GLOBAL REFERENCE ATMOSPHERIC MODELS, INCLUDING THERMOSPHERES, FOR MARS, VENUS AND EARTH

Hilary L. Justh(1), C. G. Justus(2), Vernon W. Keller(1)

(1)NASA Marshall Space Flight Center, EV13, Marshall Space Flight Center, AL 35812 (USA), Hilary.L.Justh@nasa.gov, Vernon.Keller@nasa.gov
(2)Morgan Research Corporation, 4811-A Bradford Drive, Huntsville, AL 35805-1948 (USA), Jere.Justus@nasa.gov

ABSTRACT

Marshall Space Flight Center’s Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter during its aerobraking in Mars’ thermosphere. Venus-GRAM is based on the COSPAR Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.
GLOBAL REFERENCE ATMOSPHERIC MODELS, INCLUDING THERMOSPHERES, FOR MARS, VENUS AND EARTH

Hilary L. Justh
NASA, Marshall Space Flight Center, AL, 35812

C. G. Justus
Morgan Research Corporation, Huntsville, AL, 35805-1948

and

Vernon W. Keller
NASA, Marshall Space Flight Center, AL, 35812

Marshall Space Flight Center’s Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars’ thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.

I. Introduction

Marshall Space Flight Center’s Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other Solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. The thermosphere section of Mars-GRAM is based on output data sets from the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. For Venus-GRAM, the thermospheric section has been extended to higher altitudes by using a simple constant-temperature, diffusive separation model. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter (MSIS) Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model.

1 Flight Vehicle Atmospheric Environments, Natural Environments Branch, EV13.
2 Senior Principal Scientist, Natural Environments Branch, EV13/Morgan Research Corporation, Senior Member.
3 Flight Vehicle Atmospheric Environments, Natural Environments Branch, EV13, Member.

American Institute of Aeronautics and Astronautics
As illustrated by Fig. 1, thermospheric densities for Venus, Earth, and Mars are quite similar, compared to thermospheric densities for other planets, exemplified by Titan and Neptune profiles in this figure.

Preliminary results are presented, comparing Mars-GRAM thermospheric densities with accelerometer-measured density from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars' thermosphere. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.

II. Mars-GRAM Thermosphere

A major application for the thermospheric part of Mars-GRAM has been in support of aerobraking planning and operations at Mars. Aerobraking involves multi-orbit passes through the atmosphere, using density-drag to gradually circularize a high-eccentricity (captured) orbit into a more circular operations (science) orbit. This contrasts with aerocapture, which uses a single drag pass through the atmosphere to get into a captured orbit from interplanetary transfer orbit. Typical altitudes and atmospheric densities for aerobraking and aerocapture at Mars, or other destinations, are shown in Fig. 1.

Mars Reconnaissance Orbiter (MRO) is currently performing aerobraking operations at Mars. Figure 2 shows preliminary results comparing Mars-GRAM density with MRO accelerometer-derived density. A height offset of +5 km was used for Mars-GRAM. The range of altitudes and latitudes encountered during this observation period are given in the figure labels. Since MRO is in a Sun-synchronous orbit, each periapsis pass occurs at the same local time, but at a different longitude. The large observed orbit-to-orbit variation in periapsis density (about 21% standard deviation in Fig. 2) is due to longitude-and-altitude-varying waves near periapsis (a possible combination of stationary or traveling planetary-scale waves plus local, large-scale gravity waves). Mars-GRAM values used for the ratios in Fig. 2 are for the mean atmosphere only (not including wave-perturbation effects).
III. Venus-GRAM Thermosphere

Below 250 km altitude, Venus-GRAM is based on the Venus International Reference Atmosphere (VIRA) model. The Venus-GRAM thermosphere has been extended to an altitude of 1000 km, by a model based on the following assumptions:

- VIRA conditions and constituents at 250 km are used as lower boundary values
- Constant (exospheric) temperature is assumed above 250 km (exospheric temperature = local VIRA temperature at 250 km)
- Hydrostatic conditions are computed separately for each constituent (diffusive separation)
- Total pressure is computed from constituent partial pressures
- Mass density is computed from constituent number densities

Figure 3 shows a plot of typical Venus-GRAM exospheric temperature versus time of day, together with altitude-time contours of Venus-GRAM thermospheric density. As expected, exospheric temperature is highest (about 300 K) for a few hours on either side of solar noon. Normally, hydrostatic conditions mean that densities at high altitudes are larger for higher exospheric temperatures (density increases as the entire atmospheric column expands, because of larger temperatures). However, Fig. 3 shows that, above about 300 km altitude, density is at a relative minimum near solar noon, despite the higher values of exospheric temperature at this time of day. This apparent anomaly can be explained from information in Fig. 4 and Fig. 5, which show (respectively) contours of mean molecular weight (M) and density scale height (H) versus altitude and local time. H is proportional to T / M, where T is temperature. Higher exospheric temperature near noon (Fig. 3) would tend to make H larger near this time of day. However, higher values of M near noon (Fig. 4) would tend to make H smaller near this time of day. For conditions of Fig. 3 - Fig. 5, the M effect dominates, making H smaller near noon (Fig. 5). Since density varies with altitude z as \(\text{Exp}(-z/H) \), smaller H near noon means that density falls off more rapidly near noon than in morning or afternoon. Hence smaller density values are seen near noon above about 300 km in Fig. 3.

IV. Earth-GRAM Thermosphere

The thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. For an anticipated release in late 2006, Earth-GRAM has been revised, to including an updated version of MET, plus an option to use the Naval Research
Laboratory Mass Spectrometer Incoherent Scatter (MSIS) Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model.

A sample comparison of MET and MSIS density values is given in Fig. 6, which plots contours of MET/MSIS ratio versus altitude and latitude for January at 13 hours local time, for solar activity conditions given in the figure caption. Figure 6 shows MET/MSIS density ratios near 1, except at high northern (winter) latitudes greater than about 60 degrees, and altitudes either above about 600 km or below about 150 km.

Acknowledgments

The authors gratefully acknowledge support from MSFC's In-Space Propulsion (ISP) program and the NASA Engineering Safety Center (NE&SC). Particular thanks go to Bonnie James (MSFC), Manager of Aerocapture Technology, Michelle Munk (MSFC), Lead Systems Engineer for Aerocapture Technology, and Melody Herrmann (MSFC), Manager of Technology Planning and Systems Analysis.

References

Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth

Hilary L. Justh¹, C. G. Justus², and Vernon W. Keller¹

¹Natural Environments Branch, EV13
NASA Marshall Space Flight Center

²Morgan Research Corporation
NASA Marshall Space Flight Center

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21-24 August 2006, Keystone, CO
GRAM Models

- The Global Reference Atmospheric Model (GRAM) series are engineering-oriented planetary atmospheric models
- Marshall Space Flight Center’s Natural Environments Branch has developed GRAMs for:
 - Earth
 - Mars
 - Venus
 - Neptune
 - Titan
Aerobraking and Aerocapture

• Aerobraking
 – Involves multi-orbit passes through the atmosphere, using density-drag to gradually circularize a high-eccentricity (captured) orbit into a more circular operations (science) orbit

• Aerocapture
 – Uses a single drag pass through the atmosphere to get into a captured orbit from interplanetary transfer orbit
Atmospheric Density Comparison

Typical altitudes and atmospheric densities for aerobraking and aerocapture

![Graph showing atmospheric density comparison between Earth, Neptune, Titan, Mars, and Venus. The graph plots density (kg/m³) against height (km) with logarithmic scales for both axes. The graph includes lines for aerobraking and aerocapture densities.]
Mars-GRAM 2005

- Mars-GRAM has been widely used for engineering applications including:
 - Systems design
 - Performance analysis
 - Operations planning for aerobraking, entry descent and landing, and aerocapture

- Thermosphere section of Mars-GRAM is based on output data sets from the University of Michigan Mars Thermospheric General Circulation Model (MTGCM)
Mars-GRAM vs. MRO Accelerometer-Derived Density

Mars-GRAM Height Offset = +5 km
Latitude Range = 71.4° S to 77.3° S
Height Range = 108.0 to 103.2 km

Mean Ratio = 1.09
Std. Dev. = 0.23
Venus-GRAM Thermosphere

- Below 250 km altitude, Venus-GRAM is based on the Venus International Reference Atmosphere (VIRA) model.
- The Venus-GRAM thermosphere has been extended to an altitude of 1000 km, by a model based on the following assumptions:
 - VIRA conditions and constituents at 250 km are used as lower boundary values
 - Constant (exospheric) temperature is assumed above 250 km (exospheric temperature = local VIRA temperature at 250 km)
 - Hydrostatic conditions are computed separately for each constituent (diffusive separation)
 - Total pressure is computed from constituent partial pressures
 - Mass density is computed from constituent number densities
Venus-GRAM Thermosphere Model

- Exospheric temperature is highest (about 300K) for a few hours on either side of solar noon
- Normally, hydrostatic conditions mean that densities at high altitudes are larger for higher exospheric temperatures
 - density increases as the entire atmospheric column expands, because of larger temperatures
- Above about 300 km altitude, density is at a relative minimum near solar noon, despite the higher values of exospheric temperature at this time of day
Venus-GRAM Thermosphere Model

- Anomaly can be explained by examining the relationship between the mean molecular weight (M) and density scale height (H) versus altitude and local time
- H is proportional to T / M, where T is temperature
- Higher exospheric temperature near noon would tend to make H larger near this time of day
- Higher values of M near noon would tend to make H smaller near this time of day
Venus-GRAM Thermosphere Model

- For conditions of Ls=0, Lat=0, the M effect dominates, making H smaller near noon as shown in this slide.
- Density varies with altitude z as \(\text{Exp}(-z/H) \)
 - smaller H near noon means that density falls off more rapidly near noon than in morning or afternoon.
- Thus, above about 300 km altitude, density is at a relative minimum near solar noon as shown in Slide 8.
Earth-GRAM 2006

- Thermosphere in past versions of Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model
- Earth-GRAM 2006 has been revised
 - Includes an updated version of MET
 - Option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter (MSIS) Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model.
Comparison of MET and MSIS density values

Mon=Jan LST=13hr Dens(MET/MSIS)
F10.7=AvgF10.7=230 ap=7