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ABSTRACT: This paper proposes a framework for the analysis and design optimization of models subject to
parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is
given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by
sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems,
allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints
must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints
can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology
allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure,
(ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons
of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to
constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic
uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently
estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed
form expressions are derived, along with conditional sampling. In addition, an`∞ formulation for the efficient
manipulation of hyper-rectangular sets is also proposed.

1 INTRODUCTION
Design under uncertainty arises in numerous disci-
plines including engineering, economics, finance and
management. Achieving balance between robustness
and performance is one of the fundamental challenges
faced by scientists and engineers.

Literature in probabilistic control (Crespo and
Kenny 2005), stochastic programming (Kall and
Wallace 1994) and stochastic approximations (Er-
moliev 1983) provide several mathematical tools for
Reliability-Based Design Optimization (RBDO). The
algorithms at disposal can be classified according to
the way they integrate inequality constraints.Hard
constraints(Darlington et al. 1999) are those that
must be satisfied for all possible realizations of the
uncertain parameter. Strategies to solve the resulting
semi-infinite optimization problem usually require
nested searches for the identification of the worst-
parameter-realization (Darlington et al. 1999). On the

other hand,Soft constraints(Acevedo and Pistikopou-
los 1998; Samsatli et al. 1998; Rustem and Nguyen
1998; Royset et al. 2001; Crespo and Kenny 2005) are
those that are not required to be satisfied for all pos-
sible realizations of the uncertain parameter. They re-
sult from slack design requirements, overly large un-
certainty sets or limiting design structures. Chance-
constrained programming (Kall and Wallace 1994),
sampling-based techniques, asymptotic approxima-
tions (Rackwitz 2001) and penalty-based optimiza-
tion (Rustem and Nguyen 1998; Kall and Wallace
1994) are some of the strategies most commonly used
to tackle this problem.

This paper proposes strategies for robustness anal-
ysis and RBDO of problems subject to hard and/or
soft constraints. A unifying mathematical framework
is first introduced.
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2 FRAMEWORK
Definition 1 (Uncertainty Model). If p ∈ Rdim(p) is
an uncertain parameter, itsuncertainty modelis given
by thesupport∆p ⊂ Rdim(p), and adesignated point
p̄ ∈ ∆p.

The uncertainty model is specified by the ana-
lyst/designer. The intent is that the support set∆p be
chosen so that the actual value of the parameterp lies
somewhere within it. Arealization of the uncertain
parameter is a value of the parameter selected from
the support set. The designated point, whose selec-
tion is subjective, can be interpreted as the realization
that best representsp.

Consider now the situation that a system depends
on the uncertain parameterp ∈ Rdim(p) and the de-
sign variabled ∈ Rdim(d). Suppose thatg : Rdim(p) ×
Rdim(d) → Rdim(g) is a set of constraint functions on
the system (with the convention that positive values
represent constraint violations). If these are consid-
ered hard constraints, the system corresponding to
given values ofd and∆p will be judged acceptable
if g(p,d) ≤ 0 ∀p ∈ ∆p.

For a given vectorg of constraints and a given
designd, denote the failure (or constraint violation)
set byF(d,g) =

⋃dim(g)
i=1 Fi(d,g) whereFi(d,g) =

{p : gi(p,d) > 0} is the set ofp-values where con-
straint numberi is violated. In a context whereg and
d are understood,F(d,g) andFi(d,g) will be rep-
resented simply asF andFi. Using the symbol∂ to
represent the topological boundary of a set, if the con-
straint functions are continuous, eachp ∈ ∂Fi satis-
fiesgi(p,d) = 0 and eachp ∈ ∂F satisfiesgj(p,d) =

0 for somej 1.
The manifold∂F commonly referred as thelimit

state surface, separates the parameter space into two
regions: one where all the constraints are satisfied and
one where they are not. For a fixed designd, the fail-
ure regionF either overlaps the support set∆p, case
in which the designd is callednon-robust; or F and
∆p are disjoint, case in which the designd is called
robust. In the latter case, the degree of robustness can
be quantified by measuring the separation between the
two sets.

Selecting the support set usually involves some en-
gineering judgment. One reasonable choice might be
to confine each component ofp to a bounded interval.
This leads to the choice of∆p as a hyper-rectangle. A
natural choice for the designated pointp̄ is the geo-
metric center of∆p. If m is the vector of half-lengths
of the sides of the hyper-rectangle, the rectangle is

1The converse is not universally true. We will assume in this
paper that the boundary ofFi is exactly described by the points
where that constraint function assumes the value of zero; i.e.,
∂Fi = {p : gi(p,d) = 0}. We believe that in a realistic engi-
neering setting, the loss of generality in making this assumption
is unimportant.

represented by the notationRp(p̄,m), and defined by
Rp(p̄,m) = {p : pi ∈ [p̄i −mi, p̄i + mi],1 ≤ i ≤
dim(p)}. If vector inequalities (a≤ b) and vector ab-
solute value (|a|) are understood to hold component-
wise, this hyper-rectangle is given by{p : |p− p̄| ≤
m} wherem > 0.

Another reasonable choice for the support set is a
hyper-sphere. The hyper-sphere of radiusR centered
at p̄ will be denoted asSp(p̄,R).

Definition 2 (Homothetic Sets).Two setsA andB
are homotheticwith respect to thehomothetic center
x at asimilitude ratioofα if B = {b : b = α(a− x) +
x,a ∈A}. Such aB is completely determined byA, x,
andα. We use the notationB =H(A,x,α) to express
this relationship.

B = H(A,x,α) means thatB can be created from
A by forming every vector from the fixed pointx to
each point ofA; stretching or shrinking it by a factor
of α; and, with the roots of the stretched or shrunk
vectors all fixed atx, collecting all the new endpoints
to form the setB.

For purposes of this paper, two uncertainty mod-
els will be calledproportional if they have the same
designated point and they are homothetic with re-
spect to that designated point as homothetic center.
This means that one of the two support sets can be
formed from the other by expansion or contraction
by some positive factor, which is the similitude ratio,
about the common designated point. For instance, the
hyper-rectanglesRp(p̄,m) andRp(p̄, αm) are pro-
portional sets forα > 0.

The notions ofCritical Parameter Value(CPV)
andParametric Safety Margin(PSM) are now intro-
duced. For simplicity sake, the presentation of the ma-
terial will concentrate on the case where the desig-
nated point is in the non-failure region. Intuitively,
one imagines that a set proportional to the support
set of the uncertainty model is being expanded ho-
mothetically with respect to its designated point until
its boundary just touches the failure region. The point
where the expanding set touches the infeasible region
is the CPV. The PSM is a metric that quantifies the
size of the set proportional to the support set that has
the CPV on its surface. The mathematical background
for these notions is presented next.

Definition 3 (Critical Similitude Ratio). Let d be a
fixed design and let∆p and p̄ be the support set and
designated point of the uncertainty model ofp. Sup-
pose thatg : Rdim(p) × Rdim(d) → Rdim(g) is a set of
constraint functions. The set of expansion/contraction
factors which produce homothets of∆p with respect
to p̄ which contain constraint violation points is de-
noted

Ã(p̄,∆p,d,g)
∆
=
{
α ≥ 0 : Hp(∆p, p̄, α)

⋂
F 6= ∅

}
.
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The greatest lower bound of̃A(p̄,∆p,d,g), given by

α̃(p̄,∆p,d,g)
∆
= inf

(
Ã(p̄,∆p,d,g)

)
(1)

will be called theCritical Similitude Ratio.

Arguments that can be understood from context
will be omitted.

Definition 4 (Critical Parameter Value). Let d be
a given design and let∆p, p̄, and g define the un-
certainty model and the set of inequality constraints.
Any p̃ ∈ Hp(∆p, p̄, α̃) on a limit state function, i.e.
gi(p̃,d) = 0 for somei, will be called theCritical Pa-
rameter Value.

Some properties of the CPV are provided in ref-
erence (Crespo, Giesy, and Kenny 2006). Whenever
∆p is compact and theg are continuous functions,
the existence of a CPV is guaranteed. Note also that
the CPV might not be a realization of the uncertain
parameter, i.e.,̃p might not belong to∆p.

Formal definitions of the PSM for hyper-spherical
and hyper-rectangular supports are provided in Sec-
tion 3, as are expressions for the calculation of these
PSMs. In general, the PSM is a measure of the ro-
bustness of the designd to uncertainty inp that will
assume non-negative values in theFeasible Design
Space(FDS). The FDS is the set of designs satisfying
all the constraints at the designated point. The PSM
is proportional to the degree of resilience ofd to un-
certainty inp. If the PSM assumes the value of zero,
there is no resilience since at least one of the con-
straints is active for̄p, i.e. there exists an infinites-
imally small perturbation from̄p leading to a con-
straint violation. Negative PSM values are attained by
designs outside the FDS. On the other hand, the PSM
is infinite wheng is insensitive top. In general, the
PSM is uniquely specified by the design pointd, the
support set∆p, the designated point̄p, the constraint
functionsg, and the critical similitude ratiõα.

Definition 5 (Robust Design Space).The Robust
Design Space(RDS) is the set of designsd for which
g(p,d) ≤ 0 for all realizations ofp. Each member of
this set is called arobust design.

In this paper,robustnessrefers to the ability of a
given design to satisfy the design requirements pre-
scribed ing ≤ 0 given an uncertain model forp. In
principle, such requirements can be enforced by ei-
ther hard and soft constraints. Developments for the
former type are presented next.

3 HARD CONSTRAINTS
Problem Statement:evaluate whether the designd is
robust for the support set∆p and the hard constraint
g(p,d) ≤ 0.

In general, the support set can have any shape
and size. We assume hereafter that∆p is a compact
set with a designated point̄p. A general robustness
test is available in (Crespo et al. 2006). Support sets
with hyper-spherical and hyper-rectangular support
geometries are studied next.

3.1 Hyper-Spheres inp-space
Hyper-spherical supports result from uncertainty
models where norm bounded perturbations from the
nominal parameter valuēp are allowed. This implies
that p̄ is the geometric center of the hyper-sphere.
Problems with this class of support sets are the sim-
plest since the CPV is calculated by solving a mini-
mum norm problem inp-space. The CPV for∆p =
Sp(p̄,R) is given by

p̃ = argmin
p

‖p− p̄‖ :

dim(g)∏
k=1

gk(p,d) = 0

. (2)

Definition 6 (Spherical PSM). TheSpherical Para-
metric Safety Margincorresponding to the designd
for ∆p = Sp(p̄,R) is defined as

ρS(p̄, p̃,d)
∆
= ‖p̃− p̄‖, (3)

where p̃ is the corresponding CPV and̄p, the des-
ignated point of the uncertainty domain, satisfies
g(p̄,d) ≤ 0. Note thatρS = α̃R.

Lemma 1 (P-Test). Let g ≤ 0 describe a set of in-
equality constraints and∆p = Sp(p̄,R) be the sup-
port of the uncertain parameterp. The designd is
robust if and only ifρS ≥ R.

The exact boundary of the RDS corresponding to
a hyper-spherical support set is confined by an iso-
spherical-PSM manifold, i.e. surface in the design
space prescribed byρS = c wherec is a constant.

3.2 Hyper-Rectangles inp-space
When the components of the uncertain parameter are
independently bounded the support set is a hyper-
rectangle. Note that this geometry allows for the ma-
nipulation of uncertain parameters having different fi-
delities. If p̄ is the geometric center of the set, such
a hyper-rectangle isRp(p̄,m). A robustness test for
this geometry is introduced subsequently. The mathe-
matical background for this is presented next.

Definition 7 (Q-Transformation). Let ∆p =
Rp(p̄,m) be the support of the uncertain pa-
rameter p. The Q-Transformation, denoted as
q = Q(p, p̄,m), and given by

Q(p, p̄,m)
∆
=

max{|k|}k
‖k‖

, (4)
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where
k = diag{m}−1 (p− p̄) ,

transforms∆p into a unit hyper-sphere inq-space.
The inverse transformation,p = Q−1(q, p̄,m), is
given by

Q−1(q, p̄,m) = p̄ + diag{m} ‖q‖q
max{|q|}

. (5)

The Q-Transformation maps hyper-rectangles pro-
portional to Rp(p̄,m) into hyper-spheres propor-
tional to Sq(0,1). The connectivity of the uncer-
tainty set is preserved by the transformation. Notice
however, that differentiable functions onp-space are
transformed into functions onq-space which can have
derivative discontinuities at points corresponding to
p-space points where the faces of the homothets meet.
The notationQ(p) will be used when the arguments
p̄ andm are understood by context.

The Q-Transformation allows identification of the
corresponding CPV by solving the following mini-
mum norm problem inq-space

p̃ = argmin
p

‖ Q(p)‖ :

dim(g)∏
k=1

gk (p,d) = 0

. (6)

Definition 8 (Rectangular PSM). The Rectangular
Parametric Safety Margincorresponding to the de-
signd for ∆p = Rp(p̄,m), is defined as

ρR(p̄, p̃,m,d)
∆
= ‖Q(p̃)‖‖m‖, (7)

whereg(p̄,d) ≤ 0.

Hp(R, p̄, α̃) is tightly bounded by an hyper-sphere
of radius equal toρR centered at̄p.

Lemma 2 (Q-Test). Let g ≤ 0 describe a set of in-
equality constraints, and∆p =Rp(p̄,m) be the sup-
port of the uncertain parameter. The designd is ro-
bust if and only ifρR ≥ ‖m‖.

The CPVs in Equations 2 and 6 arep values, not
necessarily realizations in∆p, on the intersection be-
tween the surface of the homothetic set and the failure
region. As before, the exact boundary of the RDS for
hyper-rectangular support sets is prescribed by an iso-
rectangular-PSM manifold. Relevant aspects related
to the existence of the RDS are considered in (Cre-
spo, Giesy, and Kenny 2006).

3.2.1 Infinity Norm Formulation
An alternate way to search for the CPV for hyper-
rectangular supports is presented here. This formu-
lation allows us to circumvent the problems caused

by discontinuities in the gradient of the Q transforma-
tion.

Recall that the infinity norm in a finite dimen-
sional space is defined as‖x‖∞ = supi{|xi|}. Let
us define them-scaled infinity norm as‖x‖∞m =
supi{|xi|/mi}. A distance between the vectorsx and
y can be defined as‖x− y‖∞m. Using this distance,
the unit ball centered at̄p is justR(p̄,m).

The problem of finding, for a fixed designd, the
CPV for the vectorg(p,d) of constraint functions
and the uncertainty model with designated pointp̄ be-
comes the problem of finding a vectorp̃ of minimal
distance in thism-scaled infinity norm from̄p such
thatp touches the failure set. This can be expressed in
the form of a constrained optimization problem

p̃ = argmin
p

{‖p− p̄‖∞m : p ∈ ∂F}

This optimization problem is restated asp̃ = p̃i where

i = argmin
j

{
‖p̃j − p̄‖∞m

}
, (8)

p̃j = argmin
p

{‖p− p̄‖∞m : p ∈ ∂Fj} . (9)

That is, the CPV problem is solved for each individual
constraint function, and the answer is selected which
is closest to the designated point in them-scaled in-
finity norm. It should be pointed out that, in the pre-
ceding discussion, if them-scaled infinity norm is re-
placed by the standard Euclidean norm, what results
is a formulation of the CPV calculation for spherical
uncertainty domains.

Assuming that g(p̄,d) < 0 and ∂Fi =
{p : gi(p,d) = 0}, the problem in Equation (9)
can be formulated as

p̃j = argmin
p

{‖p− p̄‖∞m : gj(p,d) = 0}.

Rewriting this using the definition of them-scaled
infinity norm gives

p̃j = argmin
p

{
max

1≤i≤dim(p)

|pi − p̄i|
mi

: gj(p,d) = 0

}
.

The “max” can be eliminated and the objective func-
tion made differentiable by introducing the similitude
ratioα defined before

〈p̃j, α̃j〉= argmin
p,α

{α : gj(p,d) = 0, |pi− p̄i| ≤ αmi},

where 1 ≤ i ≤ dim(p). The non-differentiabilities
in the objective functions can be eliminated and
the problem turned into an “inequality constraint
only” optimization problem which is more “optimizer
friendly” by changing the constraint ongj from = to
≥ (assuming that the constraint functionsg are con-
tinuous) since the optimum must occur on∂F .
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4 SOFT CONSTRAINTS

Up to this point, only hard constraints have been con-
sidered. In practice, there might be cases in which
the design architecture, i.e., the form in whichg de-
pends ond, or the size of the support set, lead to
an empty RDS. In such cases, soft constraints allow
for the search of designs that minimize the severity
of the constraint violation. Deterministic (Rustem and
Nguyen 1998) and probabilistic (Royset, Kiureghian,
and Polak 2001; Crespo and Kenny 2005) approaches
can be used to tackle problems where partial fea-
sibility is satisfactory. Non-probabilistic uncertainty
models have been used thus far. This has been the
case since the enforcement of hard constraint makes
the probabilistic information inconsequential. In what
follows, probabilistic uncertainty models are used. A
probabilistic uncertainty model is fully prescribed by
a joint probability density function ofp, denoted by
fp(p), supported in∆p.

Strategies for the efficient solution of RBDO prob-
lems that involve the estimation of the failure prob-
ability P [F(d,g)] are studied in this section. Notice
that if the probability of constraint violation can be
eliminated, the tools for hard constraints must be used
instead. The implementation of soft constraints must
be preceded by determining that the RDS is an empty
set. Failure to recognize this will lead to ineffective
numerical implementations.

By definition, the homothetic sets corresponding
to the critical similitude ratio are fully contained in
the non-failure region. If a probabilistic uncertainty
model for p is available, the probability of being
within such a set can be quantified. Obviously, this
probability depends, among several other factors, on
the geometry of the support set. In order to maximize
the probability of being within such a homothet, ex-
pansions/contractions in the standard normal spaceu
are desirable. The reader can refer to (Rackwitz 2001)
for a review on the transformation fromp-space tou-
space. We will useu = U(p) to refer to the probabil-
ity preserving transformation. Most of the concepts
introduced earlier can be naturally extended to this
setting with one notable exception. Since the trans-
formation of the support set∆p covers the entireu-
space, the concept of proportionality between the ho-
mothets and the support set is no longer attainable.
This gives us the freedom to select dilating sets of ar-
bitrary geometry inu-space. As before, we will con-
centrate on hyper-spherical and hyper-rectangular ge-
ometries. We will denote with̄u the designated point
in standard normal space. Analogous to the spheri-
cal and rectangular PSMs concepts used for hard con-
straints, are the spherical- and rectangular-Reliability
Indices (RI) for soft constraints.

4.1 Hyper-Spheres inu-space
The CPV for this type of dilating sets is calculated
by solving a minimum norm problem inu-space. In
particular, the CPV is given by

ũ = argmin
u

‖u− ū‖ :

dim(g)∏
i=1

gi(U
−1(u),d) = 0

.
Definition 9 (Spherical RI). The reliability index
corresponding to the designd for dilating spheres
centered at̄u, called theSpherical Reliability Index,
is defined as

βS(ū, ũ,d)
∆
= ‖ũ− ū‖, (10)

whereg(ū,d) ≤ 0.

If ū = 0, βS is the conventional reliability index
and the CPV is theMost Probable Point. With this
information at hand, a bound to the failure probability
can be derived.

Theorem 1 (Bound toP [F ]: Hyper-Spheres). The
numberψS , given by

ψS = 1− erf(γ) +

√
2

π
e−γ2

f1 (dim(u), βS) , (11)

f1(n, r)
∆
=

n−3
2∏

j=1

h(j)

−1 n−1
2∑

k=1

r2k−1

n−1
2
−k∏

i=1

h(i)

 ,
whendim(u) is an odd number, and by

ψS = e−γ2

f2 (dim(u), βS) , (12)

f2(n, r)
∆
=

n
2
−1∏

j=1

h(j)

−1
n/2∑
k=1

r2(k−1)

n
2
−k∏

i=1

h(i)

 ,
whendim(u) is an even number, is anupper bound
to the failure probabilityP [F ] corresponding to a
hyper-spherical set with designated pointū = 0 and
spherical reliability indexβS . In these expressions,
h(i) = n− 2i andγ = βS/

√
2.

4.2 Hyper-Rectangles inu-space
The developments that follow are an extension of the
ideas presented in Section 3.2. The CPV resulting
from dilating a hyper-rectangle centered atū having
the half-length vectorm is given by

ũ = argmin
u

‖u− ū‖∞m :

dim(g)∏
i

gi(U
−1(u),d) = 0

 .
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An equivalent formulation based on the Q-
Transformation requires Q(u, ū,m) as the
cost function. In this context,q = Q(u, ū,m)
maps hyper-rectangles inu-space proportional to
Ru(ū,m) into hyper-spheres inq-space proportional
to Sq(0,1). For the reminder of this section,Q(u)
refers toQ(u, ū,m).

Definition 10 (Rectangular RI). The reliability in-
dex corresponding to the designd for a dilating
hyper-rectangle with designated pointū and the half-
lengths vectorm, called theRectangular Reliability
Index, is defined as

βR(ū, ũ,d)
∆
=

∥∥∥∥∥Q−1

(
‖q̃‖ 1√
dim(u)

)
− ū

∥∥∥∥∥ , (13)

whereg(ū,d) ≤ 0 and q̃ = Q(ũ).

Theorem 2 (Bound to P [F ]: Hyper-Rectangles).
The numberψR, given by

ψR = 1−
dim(u)∏

i=1

[1 + Φ(ūi − σi)−Φ(ūi + σi)] (14)

is anupper boundto the failure probabilityP [F ] for
a hyper-rectangular set with designated pointū and a
rectangular reliability indexβR. In this expression,Φ
is the cumulative distribution function of a standard
normal variable andσi = βRmi/‖m‖.

Note that as long as the search for the CPV con-
verges to the global minimum, the upper bounds
above are exact and do not require of confidence in-
tervals. A method for approximating failure probabil-
ities that uses both the failure bounds and sampling is
presented next.

4.3 Hybrid Method (HM)
Let ψ be the probability bound associated to the ho-
mothetic setHu(α̃). In this context

P [F ] = ψP
[
g(U−1(u),d) > 0|Hc

u(α̃)
]
. (15)

The conditional probability will be estimated via sam-
pling. Equation 15 requires the generation of samples
outsideHu(α̃). Since this practice avoids sampling
the non-failure region of theu-space inside the ho-
mothet, the accuracy of the approximation is propor-
tional to the reliability index. Ifns is the number of
samples, an approximation to Equation 15 is

P [F ] = ψ

∑ns

i=1ωiI [g(U−1(ui),d) > 0]∑ns

i=1ωi

, (16)

where I, the indicator function, is equal to one if
its argument is true and zero if it is false,ωi > 0 is

a weighting factor andui ∈ Hc
u(α̃) is a conditional

sample.
A rejection-based algorithm for the generation of

these samples is presented next. This algorithm gen-
erates Monte Carlo samples in standard normal space
and rejects those within the homothet. Its implemen-
tation is as follows. Instantiate the counteri to one.

1. Generate a sample of the standard normal space,
namelyû.

2. Hyper-spheres: regard this sample acceptable
if ‖û − ū‖ > βS . Hyper-rectangles: regard the
sample acceptable if‖Q(û)‖ > ‖Q(βR)‖.

3. If û is acceptable, makeui = û and increase the
counteri by one.

4. If i < ns + 1 go to Step 1 and repeat.

An approximation toP [F ] results from using the
samplesui and assumingωi = 0 for all i, in Equation
16. The number of non-acceptable samples generated
is proportional to the size ofHu(α̃). Therefore, the
efficiency of this algorithm diminishes with the value
of the RI, hence with the value ofP [F ]. An alterna-
tive method, well-suited for cases in whichP [F ] is
small, was developed but omitted here due to space
limitations.

5 EXAMPLE
A two-dimensional problem ind and p has been
selected to allow for visualization. The same ex-
ample is considered in (Crespo, Giesy, and Kenny
2006), where additional aspects of the methodology
are exercised. The constraint set isg = [3d2 − 4p2

1 −
4d1p2 sin(p2d1 − p2

1),− sin(p2
1p2 − sin(2p1 − 2))−

d1d2p1 + p2, d1 + p2
1d2− 4p2

2p1− 4 sin(2p1− 2p2),
2(p1 + p2) sin(p2

1 − d2) − 2p1p2(d2 + 2p2
1 − 2) +

d1 − 6p1]
T . The designated point is̄p = [1,1]T . The

boundary of the FDS will be shown in subsequent fig-
ures as a solid line. In this example, soft constraints
are considered. In what follows,̄u = 0 andfp(p) =
fp1(p1)fp2(p2), where fp1(p1) = N(1,0.05) and
fp2(p2) = N(1,0.2). Since the support of this joint
probability density function is not a subset of largest
homothetic set found in (Crespo, Giesy, and Kenny
2006), the usage of soft constraints is justified. This
implies that the RDS is empty and thatP [F ] is non-
zero for all designs. The distribution of− log(P [F ])
for ns = 10000 samples, generated via Monte Carlo
Sampling (MCS), is shown in Figure 1. Figures show-
ing− log(P [F ]) are used to illustrate the behavior of
the approximation when the failure probabilities are
small. The “hole” at the interior of the FDS results
from using a finite number of samples. In the vicin-
ity of this region, the approximation toP [F ] is in-
accurate and very noisy. For a given number of sam-
ples, sampling-based RBDO algorithms are not only

6



unable to discriminate among designs attaining small
failure probabilities, but more importantly, wrongly
identify zero-failure probability solutions. Besides,
reliability assessments resulting from sampling lead
to piece-wise constant functions at every design point
no matter whatn is. Spherical (not shown) and

Figure 1:− log(P [F ]) via MCS forns = 10000.

Figure 2: Rectangular RIs form = [1,1]T .

rectangular (Figure 2) RIs in the FDS were calcu-
lated. Noticeable differences between the two func-
tions are apparent. Locally, either the spherical-RI
or the rectangular-RI can be the largest. Overall, the
maximum rectangular-RI is greater than the maxi-
mum spherical-RI. Failure probabilities bounds for
circular and squared homothets are shown in Figures
3 and 4. Note that in both cases the bounds are smooth
functions. Since (i) the calculation of the bound not
only requires considerably fewer function evaluations
that MCS (about 50 times less for this example), and
(ii) the bound is continuous everywhere in the FDS,

substantial advantages would result from using the
boundψ as an approximation toP [F ]. Locally, either
ψS or ψR can be the smallest bound. The First Order
Reliability Method (FORM) and Second Order Relia-
bility Method generate approximations that also over-
come some of the deficiencies of sampling. The HM

Figure 3:− log(ψS) for hyper-spheres.

Figure 4:− log(ψR) for hyper-rectangles.

is used next. Figures 5 and 6 show− log(P [F ]) for
circular and squared homothets respectively. In both
cases,ns = 2000 samples are used. The approxima-
tion not only inherits the nice features of the bound,
such as its smoothness, but it is also is more accurate
and efficient than MCS. Overall, less than one fourth
of the function evaluations used to generate the MCS
results were used by the HM. As expected, the HM
approximation compares well to the FORM approx-
imation whenP [F ] is small. On the other hand, the
HM outperforms the FORM approximation when the
failure probabilities are not small. For instance, while

7



Figure 5:− log(P [F ]) for circular homothets via HM.

Figure 6:− log(P [F ]) for squared homothets via HM.

the HM leads toP [F ] = 0.623 for d = [−2.2,0.73]T ,
FORM leads toP [F ] = 0.379. The corresponding
MCS approximation, that for this case can be used as
a yardstick, isP [F ] = 0.614. Therefore, the HM com-
pares very well to MCS for not-small failure probabil-
ities values and to FORM for small values.

6 CONCLUSIONS

Strategies for analyzing and implementing hard and
soft constraints in a reliability-based setting are pro-
posed. Emphasis is given to uncertainty models pre-
scribed by hyper-spheres and hyper-rectangles. While
the former geometry can be used to deal with un-
certain parameters of comparable fidelity, the second
one allows for the manipulation of parameters with
different fidelity. The mathematical framework devel-
oped allows the determination of whether it is feasible
or not to satisfy hard constraints. Strategies for im-
plementing hard constraints into design optimization

schemes are proposed. Probabilistic uncertainty mod-
els are used in the implementation of soft constraints.
The methodology permits determination of closed-
form expressions for upper bounds to the failure prob-
ability. A hybrid method for the approximation of
failure probabilities, based on the upper bounds and
conditional sampling, is proposed. Numerical experi-
ments show that this method results in substantial im-
provements in accuracy and efficiency as compared to
alternative methods.
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