FINAL REPORT

Submitted to
National Aeronautics and Space Administration

Research Performed under Cooperative Agreement NCC-1-03010
April 2003 – March 2006

By

Investigator: PI: Dr. Malathy Devi Venkataraman
Department of Physics
The College of William and Mary
Williamsburg, Virginia 23187-8795
Telephone: (757) 221-3531/(757)-864-5521
e mail: m.d.venkataraman@larc.nasa.gov

Cc: LaRC Grants Officer
LaRC Technical Officer
LaRC Patent Office
NASA Center for AeroSpace Information
Title: High Resolution Spectroscopy to Support Atmospheric Measurements

The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H₂O (water vapor), O₃ (ozone), HCN (hydrogen cyanide), CH₄ (methane), NO₂ (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier transform spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary [1]. The results from these studies made significant improvements in the line positions and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO, CΗ₄, and H₂O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (High resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

The research conducted during the period 2003-2006 has resulted in the following publications. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States and abroad.

Brief descriptions of the various projects:

1. CH₄ (methane): Methane is a molecule of importance to atmospheric studies. Due to the high methane abundance (~1.6 ppmv) in the atmosphere, even lines belonging to isotopic methane (such as ¹³CH₄ and ¹²CH₃D) contribute significant absorption in many regions of atmospheric spectra. Accurate measurements of spectroscopic parameters such as pressure-broadening coefficients, pressure-induced line-shift coefficients, line mixing coefficients and their temperature dependence are needed for accurate simulations of methane features in atmospheric spectra.

 Pressure broadening coefficients of ¹²CH₄, ¹³CH₄ and ¹²CH₃D molecules in several spectral regions including the fundamental, combination and overtone bands have been determined using spectra recorded with FTS instruments.

 Accurate laboratory measurements of positions, intensities, pressure broadening and pressure induced shift coefficients of CH₃D lines are crucial for quantitative analysis (e.g., determination of CH₃D abundance and D/H ratio) of the spectral signatures of this molecule observed in the terrestrial and planetary atmospheres. The multispectrum fitting technique capable of interpreting the line mixing effects have successfully been applied in the analyses of the triad region (ν₃, ν₅ and ν₆ bands) of ¹²CH₃D in the 6-10μm spectral region.

 The analyses of methane spectra recorded at 0.011 cm⁻¹ resolution in the following MOPITT (Measurements Of Pollution In The Troposphere) spectral regions: 4265-4305 cm⁻¹ (the MOPITT CO channel) and 4350-4500 cm⁻¹ (the MOPITT CH₄ channel) have been completed and the results are reported in two Journal articles. These two spectral channels are part of the crowded methane "octad region" containing eight overtone and combination bands. These spectra were recorded using the MaMath-Pierce FTS. Using the multispectrum fitting technique we have measured accurate line intensities, self- and air-broadened half width and pressure shift coefficients for more than 1000 methane transitions.

 The analysis of the Q branch of the ν₄ band of methane was begun. The analysis is not yet
methane was begun. The analysis is not yet completed, but still in progress. However, an oral presentation of the work done was given at the 60th Ohio State University International Symposium on Molecular Spectroscopy, held in June 2005.

2. NO₂:
Nitrogen dioxide (NO₂) is an atmospheric pollutant involved in the production and destruction of ozone. Produced by oxidation of NO, it is the main source of ozone in the troposphere and a precursor of nitric acid. Atmospheric NO₂ is continually monitored to determine its global distribution and sources and sinks in the atmosphere. In order to perform systematic measurements via spectroscopic remote sensing techniques at wavelengths ranging from the microwave through the infrared to the ultraviolet accurate and complete knowledge of NO₂ spectroscopy is required. We recorded several spectra of NO₂ and NO₂ broadened with air at various temperatures and measured line positions, air broadened widths and shift coefficients and their temperature dependences. The HITRAN database was updated with a new line list based upon our measurements.

3. H₂O (water): Water vapor plays a crucial role in atmospheric chemistry. Many remote sensing experiments utilize the pure rotation and vibration-rotation bands of water vapor for soundings of H₂O in the Earth's atmosphere. Using our heatable multipass absorption cell, we have recorded 'hot' water spectra to determine the variation of the width and shift coefficients of water vapor lines (broadened with foreign gases such as air) in the ν₂ fundamental band near the 6-μm spectral region.

4. CO (carbon monoxide): Given the increasing level of sophistication in remote sensing instrumentation, there is a need for accurate spectroscopic data relevant to planetary atmospheres such as Jupiter. Compared to the large number of papers published on line parameters in pure CO, there are relatively very few studies on measurements of broadening and pressure-induced shifts in CO perturbed by H₂ (hydrogen). From analyzing high resolution room temperature laboratory absorption spectra values for self-broadened and hydrogen broadened Lorentz width coefficients and self- and hydrogen pressure-induced shift coefficients have been measured for a number of
transitions in the 2←0 band of 12C16O. These studies also enabled us to verify that our measurement
and analysis techniques gave results consistent with those of other spectroscopic laboratories.

5. HCN (hydrogen cyanide).

Air- and N$_2$-broadening, air- and N$_2$-pressure-induced shift coefficients and the temperature
dependence exponent of the broadening coefficients and the temperature dependent coefficient of
pressure-induced shifts have been determined for transitions of the v$_1$ band of H12C14N from 39
laboratory absorption spectra recorded at 0.005 and 0.008–cm$^{-1}$ resolutions with two different
Fourier transform spectrometers. The parameters were retrieved from the multispectrum nonlinear
least squares fits to the 3200– to 3400– cm$^{-1}$ region of spectra recorded at temperatures between
+260C and −600C. Line parameters for N$_2$ broadening were determined by fitting 27 spectra
simultaneously while air-broadening parameters were quantified from simultaneous fits to 22
spectra. Similar measurements with air as the broadening gas were performed in the v$_2$ and 2 v$_2$
bands of HCN.

In addition to above specific tasks, studies on other molecules were also performed.

Several Journal publications have resulted from analyses of the spectra of these molecules during the
funding period. The following list provides the activities carried out in 2003-2004, 2004-2005 and
2005-2006, respectively.

Publications and presentations in 2003-2004:

Journal Publications:

multispectrum analysis of the v$_1$ band of H12C14N. I. Intensities, self-broadening and self-

List of Conference presentations:

Publications and presentations in 2004-2005:

Journal publications:

List of Conference presentations:

Publications and presentations in 2005-2006:

Journal publications

Multispectrum analysis of 12CH$_4$ from 4100 to 4635 cm$^{-1}$: I. Self-broadening coefficients (Widths and shifts), J. Mol. Spectrosc. 232 (2005) 231-246,

List of Conference presentations:

1. Line widths and shifts in the 1\leftrightarrow0 band of 12C16O broadened by helium at temperatures between ~80 and 297 K, A.W. Mantz, V. Malathy Devi, D. Chris Benner, M.A.H. Smith, A. Predoi-Cross, M. Dulick, paper presented at the 60th Ohio State University International Symposium on Molecular Spectroscopy, June 20-24, 2005, paper **TE02**.

5. Line shapes in the Q branch of the v$_4$ band of methane, D. Chris Benner, V. Malathy Devi, M. A.
