX-265

Aluminum

- Stress intensity calculated using ANSYS kcalc fit to crack face opening
displacement
« Uses isotropic in-plane properties to calculate Kl

- Stress intensity compared to range of Klc in the 2-3 direction

12



NCFI Flat Panel R-Curves

NCFI 24-124 Subsurface Normal Crack Resistance Curves
Linear Temperature Gradient, Tout = 75F No Substrate Strain
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KI/Klo

NCFI Flat Panel R-Curves

« Substrate stress and vacuum significantly increase stress intensity
« Colder outside surface temperature affects results near the surface

20

18
16
14

12—:

10—

|

i S ?é[
[1123 [] 5]
.

&I, = fa

199 —

a
£

:

%][2_15 3.93@: ! 27[32“

| Stress inténsity of an édge crack i‘n a momenf loaded

beam subject to a constant unit outer fiber stresss

Curves collapse when normalized

| | | |

—*—All 75F Oksi
--+--All OF Oksi
—>— All 75F 60ksi
--+--All OF 60ksi
—¢—All 75F Oksi Vac
--+--All OF OksiVac
—¢— All 75F 60ksi Vac
--+--All OF 60ksi Vac

0.0

|
T T T T T T T T T T T T T T T T T T T T T

0.1 0.2 0.3 0.4

1.0

14



NCFI Under PDL R-Curve

PDL 1034 over NCFI 24-124 Subsurface Normal Crack Resistance Curves
Linear Temperature Gradient, Tout = 75F, NCFI Thickness = 1.0in
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driving force
40 \‘\
- —e—tpdl=1.0 Oksi
= 42 —=—tpd|=2.0 Oksi
I | 2| | —a—tpdI=3.0 Oksi
£ 30 !
= 1 —e—tpdl=4.0 Oksi
S o — — = NCFI Min 2-3 Klc
(=X ]
= 1 ] R R ] e NCFI Max 2-3 Kilc
< 50 ~ — — PDL Min 2-3 Kic
LU ————, @ @ . . B PDL Max 2-3 Klc
15
10 \
5 |
{«—— NCFI < PDL
0 1 T T T T I‘ T T T T CH T T T T T T U T T T T !‘ T T T T T T T T ! T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Crack Height, a (in) 15



Panel Description
«12” wide uniaxial tensile panel
* Aluminum substrate
*1” thick NCFI under 3.3" of PDL
* Orthogrid stiffener pattern in gage section
*Includes 72" starter through crack
« Substrate is chilled with liquid helium
« Maximum load is 75,000 Ib

« Two panels tested so far |
« Panel 1: Starter crack extended at 42 kip
* Panel 2: No noticeable crack growth

0:6*Starter Through Crack
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Orthogrid Tensile Test Panel R-Curve

Orthogrid Article Crack Growth Resistance Curve
Maximum Klc of a Constant Height Through Crack, P = 42 kip

Calculated stress
intensity much greater
than predicted
toughness
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Delaminations

- At sufficient load cracks will form which may initiate a delamination near the
substrate

« Cracks introduce a peel and shear stress concentration
- Delaminations often occur just above the substrate near the first knitline

Wide Panel Test

LH2 Ice-Frost Ramp
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Thermal Crack and Delamination Interaction
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« Delamination interface cracks '

at A and B are 0.25 long 0 1 5 3 4 L

 Loading by uniform AT = -493F

- ABAQUS 2D plane strain model, domain integral for K evaluation
- Parametric assessment performed, small subset shown
« Observations on thermal crack and delamination interaction effects:
« Delamination is most commonly observed between thermal cracks
- K, and K, driving forces are reduced if thermal cracks are within 4
to 5 inches of each other
- Additional contributors to the mode | and |l driving forces between
the thermal cracks are likely required to create and propagate

delamination
19



- BXor PDL
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@ Delamination Crack Driving Forces

Loading: Thermal equilibrium gradient (-423F to 70F)

and substrate strain

NCFI
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« ABAQUS 2D plane strain model
« Domain integral for K evaluation
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- Large parametric assessment performed, small subset shown
« Observation on substrate strain effects:
« Generally adds approximately 15-20% to thermal stresses
| « Influence on crack driving forces is more significant
| ~« Vertical (thermal) crack K, can be strongly affected, 6x in this example

| - Interface (delamination) crack K, reflects 2x factor in this example

20



w Conclusion

- Linear elastic fracture mechanics is a good tool to describe fracture in
rigid polyurethane foams

- Currently do not have a good indicator to predict crack initiation in
foam on a cryogenic substrate

- Related to peak stress and stress gradient through the thickness

 Thick foam and foam-over-foam applications have a greater crack
driving force to propagate cracks toward the surface

- Orthogrid panel results show less propensity to grow a crack than
predicted analytically

- Substrate strain significantly increases the delamination driving force
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