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The objective of this effort is to develop an efficient and accurate thermo-fluid
computational methodology to predict environments for a hypothetical solid-core, nuclear
thermal engine thrust chamber. The computational methodology is based on an

- unstructured-grid, pressure-based computational fluid dynamics methodology.

Formulations for heat transfer in solids and porous media were implemented and anchored.
A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a
multi-channel flow element for mid-secticn corrosion investigation; and a global modeling of
the thrust chamber to understand the effect of hydrogen dissociation and recombination on
heat transfer and thrust performance. The formulations and preliminary results on both
aspects are presented.

Nomenclature
C;,C5,C3,C = turbulence modeling constants, 1.15, 1.9, 0.25, and 0.09.
= heat capacity
= diffusivity
= empirical multiplier
= total enthalpy

PR REFCTHORT EERITON

= thermal conductivity

= turbulent kinetic energy

= drag loss due to porous media

= pressure

= heat flux or heat source

= heat source due to porous media
= temperature

=time, S

= flow speed

= mean velocities in three directions
= Cartesian coordinates

= species mass fraction

= porosity or void of fraction

= turbulent kinetic energy dissipation rate
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8 = energy dissipation contribution

U = viscosity

e = turbulent eddy viscosity (::pC“kz/S)
I =turbulent kinetic energy production
p = density

o = turbulence modeling constants

T = shear stress

@ = chemical species production rate
Subscripts and superscripts

cl = centerline

] = surface or solid

t = turbulent flow

v = volume

I. Introduction

uclear thermal propulsion can carry far larger payloads and reduce travel time for astronauts traveling to Mars

than is now possible with chemical propulsion. One of the Concepts that was extensively tested during the
Rover/NERNA era and appear to be the most feasible is the solid-core concept. ! This concept involves a solid-core
reactor consisting of hundreds of heat generating solid flow elements, and each flow element containing tens of flow
channels through which the working fluid hydrogen acquires energy and expands in a high expansion nozzle to
generate thrust. The solid-core reactor is therefore nothing but a heat exchanger. To minimize the effect of its
weight, the reactor often operates at very high temperature and power density, which imposes real challenges to the
integrity of the flow element material. To make the solid-core reactor a viable concept for Mars missions, we must
understand the effect of hydrogen as a high temperature working fluid and develop materials that withstand the
harsh flow €lement environment. }

The advantage of hydrogen as a propellant is well known due to its low molecular weight. The effect of hydrogen
as a working fluid in a nuclear heat exchanger however, is not well studied. As a rule of thumb, hydrogen
decomposes to form hydrogen atoms as temperature increases and hydrogen atoms recombine to become hydrogen
molecule as temperature decreases. Capturing that feature with finite-rate chemistry calculation, Wang, et al.
reported that a decomposing hydrogen jet maintains a higher stagnation temperature than that of a frozen hydrogen
jet while the jets impinging on a cylindrical specimen, inside a water-cooled tester.” This suggests a higher heat
transfer efficiency of hydrogen atom over that of hydrogen molecule. Also, since the formula weight of a hydrogen
atom is half that of a hydrogen molecule, it has been speculated that high concentration of hydrogen atoms would
increase the thrust performance, thereby suggesting higher reactor operating temperatures. However, hydrogen
atoms recombine to form hydrogen molecule as temperature decreases in the expansion nozzle, meaning the
hydrogen atoms gained in the reactor may be lost in the nozzle.

One of the impacts of operating at the combination of high temperature and h1gh power density is a phenomenon
known as the mid-section corrosion, as reported during the legacy engine tests.” ? It is an excessive mass loss of the
flow element material near the mid-section during testing. The symptom was cracked coating layer while the
purpose of coating was to isolate the carbonaceous compound in the flow element matrix from the attack by
hydrogen. The causes of mid-section corrosion were speculated as a mismatch in the thermal expansion of flow
element and its coating material, high flow element web internal temperature gradients, and change of solid thermal
property due to irradiation.* Note that another speculation was that the flow was choked in the long flow channels of
the flow element.

One way to help understanding the effect of hydrogen as a working fluid and developing materials that withstand
the harsh environment is to develop computational methodology that can accurately predict thermal-fluid
environments inside the nuclear thermal engine thrust chamber and reproduce the flow element thermal environment
occurring in the legacy engine: tests. The objective of this effort is therefore to develop an efficient and accurate
multiphysics thermal-fluid computational methodology to predict environments for a hypothetical solid-core thrust
chamber and the associated flow element, similar to those in the Small Engine.' The Small Engine was a paper
engine designed near the end of the Rover/NERVA era and bears common features of other legacy engines tested
during that time period, but was never built nor tested. The hypothetical thrust chamber and flow element, which are
being redesigned by the System Analysis Group at Marshall Space Flight Center, consists of 564 flow elements and
of 19 flow channels for each flow element, respectively. The computational methodology was based on an existing
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Unstructured-grid Navier-Stokes Internal-external computational fluid dynamics Code (UNIC). Conjugate heat
transfer formulations for coupling fluid dynamics and conductive heat transfer in solids and for flow and conductive
heat transfer in porous media were developed and tested. A two-pronged approach was employed: a detailed
analysis of the 19-channel flow element, and a global analysis of the entire thrust chamber. In the global thrust
chamber analysis, the 19 channels for each flow element were lumped together as a porous media to save
computational resources, and the core surrounding components such as the slats and reflector were treated as heat
conducting solids to provide accurate boundary condition for the solid-core environment.

II. Computational Methodology

A. Computational Fluid Dynamics

The CFD methodology was based on a multi-dimensional, ﬁmte—volume viscous, chemically reacting,
unstructured grid, and pressure-based formulation. Time-varying transport equations of continuity, species
continuity , momentum, total enthalpy, turbulent kinetic energy, and turbulent kinetic energy dissipation were solved
using a time-marching sub-iteration scheme and are written as:

2.2 o
a’; fi +5§j—(/0uj“j )=%j[(ﬂD +%}§%‘j}+wi @
TN
9%’+% u-H)=—’f—9§+ Q,+%((%+%]VH]+%j[((ﬂ+ﬂz)—{%+}%J]V(Vzl2)]+6 @
2281 2ot s |2 e - ®
%’%€+ai—j(puj5)_%:(ﬂ+% aaxgj}p (C1H Cre+C3I1 /5) ©)

A predictor and corrector solution algorithm was employed to provide coupling of the governing equations. A
second-order central-difference scheme was employed to discretize the diffusion fluxes and source terms. For the
convective terms, a second-order upwind total variation diminishing difference scheme was used. To enhance the
temporal accuracy, a second-order backward difference scheme was employed to discretize the temporal terms.
Details of the numerical algorithm can be found in Ref’s 5-9.

An extended k-¢ turbulence model’® was used to describe the turbulence. A modified wall function approach was
employed to provide wall boundary layer solutions that are less sensitive to the near-wall grid spacing.
Consequently, the model has combined the advantages of both the integrated-to-the-wall approach and the
conventlonal law-of-the-wall approach by incorporating a complete velocity profile and a universal temperature
proﬁle A 2-species, 3-reaction detailed mechanism' was used to describe the hydrogen dissociation and
recombination chemical kinetics.

B. Heat Transfer in Solids
The solid heat conduction equation was solved with the gas-side heat flux distributions as its boundary conditions.

The solid heat conduction equation can be written as:

9pC,T 9 (T
; ox

% ox, K”]JFQ *Os ‘ D
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C. Flow and Heat Transfer in Porous Media

A two-temperature porosity model was formulated and separate thermal conductivities for the flow and the solid
parts were used. The heat transfer between the flow and solid was modeled by using the empirical correlation of heat
transfer coefficient for circular pipes as a function of flow Reynolds number. Empirical multipliers for both the heat
transfer and drag loss will be determined by comparing solutions of flow passing through a porous flow element
with those of a 19-channel flow element using detailed conjugate heat transfer modeling. The only affected fluid
governing equations are Navier-Stokes and energy equations and can be rewritten as:

dpu; J dp 9% L
+—o-\puu; |J=———+ —— ) 8
at  dx; 7 ) dx; dx; P ®
IR 9 ( oy =22 g s || E b A S| KA ofv2 % ©)
at +axj(p"iH) o s, [cp+a,,JVH "ox, uss) (CPJ'GH}V(V ) i
For the solid heat conduction in porous media,
BPSCPSTS _ d X 0T, +QV+QS 10)

g ox, | ‘ox ) 1-8

For the present 19-channel flow elements heat exchanger configuration, drag loss in circular pipes can be used as a
point of departure. That is,

L=%pcflU|0u,- (11)
where ¢ F= 0.0791Re %

For the heat exchange source term,

1 ¢
0. =2p p{m vlc, T -1)f (12)

Tie-tube Slat

Fig. 1 Computational geometry representation of a
solid-core nuclear thermal thrust chamber.

Flow element Reflector

Fig. 2 Computational grid layout of the flow
element, tie-tubes, slat, and reflector.
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where f is an empirical parameter to be identified by comparing solutions of the porosity model and the 19-channel
conjugate heat transfer model.

III. Computational Grid Generation

Hybrid computational grids were generated using a software package -GRIDGEN'? for both detailed flow
element and global thrust chamber analyses. There are 564 flow elements and 241 support elements or tie-tubes in
the solid-core. The hexagonal flow elements have 19 coolant channels and the support elements have one large hole.
Each flow element is held in position by three support elements and the corresponding hot-end support system (not
modeled). Due to geometrical symmetry, a 30 deg. Cut of the thrust chamber was solved. Figure 1 shows a
computational geometry representation of the thrust chamber and tie-tube walls, while Fig. 2 shows a partial cross-
sectional cut of the solid-core depicting flow elements, tie-tubes, slat, and reflector.

Figure 3 shows a computational grid representation of a quarter of a 19-channel flow element. Due to symmetry,
only a quarter of a flow element was solved. Figure 2 shows the surface grid representation of the web of a 19-
channel flow element. This web grid is only used for identifying the physical conjugate heat transfer region in Fig. 3
where the actual computational grid is shown. These grids were used to study the mid-section corrosion
phenomenon. Similar, but shorter grids were used to establish porosity model suitable in describing the effects of
drag and heat transfer of the 19-channel flow elements, which was used to model the flow and heat transfer in the
flow elements of the solid-core of the global thrust chamber (figs. 1 and 2).

The global thrust chamber grid shown in Figs 1 and 2 consists of 7,460,255 nodal points, or 8,932,018
computational cells.

_ Fig. 4 Surface grid representation for the web
Fig. 3 A computational grid layout of a quarter of a 19-channel flow element.
of a 19-channel flow element.

IV. Boundary and Inlet Conditions

No-slip condition was applied to the solid walls and fixed mass flow rate boundary condition was used at the inlet.
Mass conservation boundary condition was used at the exit for the detailed 19-channel, single flow element analysis,
while supersonic outflow boundary condition was applied at the nozzle exit for the global thrust chamber analysis.

In the global thrust chamber analysis, the inlet conditions were obtained from a system model simulation; for the
outside chamber walls, a far-field temperature of 400 K was specified to convey heat out to the ambience. For simplicity,
the minor thermal effect of the tie-tubes was not modeled, since that effect is included in the inlét flow from system
simulation. Adiabatic wall boundary condition was therefore used for the tie-tube walls.
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In the 19-channel, single flow element analysis, conduction heat transfer was applied to the web. In the global thrust
chamber analysis, conduction heat transfer was applied to both the rcﬂcctor and slat regions, while por051ty modeling
was applied to the core of flow elements.

As to the nuclear power, since it was known that the power distribution inside a solid-core reactor takes the shape of
a Cosine curve; the power peaks at the center of the core and reduces to a small value at the core boundaries due to
escaping neutrons. A Cosine power profile was numerically imposed to the core of the global thrust chamber to simulate
the effect of neutronics in all three directions. For a 19-channel, single flow element, a Cosine curve was applied in the
flow direction, while a clipped Cosine curve was applied in the transverse direction.

V. Preliminary Results and Discussion
\

M 0.001 0.002 0.003 0.004 0,005 0.006 0.007 0,008 0.008 001 0.011 0.012 0.013

Fig. 5 Computed temperature contours for a 1/8 Fig. 6 Computed Mach number contours for a 1/8
full-length single flow element. ' full-length single flow element.

A. Detailed 19-channel, single flow element analysis

The goal of this analysis is to provide flow and thermal environments in order to understand and prevent mid-
section corrosion issue, from both flow and thermal points of view. Figures 5 and 6 show the preliminary computed
temperature and Mach number contours for a 1/8 full-length single flow element. From Fig. 5, it can be seen that the
temperature contours resemble that of a Cosine distribution — a result of the assumed Cosine power dlSt[‘lbllthIl
profile. From Fig. 6, it can be seen that the cold hydrogen
picks up energy from the web and the flow Mach number
increases. The computation of this 1/8 full-length single flow
element and another for a full-length single flow element, are
in progress. It is anticipated that the computed thermal
environment for the full-length single flow element will
show strong thermal gradients in both the axial and
transverse directions on the web, especially in the coating
region adjacent to the flow channel. It is also anticipated that
the computed flow Mach number contours will reveal if the
heat addition to the hydrogen in a long channel resulting in
choked flow — a source of possible flow instability.

Tie-tubes

Thrust Chamber—____

B. Global thrust chamber modeling

The goals of this analysis are to simultaneously provide
thermal and flow environments for the entire thrust chamber,
and to provide thrust performance with a unified analysis.
The computation is in progress. Similar to the situations
occurring in the powered single flow element computations,
full power level cannot be applied at once. Otherwise, the
rapid rise in temperature would result in a rapid rise in

Fig. 7 Computed temperature contours on thrust
chamber and tie-tube walls.
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pressure in the flow channel and the hydrogen gas cannot pass through, resulting in even rapid temperature rise and
eventually the core temperature runaway. A gradual step-wise power ramp up procedure is being devised and tested.
Since this is a unified analysis, the effects of hydrogen dissociation on heat transfer efficiency in the solid core and
of hydrogen recombination in the nozzle on the eventual thrust performance can be investigated. Figure 7 shows the
computed temperature contours on thrust chamber and tie-tube walls. It can be seen that the higher temperature in
the solid-core as a result of the imposed Cosine power profile.

V1. Summary

A multiphysics thermo-fluid computational methodology was developed to predict environments for a
hypothetical solid-core, nuclear thermal nuclear thrust chamber and for its flow element. A two-pronged approach is
employed in this effort: A detailed conjugate heat transfer analysis on a multi-channel flow element, and a global
modeling of the thruster chamber with a combined porosity modeling and conjugate heat transfer technique. It is
anticipated that the detailed analysis on a single flow element provides detailed fluid, thermal, and hydrogen
environments for better understanding of the mid-section corrosion phenomenon, while the global thrust chamber
analysis helps the understanding of the simultaneous effects of hydrogen dissociation in the solid-core and hydrogen
recombination in the nozzle on thrust performance.
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