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ABSTRACT: This paper proposes a framework for the analysis and design optimization of models subject 1
parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasi:
given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and
sets of componentwise bounded uncertain variables. These models, which often arise in engineering proble
allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constra
must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constrai
can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodolc
allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structu
(i) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparison
of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading t
constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilist
uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently
estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which close
form expressions are derived, along with conditional sampling. In additiof, darmulation for the efficient
manipulation of hyper-rectangular sets is also proposed.

1 INTRODUCTION other handSoft constraint§Acevedo and Pistikopou-

Design under uncertainty arises in numerous discilos 1998; Samsatli et al. 1998; Rustem and Nguyen
plines including engineering, economics, finance and-998; Royset et al. 2001; Crespo and Kenny 2005) are
management. Achieving balance between robustne$gose that are not required to be satisfied for all pos-
and performance is one of the fundamental challengesible realizations of the uncertain parameter. They re-
faced by scientists and engineers. sult fr_om slack de_sig_n_ require_ments, overly large un-
Literature in probabilistic control (Crespo and certainty sets or I|m|t|n_g design structures. Chance-
Kenny 2005), stochastic programming (Kall andconstrained programming (Kall and Wallace 1994),
Wallace 1994) and stochastic approximations (Ersampling-based techniques, asymptotic approxima-
moliev 1983) provide several mathematical tools fortions (Rackwitz 2001) and penalty-based optimiza-
Reliability-Based Design Optimization (RBDO). The tion (Rustem and Nguyen 1998; Kall and Wallace
algorithms at disposal can be classified according td994) are some of the strategies most commonly used
the way they integrate inequality constrainksard  to tackle this problem.
constraints(Darlington et al. 1999) are those that
must be satisfied for all possible realizations of the
uncertain parameter. Strategies to solve the resulting This paper proposes strategies for robustness anal-
semi-infinite optimization problem usually require ysis and RBDO of problems subject to hard and/or
nested searches for the identification of the worstsoft constraints. A unifying mathematical framework
parameter-realization (Darlington et al. 1999). On thes first introduced.
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2 FRAMEWORK represented by the notati@®,(p, m), and defined by
Definition 1 (Uncertainty Model). If p € Rim® js  Ry(p,m) ={p: p; € [p, — m;,p, + m;],1 < i <
an uncertain parameter, itsncertainty modek given ~ dim(p)}. If vector inequalities¢ < b) and vector ab-
by thesupportA,, ¢ Rim(®  and adesignated point sqlute v_alue la|) are understoo_d to hold component-
DEA,. wise, this hyper-rectangle is given Ky : |p — p| <
_ _ . m} wherem > 0.
The uncertainty model is specified by the ana-  anpother reasonable choice for the support set is a

lyst/designer. The intent is that the supportzsgt_be hyper-sphere. The hyper-sphere of radiisentered
chosen so that the actual value of the parametass atp will be denoted ass,(p, R).

somewhere within it. Arealization of the uncertain

parameter is a value of the parameter selected frorefinition 2 (Homothetic Sets). Two sets4 and B

the support set. The designated point, whose sele@e homotheticwith respect to thdvomothetic center

tion is subjective, can be interpreted as the realization at asimilitude ratioof aif B = {b: b= a(a — z) +

that best represents x,a € A}. Such aB is completely determined by, z,
Consider now the situation that a system dependgnda. We use the notatiof = H(A, r, ) to express

on the uncertain parametprc R4™(® and the de- this relationship.

i i dim(d) . Rdim(p)
Egg(\é?f%%?m(egﬁs a sé'? glp Egﬁgttgiﬁ .ftlﬂ%nctioni on B =H(A z a) means thaB3 can be created from
A by forming every vector from the fixed pointto

the system (with the convention that positive valueseach point ofA; stretching or shrinking it by a factor

represent constraint violations). If these are consid-]c o and. with the roots of the stretched or shrunk

ered hard constraints, the system corresponding . : :
given values ofd and A, will be judged acceptable toe%(r)rr:tarl:(lafg(:rg at, collecting all the new endpoints

if g(p,d) <0VpeA,. - -

F(or a)given vectozr79 of constraints and a given For purposes of this paper, two uncertainty mod-
designd, denote the failure (or constraint violation) els \.N'" be callgdproportlonal If they have the same

’ L dim(g) ~ 7 designated point and they are homothetic with re-

setbyF(d,g) = U=, * Fi(d,g) whereFi(d,g) =  gpect to that designated point as homothetic center.
{p: g,(p,d) > 0} is the set ofp-values where con- Thjs means that one of the two support sets can be
straint numbet is violated. In a context wher¢and  formed from the other by expansion or contraction
d are understoodf (d,g) and F;(d, g) will be rep-  py some positive factor, which is the similitude ratio,
resented simply ag” and ;. Using the symbob 1o 4,0yt the common designated point. For instance, the
represent the topological boundary of a set, if the CONKyper-rectangleR.,(p, m) andR,(p, am) are pro-
straint functions are continuous, eggle 0.F; satis- portional sets foap> 0’ P
fiesg,(p,d) = 0 and eaclp € O.F satisfiey,;(p,d) = The notions ofCritical Parameter Value(CPV)
0 for somej *. and Parametric Safety MargifPSM) are now intro-

The manifold0F commonly referred as thémit  duced. For simplicity sake, the presentation of the ma-
state surfaceseparates the parameter space into tweerial will concentrate on the case where the desig-
regions: one where all the constraints are satisfied angated point is in the non-failure region. Intuitively,
one where they are not. For a fixed desiljithe fail-  one imagines that a set proportional to the support
ure regionF either overlaps the support s&,, case set of the uncertainty model is being expanded ho-
in which the desigrd is callednon-robustor 7 and  mothetically with respect to its designated point until
A, are disjoint, case in which the designis called its boundary just touches the failure region. The point
robust In the latter case, the degree of robustness ca@here the expanding set touches the infeasible region
be quantified by measuring the separation between thg the CPV. The PSM is a metric that quantifies the
two sets. size of the set proportional to the support set that has

Selecting the support set usually involves some enthe CPV on its surface. The mathematical background
gineering judgment. One reasonable choice might béor these notions is presented next.
to confine each componentpto a bounded interval. o N o _
This leads to the choice @, as a hyper-rectangle. A I:_)eflnltlon_ 3 (Critical Slmllltyde Ratio). Letd be a
natural choice for the designated pojnis the geo- fixed design and leh,, and p be the support set and
metric center of\,,. If m is the vector of half-lengths ~ designated point of the uncertainty modeofSup-
of the sides of the hyper-rectangle, the rectangle i®0Se thalg : RU™(® x Rim(@) — Rdm() s a set of
constraint functions. The set of expansion/contraction
'The converse is not universally true. We will assume in thisfactors which produce homothets 4f, with respect

paper that the boundary df; is exactly described by the points {5 5 which contain constraint violation points is de-
where that constraint function assumes the value of zero; I'ehoted

0F; ={p: g,(p,d) = 0}. We believe that in a realistic engi-
neering setting, the loss of generality in making this assumption -~

is unimportant. A(p,Ap.d,g) 2 {a >0: Hp(Ap, P, ) ﬂ]—“ £ (Z)} .




The greatest lower bound dff(p, A,. d, g), given by In general, the support set can have any shape

and size. We assume hereafter thgtis a compact
a(p, Ap,d,g) A nf ([l(p, A,, d,g)> (1) set with a designated poipt A general robustness

test is available in (Crespo et al. 2006). Support sets

will be called theCritical Similitude Ratio with hyper-spherical and hyper-rectangular support
geometries are studied next.

Arguments that can be understood from context

will be omitted. 3.1 Hyper-Spheres ip-space

Hyper-spherical supports result from uncertainty

a gven design and e, . andg define e un- o012 Where norm bounded perurbatons fon the

certainty model and the set of inequality constraints.that _ ispthe eometricL:pcenter of thé h er-sp here

Any p € H,(Ap, p,@) on a limit state function, i.e. p 9 yper-spnere.

Ea o o ~" Problems with this class of support sets are the sim-
?égﬁé;jez)rve%g some, will be called theCritical Pa plest since the CPV is calculated by solving a mini-

mum norm problem ip-space. The CPV foA, =
Some properties of the CPV are provided in ref-Sp(p, R) is given by
erence (Crespo, Giesy, and Kenny 2006). Whenever

Definition 4 (Critical Parameter Value). Let d be

A, is compact and thg are continuous functions, . _ dimlg)
the existence of a CPV is guaranteed. Note also that? = argmin < [lp—pl|: [] gx(p.d)=07. (2)
the CPV might not be a realization of the uncertain P k=1

parameter, i.ep might not belong ta\,,. . i .
Formal definitions of the PSM for hyper-spherical D€finition 6 (Spherical PSM). The Spherical Para-

and hyper-rectangular supports are provided in Secneétric Safety Margircorresponding to the desigs
tion 3, as are expressions for the calculation of thesf" Ap = Sp(P, 1?) is defined as

PSMs. In general, the PSM is a measure of the ro- o o

bustness of the desighto uncertainty inp that will ps(p:p.d) = ||p— Dl 3)
assume non-negative values in theasible Design . . _
SpacgFDS). The FDS is the set of designs satisfyingy\’hereél9 Is the c]f)rrﬁspondlng _CPVdanﬂ, the de_s]:_
all the constraints at the designated point. The PSI\hgn_at; <p0|r£ N the un_cqr;%amty omain, satisfies
is proportional to the degree of resiliencedfo un- ~ 9(P:d) < 0. Note thaips = a k.

certainty inp. If the PSM assumes the value of zero,| emma 1 (P-Test). Let g < 0 describe a set of in-

there is no resilience since at least one of the congquality constraints and\, = Sp(p, R) be the sup-

straints is active fop, i.e. there exists an infinites- port of the uncertain parametes. The designd is
imally small perturbation fronp leading to a con- ropust if and only ifos > R.

straint violation. Negative PSM values are attained by

designs outside the FDS. On the other hand, the PSM The exact boundary of the RDS corresponding to
is infinite wheng is insensitive top. In general, the @ hyper-spherical support set is confined by an iso-
PSM is uniquely specified by the design paihtthe sphericaI-PSM manifold, i.e. su;face in the design
support set\,,, the designated poim, the constraint space prescribed hys = c wherec is a constant.
functionsg, and the critical similitude ratia.

A
= |

3.2 Hyper-Rectangles ip-space

When the components of the uncertain parameter are
independently bounded the support set is a hyper-
rectangle. Note that this geometry allows for the ma-
nipulation of uncertain parameters having different fi-
In this paperfobustnessefers to the ability of a delities. If p is the geometric center of the set, such

given design to satisfy the design requirements pred Nyper-rectangle i®,(p,m). A robustness test for
scribed ing < 0 given an uncertain model fgs. In this geometry is introduced subsequently. The mathe-

principle, such requirements can be enforced by ejfatical background for this is presented next.
ther hard and soft constraints. Developments for th@yefinition 7 (Q-Transformation). Let Ap =

former type are presented next. Rp(p,m) be the support of the uncertain pa-
rameter p. The Q-Transformation denoted as

= ,p,m), and given b
Problem Statement:evaluate whether the desighs q=0Qp.p.,m) g y
robust for the support sét,, and the hard constraint B A max{|k|}k
9(p.d) <0. ’ Qlp.pym) = == @)

Definition 5 (Robust Design Space).The Robust
Design SpacéRDS) is the set of desigikfor which
g(p,d) < 0 for all realizations ofp. Each member of
this set is called aobust design
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where by discontinuities in the gradient of the Q transforma-
k = diag{m} ' (p —p), tion.

transformsAn into a unit hvper-sohere im-space _Recall that_the ir_lfinity norm in a finite dimen-
p! unit hyper-sp q-SPaCe.  sjonal space is defined dsc||* = sup,{|x;|}. Let

The inverse transformationp = Q~'(q,p,m), IS s define them-scaled infinity norm as|z||> =

given by sup,{|z;| /m;}. A distance between the vectaesand
y can be defined asxr — y||2. Using this distance,
Q '(q,p,m)=p+ diag{m}M‘ (5) the unitball centered giis justR(p, m).
max{|ql} The problem of finding, for a fixed desig# the

. CPV for the vectorg(p,d) of constraint functions
The Q-Transformation maps hyper-rectangles prognd the uncertainty model with designated pgitve-
portional to Rp,(p,m) into hyper-spheres propor- comes the problem of finding a vectprof minimal
tional to S,4(0,1). The connectivity of the uncer- gistance in thign-scaled infinity norm fromp such
tainty set is preserved by the transformation. Noticgnatp touches the failure set. This can be expressed in

however, tha_t differen_tiable functions @Rspace are  the form of a constrained optimization problem
transformed into functions agrspace which can have

derivative discontinuities at points corresponding to p =argmin{||p — pl|o : p € OF}
p-space points where the faces of the homothets meet. p
The notation(p) will be used when the arguments Thjs optimization problem is restated@as- p, where
p andm are understood by context.
The Q-Transformation allows identification of the i = argmin{]\ﬁj —-plxt, (8)
corresponding CPV by solving the following mini- J
mum norm problem imy-space p, = argmin {||p — p|35 : p € OF;}. 9)
p
3 _ dim(g) Thatis, the CPV problem is solved for each individual
p=argmin || Q(p)| : H 9. (p,d) =0,. (6)  constraint function, and the answer is selected which
P k=1 is closest to the designated point in thescaled in-
o finity norm. It should be pointed out that, in the pre-
Definition 8 (Rectangular PSM). The Rectangular  ceding discussion, if thex-scaled infinity norm is re-
Parametric Safety Margioorresponding to the de- placed by the standard Euclidean norm, what results

signd for A, = Rp(p,m), is defined as is a formulation of the CPV calculation for spherical
uncertainty domains.
pr(p,p,m,d) S |Q@)||m],  (7)  Assuming that g(p,d) < 0 and OF; =
{p:9,(p,d) =0}, the problem in Equation (9)
whereg(p,d) < 0. can be formulated as

H,(R, P, @) is tightly bounded by an hyper-sphere p; = argmin{||p — pl;, : g;(p,d) = 0}.
of radius equal tp centered ap. P

_ _ Rewriting this using the definition of thea-scaled

equality constraints, andp = R, (p, m) be the sup-
port of the uncertain parameter. The desidns ro- .

: : .= argmin< max P = pil (p,d)=0
bust if and only ifpr > ||m]]. p; = gp X m, i) =0

The CPVs in Equations 2 and 6 gpevalues, not The “max” can be eliminated and the objective func-
necessarily realizations iy, on the intersection be-  tion made differentiable by introducing the similitude
tween the surface of the homothetic set and the failureatio o defined before
region. As before, the exact boundary of the RDS for ‘
hyper-rectangular support sets is prescribed by an isd®;: @;) = argmin{a : g;(p,d) =0, [p; — pi| < am;},
rectangular-PSM manifold. Relevant aspects related P
to the existence of the RDS are considered in (Crewhere1 < i < dim(p). The non-differentiabilities

spo, Giesy, and Kenny 2006). in the objective functions can be eliminated and
o . the problem turned into an “inequality constraint
3.2.1 Infinity Norm Formulation only” optimization problem which is more “optimizer

An alternate way to search for the CPV for hyper-friendly” by changing the constraint gy, from = to
rectangular supports is presented here. This formu> (assuming that the constraint functiogsre con-
lation allows us to circumvent the problems causedinuous) since the optimum must occur @#.
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4 SOFT CONSTRAINTS 4.1 Hyper-Spheres im-space

The CPV for this type of dilating sets is calculated
Up to this point, only hard constraints have been conpy solving a minimum norm problem ia-space. In
sidered. In practice, there might be cases in whiclparticular, the CPV is given by
the design architecture, i.e., the form in whiglde-

pends ond, or the size of the support set, lead to dim(g)
an empty RDS. In such cases, soft constraints allow, = argmin |w —ul : 9;,(U (u),d) =0
for the search of designs that minimize the severity u paie}

of the constraint violation. Deterministic (Rustem and
Nguyen 1998) and probabilistic (Royset, Kiureghian,pefinition 9 (Spherical RI). The reliability index
and Polak 2001; Crespo and Kenny 2005) approachesorresponding to the desigd for dilating spheres

can be used to tackle problems where partial feacentered atiz, called theSpherical Reliability Index
sibility is satisfactory. Non-probabilistic uncertainty js defined as

models have been used thus far. This has been the

case since the enforcement of hard constraint makes Y N

the probabilistic information inconsequential. In what fs(a,,d) = [ —al, (10)

follows, probabilistic uncertainty models are used. Awhereg(u,d) < 0.

probabilistic uncertainty model is fully prescribed by

a joint probability density function gp, denoted by If w = 0, Gs is the conventional reliability index

fp(p), supported im\,,. and the CPV is théMost Probable PointWith this

information at hand, a bound to the failure probability

Strategies for the efficient solution of RBDO prob- can be derived.

lems that involve the estimation of the failure prob-

ability P[F(d,g)] are studied in this section. Notice Theorem 1 (Bound to P[F]: Hyper-Spheres). The

that if the probability of constraint violation can be numberys, given by

eliminated, the tools for hard constraints must be used 5

instead. The implementation of soft constraints must B 2 .

be preceded by determining that the RDS is an empty Vs =1—erf(y) + \/;6 " fi(dim(u), ), (11)

set. Failure to recognize this will lead to ineffective

numerical implementations. !

n—1

2

n—3 n—l_k
2 2
A . 2k—1 .
I . . = h h
By definition, the homothetic sets corresponding filn.m) Hl (7) kz_; " 11 @1
to the critical similitude ratio are fully contained in = - =

the non-failure region. If a probabilistic uncertainty whendim () is an odd number, and by
model for p is available, the probability of being

within such a set can be quantified. Obviously, this s = e fo (dim(u), 8s) (12)

probability depends, among several other factors, on

the geometry of the support set. In order to maximize - s 0

the probability of being within such a homothet, ex- A3 , < e ,

pansions/contractions in the standard normal space fa(n,r) = H h(7) Z ray H h(i)]
=1

are desirable. The reader can refer to (Rackwitz 2001) J=1 k=1
for a review on the transformation fromtspace tau- ] _ _
space. We will use. = U (p) to refer to the probabil- Whendim(u) is an even number, is ampper bound

ity preserving transformation. Most of the conceptstO the failure probability P[F] corresponding to a
introduced earlier can be naturally extended to thid\yPer-spherical set with designated point= 0 and
setting with one notable exception. Since the transSPherical reliability indexgs. In these expressions,
formation of the support sek, covers the entirei-  h(i) =n — 2i andy = 3s/v/2.

space, the concept of proportionality between the ho-

mothets and the support set is no longer attainableét.2 Hyper-Rectangles im-space

This gives us the freedom to select dilating sets of arThe developments that follow are an extension of the
bitrary geometry inu-space. As before, we will con- ideas presented in Section 3.2. The CPV resulting
centrate on hyper-spherical and hyper-rectangular gdrom dilating a hyper-rectangle centeredwahaving
ometries. We will denote witlx the designated point the half-length vectorn is given by

in standard normal space. Analogous to the spheri-

cal and rectangular PSMs concepts used for hard con- dim(g)

straints, are the spherical- and rectangular-Reliabilitys = argmin < [|u — @0 : H g;,(U  (u),d)=0
Indices (RI) for soft constraints. u ;



An equivalent formulation based on the Q-a weighting factor and:; € HS (&) is a conditional
Transformation requires Q(u,u,m) as the sample.

cost function. In this contextg = Q(u,u,m) A rejection-based algorithm for the generation of
maps hyper-rectangles im-space proportional to these samples is presented next. This algorithm gen-
R.(u, m) into hyper-spheres ig-space proportional erates Monte Carlo samples in standard normal space
to S4(0,1). For the reminder of this sectiod)(w)  and rejects those within the homothet. Its implemen-

refers toQ(u, u, m). tation is as follows. Instantiate the countéo one.
Definition 10 (Rectangular RI). The reliability in- 1. Generate a sample of the standard normal space,
dex corresponding to the desigh for a dilating namelya.

hyper-rectangle with designated pomiand the half- 5 pyner.spheresregard this sample acceptable
Iength_s vectonn, called theRectangular Reliability if & — u| > Bs. Hyper-rectanglesregard the
Index is defined as sample acceptable [ifQ ()| > ||Q(5r)]|-

3. If uis acceptable, make; = u and increase the

A
= , (13) counter; by one.

ﬁ'R(’a’v ,&’a d)

= ( la| 1 ) 4
dim(u)
B ) ) 4. Ifi <ns+ 1goto Step 1 and repeat.
whereg(u, d) < 0 andq = Q(w). An approximation toP[F] results from using the
Theorem 2 (Bound to P[F]: Hyper-Rectangles). samplesu; and assuming; = 0 for all 4, in Equation

The number)x, given by 16. The number of non-acceptable samples generated
is proportional to the size dof{,(&). Therefore, the
dim(w) efficiency of this algorithm diminishes with the value
Yr=1-— H 1+ ®(w; —0;) — P(u; +0;)] (14) of the RI, hence with the value d?[F]. An alterna-
=1 tive method, well-suited for cases in whi@h.F] is

) , - small, was developed but omitted here due to space
is anupper boundo the failure probability?[F] for  |imitations.

a hyper-rectangular set with designated painand a
rectangular reliability indexsz. In this expressionp 5 ExAMPLE
is the cumulative distribution function of a standard 5 ,0-dimensional problem ind and p has been

normal variable andr; = frm;/||m]. selected to allow for visualization. The same ex-

Note that as long as the search for the CPV con@Mple is considered in (Crespo, Giesy, and Kenny
verges to the global minimum, the upper bounds2006), where additional aspects of the methgdology
above are exact and do not require of confidence in@'e exercised. The constraint seyis- [3d, — 4py —
tervals. A method for approximating failure probabil- 4d1Ps sin(pydi — py), —sin(pyp, — sin(2p, —2)) -
ities that uses both the failure bounds and sampling i§1d2P1 + Py, d1 + pidz — 4p5p; — 4sin(2p, — 2p,),

presented next. 2(py + py)sin(p} — da) — 2p;py(ds + 2p7 — 2) +
d, — 6p,]’. The designated point jg = [1,1]7. The
4.3 Hybrid Method (HM) boundary of the FDS will be shown in subsequent fig-

ures as a solid line. In this example, soft constraints
are considered. In what follows, = 0 and f,(p) =
L;plgpl;fngzvva),ovg;lege fpl(zal) =N (1,0.1952]_ and
_ 1 c(x »2(p2) = N(1,0.2). Since the support of this joint

PIF]= 9P [g(U™ (w),d) > 0y (@)] . (15) probability density function is not a subset of largest
The conditional probability will be estimated via sam- homothetic set found in (Crespo, Giesy, and Kenny
pling. Equation 15 requires the generation of sample€006), the usage of soft constraints is justified. This
outside,,(&). Since this practice avoids sampling implies that the RDS is empty and th&{F] is non-
the non-failure region of thes-space inside the ho- zero for all designs. The distribution eflog(P[F])
mothet, the accuracy of the approximation is proporfor n, = 10000 samples, generated via Monte Carlo
tional to the reliability index. Ifn, is the number of Sampling (MCS), is shown in Figure 1. Figures show-

Let ¢» be the probability bound associated to the ho
mothetic set,(&). In this context

samples, an approximation to Equation 15 is ing —log(P[F]) are used to illustrate the behavior of
the approximation when the failure probabilities are

PLE] — Yo wiZ [g(U N w;),d) > 0] 16 small. The “hole” at the interior of the FDS results
F1=4 (16) from using a finite number of samples. In the vicin-

W ’ . . : O o
it ity of this region, the approximation t&[F] is in-
where Z, the indicator function, is equal to one if accurate and very noisy. For a given number of sam-
its argument is true and zero if it is false; > 0 is  ples, sampling-based RBDO algorithms are not only



unable to discriminate among designs attaining smaksubstantial advantages would result from using the
failure probabilities, but more importantly, wrongly bound: as an approximation t&[F]|. Locally, either
identify zero-failure probability solutions. Besides, s or ¢z can be the smallest bound. The First Order
reliability assessments resulting from sampling leadReliability Method (FORM) and Second Order Relia-
to piece-wise constant functions at every design poinbility Method generate approximations that also over-
no matter whatn is. Spherical (not shown) and come some of the deficiencies of sampling. The HM

!
-4 -3 -2 -1 0 1 2 3 4 5 -4 -3 -2 -1 o 1 2 3 4 5

Figure 1:—log(P[F]) via MCS forn, = 10000. Figure 3:—log(vs) for hyper-spheres.

-4 -3 -2 -1 o 1 2 3 4 5 -3 -2 -1 o 1 2 3 4 5

1 1

Figure 2: Rectangular Ris fon = [1,1]7. Figure 4:—log(v¢r) for hyper-rectangles.

rectangular (Figure 2) RIs in the FDS were calcu-is used next. Figures 5 and 6 shewog(P[F]) for
lated. Noticeable differences between the two func<¢ircular and squared homothets respectively. In both
tions are apparent. Locally, either the spherical-Rlcasesy, = 2000 samples are used. The approxima-
or the rectangular-RI can be the largest. Overall, theion not only inherits the nice features of the bound,
maximum rectangular-RI is greater than the maxi-such as its smoothness, but it is also is more accurate
mum spherical-RI. Failure probabilities bounds forand efficient than MCS. Overall, less than one fourth
circular and squared homothets are shown in Figuresf the function evaluations used to generate the MCS
3 and 4. Note that in both cases the bounds are smootlsults were used by the HM. As expected, the HM
functions. Since (i) the calculation of the bound notapproximation compares well to the FORM approx-
only requires considerably fewer function evaluationamation whenP|[F] is small. On the other hand, the
that MCS (about 50 times less for this example), andHM outperforms the FORM approximation when the
(ii) the bound is continuous everywhere in the FDS failure probabilities are not small. For instance, while
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schemes are proposed. Probabilistic uncertainty mod-
els are used in the implementation of soft constraints.
The methodology permits determination of closed-
form expressions for upper bounds to the failure prob-
ability. A hybrid method for the approximation of
failure probabilities, based on the upper bounds and
conditional sampling, is proposed. Numerical experi-
ments show that this method results in substantial im-
provements in accuracy and efficiency as compared to

-4 -3 -2 -1 1} 1 2 3 4 5

4

Figure 5:—log(P[F]) for circular homothets via HM.

s . . . . . . .
-4 -3 -2 -1 i 1 2 3 4 5
dl

Figure 6:— log(P[F]) for squared homothets via HM.

the HM leads taP[F] = 0.623 for d = [—2.2,0.73],
FORM leads toP[F] = 0.379. The corresponding
MCS approximation, that for this case can be used as
ayardstick, isP[F]| = 0.614. Therefore, the HM com-
pares very well to MCS for not-small failure probabil-
ities values and to FORM for small values.

6 CONCLUSIONS

Strategies for analyzing and implementing hard and
soft constraints in a reliability-based setting are pro-
posed. Emphasis is given to uncertainty models pre-
scribed by hyper-spheres and hyper-rectangles. While
the former geometry can be used to deal with un-
certain parameters of comparable fidelity, the second
one allows for the manipulation of parameters with
different fidelity. The mathematical framework devel-
oped allows the determination of whether it is feasible
or not to satisfy hard constraints. Strategies for im-
plementing hard constraints into design optimization

8

G alternative methods.
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