Electrical Power System Architectures
For In-House NASA/GSFC Missions

Diane Yun
Diane.D.Yun@nasa.gov

Code 563
Greenbelt, MD
NASA – Goddard Space Flight Center
Acknowledgements

- Amri Hernandez-Pellerano
- Denney Keys
- Thomas Spitzer
- Karen Stewart
Agenda

- EPS Designs for:
 - Space Technology 5 (ST-5) Mission
 - Solar Dynamics Observatory (SDO) Mission
 - Lunar Reconnaissance Orbiter (LRO) Mission
- History
- Advancement of PSE
- Summary
ST-5 Mission — Mission Parameters

- **Orbit:** in a near-Earth polar elliptical from ~300 km to 4,500 km
 - 40-200 km apart from each other
- **Launch Date:** March 22, 2006
- **Launched on:** Pegasus XL Rocket
- **EPS system designed for** 12-21 W of load power
- **Mission Design Life:** 3 months
- **Main mission goals:**
 - Testing new micro-spacecraft technologies and operation techniques. The three spacecraft will perform coordinated multi-point measurements of the Earth’s magnetic field.
- **New Technologies:**
 - Moved Li-Ion Battery from a TRL level 4 to a 8 (9 after launch)
 - Highest efficiency solar cells at time of contract award (Research cells)

3 micro-satellites – Each:
- Weighs approximately 25 kgs when fully fueled
- Is about the size of a 19” tv
ST-5 EPS Overview

- Battery
 - 7.5 Ahr Li-Ion battery made up of Sony 1.5 Ahr cells
 - 2 in series, 6 strings in parallel
 - Built and tested by AEA Technology Space, UK

- Solar Array
 - 8 identical panels
 - Utilizes 28.05% TJ GaAs cells
 - Designed to provide 27W at BOL, 12.1W at EOL
 - Built and tested by Emcore, USA

- PSE:
 - DET architecture with battery connected directly to the electrical bus
 - Provides unregulated 6-8.4V power to spacecraft
 - Provides regulated 5.0V and 5.25V power to spacecraft
 - Provides switched and unswitched services for spacecraft loads
SDO – Mission Parameters

- Orbit: GEO - Sync. Orbit, Inclination 28.5 degrees
- Launch Date: April 2008
- Launched on: Atlas V
- EPS system designed for 1450 W of load power
 - 1500 Watts peak power
- Mission Design Life: 5 years
- 3 Instruments

- Main mission goals:
 - SDO is the 1st mission under the Living With a Star (LWS) Program.
 - Primary goal of the SDO mission is to understand the nature and source of the solar variations that affect life and society by determining: How and why does the sun vary?; How does the Earth respond?; And how does it impact humanity?

- New Technology:
 - Li-Ion battery
SDO EPS Overview

- Battery
 - 120 Ah Li-Ion battery made up of Sony 1.5 Ahr cells
 - 8 in series, 104 strings in parallel
 - Built and tested by ABSL Power Solutions, UK
- Solar Array
 - 2 Fixed identical wings
 - Utilizes 28.5% efficient solar cells
 - Designed to provide 1068 W at BOL, 933 W at EOL
 - Built and tested by SpectroLab
- PSE
 - DET architecture with battery connected directly to the electrical bus
 - Provides unregulated bus between 22-35V
 - Single fault tolerant architecture
 - cPCI Interface
- Battery Charge Regulation is a combination of hardware and software.
- Process or shunt solar array power via PWM Boost converter
- Power Distribution
 - Provide switched or un-switched power feeds to all spacecraft loads
 - Provide over-current protection on all feeds
- Deployment Functions
 - Sense launch vehicle separation signals and provide autonomous, hardware controlled deployment of the Solar Array
- Autonomous Fault Detection and Correction (Back-Up to Main FDCs):
 - Excessive discharge → load shed
 - If discharge continues battery will be disconnected from bus until ground commanded to be reconnected (system will operate in OV control mode)
 - Battery OT protection
 - Battery OV protection
LRO Mission – Mission Parameters

- Orbit: Lunar Orbit
 - 50 km +/- 20 km above mean lunar surface
 - Orbital Inclination 90 degrees +/- 1 degree
- Launch Date: October 31, 2008
- Launched on: Delta IV or Atlas V
- EPS system designed for 800 W of Load Power
- Mission Design Life: 14 months
- 7 Instruments
- Main mission goals:
 - Conduct investigations that will be specifically targeted to prepare for and support future human exploration of the moon
- NEW Technology:
 - Li-Ion battery
- Key Design Drivers that Impacted EPS:
 - Beta angle variation from 0 to 90 degrees
 - Eclipse variation from 0 to 48 minutes
LRO EPS Overview

- **Battery**
 - 80 Ah Li-Ion Battery
 - Cell balancing and cell by-pass required in RFP
 - Battery Vendor not yet selected

- **Solar Array**
 - 77 Modules
 - 1 wing, 3 panels
 - 10 m² total area
 - 2 axis articulated
 - -170 C to +145C
 - GSFC will fabricate panel/wing
 - Solar Cell vendor not yet selected
LRO EPS Overview – PSE cont.

- **PSE**
 - DET architecture with battery connected directly to the electrical bus
 - Provides unregulated bus between 22-35V
 - Single string
 - I² Serial Bus Interface
 - FPGA as Master Controller
 - Battery Charge Regulation is a combination of Hardware voltage and current control loops
 - Provide up to 30A max battery charge current
 - Power Distribution
 - Provide switched or un-switched power feeds to all spacecraft loads
 - Provide over-current protection on all feeds
 - Autonomous Fault Detection and Correction
 - Load shed
 - Battery Over-temp protection
 - Battery cell voltage protection
LRO EPS Block Diagram

Solar Array

Power to Loads

Power System Electronics (PSE)

Solar Array Module
- PWM modulation of SA
- Batt. OV Protection

Output Module
- switched
- unswitched

Master Controller:
- FPGAs for IRC internal bus, 1553 bus, FOCs
- Bus, Battery & SA
- TM Monitoring
- 1/1 & 1/15
- PSE Monitor Card

Output Module
- switched
- unswitched

Output Module
- switched
- unswitched

Output Module
- switched
- unswitched

Power Centre Bus Backplane

C&DH
- Cmd & Tlm

Space Power Workshop_April 2006_DY
History

- **XTE**
 - Direct Energy Transfer System (DET)
 - Multiple boxes, harness for solar array interface, battery interface, data interface
- **MAP / EO-1 Power System Electronics**
 - DET System – Battery connected directly to bus
 - Solar array shunt with PWM Boost Converter for fine control
 - Modular Design:
 - SA Module, Distribution Module, Battery Module, Controller Module
- **SDO Mission**
 - Higher Power
 - Redundancy / Single Fault Tolerant
 - Longer Mission Life
 - New Deployment Function
 - PSE uses cPCI bus interface
- **LRO Mission**
 - I²C standard serial bus
 - FPGA implemented microcontroller, hardware compensation
Advancement of PSE

Optimizing the modular design: increase power to mass ratio

MAP/EO-1
- 70.7 Watt/kg
- 0.04 Watt/cm³
- 2001

XTE Redundant
- 40.4 Watt/kg
- 0.03 Watt/cm³
- 1995

SDO Redundant
- 65.6 Watt/kg
- 0.05 Watt/cm³
- 2008

LRO Single String
- 123.7 Watt/kg
- 0.13 Watt/cm³
- 2008
• Provide flexibility for spacecraft load configurations
• Increase power to mass ratio
• Eliminate internal harness
• Decrease architectural complexity
• Incorporate autonomous functions, i.e. FDCs
• Increase flexibility for battery management
Summary

- Modular PSE provides flexibility, robustness and reliability
 - Continue working to improve power to mass ratio
 - Increasing affordability due to reduced technology development and hardware costs

- Lithium Ion Batteries
 - On-going testing of Li-Ion batteries for current in-house missions (completed 2+ years of real-time LEO and GEO cycles)
 - Incorporation of lessons learned to Exploration Missions

- Solar Array
 - Incorporation of higher efficiency cells into future missions
 - Program to Reduce Risk
 - Incorporation of Hot Flash Test in Requirements