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Relative Attitude Determination
of Earth Orbiting Formations
Using Global Positioning System Receivers
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Satellite formation missions require the precise determination of both the position and
attitude of multiple vehicles to achieve the desired objectives. In order to support the
mission requirements for these applications, it is necessary to develop techniques for rep-
resenting and controlling the attitude of formations of vehicles. A generalized method for
representing the attitude of a formation of vehicles has been developed. The representation
may be applied to both absolute and relative formation attitude control problems. The
technique is able to accommodate formations of arbitrarily large number of vehicles.

To demonstrate the formation attitude problem, the method is applied to the attitude
determination of a simple leader-follower along-track orbit formation. A multiplicative
extended Kalman filter is employed to estimate vehicle attitude. In a simulation study
using GPS receivers as the attitude sensors, the relative attitude between vehicles in the
formation is determined 3 times more accurately than the absolute attitude.

I. Introduction

HERE are many satellite formation flying missions in which the coordinated control of the formation’s
Tattitude is proposed.! For example, it is necessary to reposition and reorient the satellites in a variable
baseline interferometer application to image different targets. The size and cost of the individual satellites
in the formation are commonly constrained to be as small as possible for the given mission requirements.

For Earth orbiting formations, it is efficient to use Global Positioning System (GPS) receivers as spacecraft
sensors. The receivers can provide autonomous on-orbit position determination and time synchronization
between satellites. Current GPS receiver technology conserves power and is well-suited to miniaturization.
Dynamic filters can be used to provide estimates even when measurements are temporarily unavailable. In
this manner, the useful range of spaceborne GPS receivers can be extended to altitudes above the GPS
constellation, increasing the diversity of applications that can benefit from GPS devices.

It is also possible for GPS receivers to determine a vehicle’s attitude. There are now several different
methods by which the attitude information may be obtained. The most common method is a local interfer-
ometric one using multiple antennas on a single vehicle.? This technique requires the resolution of a carrier
phase cycle ambiguity by external or other means.>* Other methods employ antenna gain pattern mapping
with signal to noise ratio measurements.® It is possible to use this approach with a single GPS antenna and
another sensor, such as a magnetometer, to determine three-axis attitude.b

Since a GPS sensor will almost certainly be present on an Earth orbiting satellite for position and time
determination, it would be advantageous to employ that device for attitude determination if it can reliably
meet the mission attitude requirements. These requirements could be given in either absolute or relative
attitude determination accuracy, depending on the mission.

It is well known that the relative position solution between two GPS receivers located in near proximity
can be obtained more accurately than the absolute solution.”® The greater accuracy is possible because
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the most significant error sources are correlated between the different GPS measurements. When the range
measurements are differenced, a more accurate relative solution is directly obtained.

For vehicle formations using GPS receivers, it might be expected that attitude measurement error can-
cellation would also occur between similarly designed vehicles operating in proximity with each other. If the
measurement errors are highly correlated, relative attitude determination may be performed more accurately
than absolute attitude determination.

Survey of Prior Work and Outline of Topics

Although formation orbit determination and control has been extensively studied, the formation attitude
determination problem is somewhat less established. Scharf et al have compiled a survey of formation flying
guidance and control applications with more than 100 references.® The papers that address formation atti-
tude tend to focus primarily on control methods.'%'* This paper approaches the problem from a different
perspective: the formation attitude control is assumed and the sensor model is developed. First, a generalized
framework is presented in which the formation’s dynamics may be expressed. Then a quaternion attitude
estimation algorithm is developed using GPS carrier phase measurements. The generalized framework and
estimation algorithm are demonstrated using a Low Earth orbit two vehicle leader-follower formation ex-
ample. The effect of having GPS correlated measurement errors is evident in the resulting improvement in
relative attitude accuracy that is achieved.

II. Reference Frame Definitions for Vehicle Formations

To describe the dynamic state of a formation of vehicles, some conventions must be established in the
definition and notation of frames of reference. The approach used in this paper is similar to one that was
previously introduced by Xing.'®> The main feature of this approach is that it is generalized and scales easily
with the number of vehicles in the formation.

The fundamental reference frame shown in fig-
urelllis an inertial reference specified as Fy. The for-
mation target reference frame is given as Fp, which
may be non-inertial. This frame defines a local ref-
erence for the entire formation. It does not have to
be occupied by an actual satellite. Frp; is the target
reference frame for the ¢’th satellite in the formation.
This is considered to be the satellite’s desired posi-
tion and orientation relative to the formation target
reference frame. Finally, the i'th satellite’s actual
position and orientation is given by the Fp; body
reference frame, which is attached to the ¢’th vehi-
cle’s center of mass. In a regulator problem, the goal
is to align F'p; with Fp; within some acceptable tol-
erance. A general vector v may be coordinated with
respect to the i’th local body frame, Fp;.

In the notation of figure [1, the translational ve-
locity of the 7’th body frame relative to the i’th tar-
get frame is simply given by

Figure 1. Formation Reference Frame Definitions.

Tid
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where A,o is the vector from the i’th target frame to the ¢’th body frame. The velocity of the body
frame to the formation target frame can be expressed by adding translational and rotational terms

Td Td Tid T
E(BBi) = E(BTz) dt (Ap )tw X Aﬁi (2)

In this case, wTT? is the angular velocity of the i'th target frame (Fr;) relative to the formation target

frame (Fr). The body frame’s (Fg;’s) velocity can be similarly expressed relative to the inertial frame (F7)
with the addition of two more terms
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'd _ 'd Td IT Tid ITi
2 si) = (o) + () + w0 X+ (Ap) FwT < Ap, (3)
The translational accelerations may be likewise derived. With the translational portion of the problem
thus stated, it will no longer be considered in this paper, although its presence in the coupled formation
control problem is assumed.
The attitude of a reference frame may be related to another by a unit quaternion, which is based upon

Euler’s theorem

n cos (¢/2)

where e is the 3x1 axis unit vector and ¢ is the angle of rotation that relates the two frames.
Employing the definition of quaternion multiplication as stated by Shuster,'®

q_[ q‘|:[esin(¢/2)‘| (4)

T

4Aa ®qB = [ (QA4QB + qB4QA _QA X QB)T y Qaslps — QA "dp } (5)

the quaternion conjugate,
7 T

q=[—qT ; q4} (6)

and the vector quaternion,
T
o= | 0] (7)

the quaternion rotation operation is defined

vri = 4 © vpi © Gt (8)
which takes a vector quaternion expressed in one frame and transforms it to another frame. Eq. (])) is
equivalent to the well known direction cosine transformation matrix

Uy = C?ii "Up; 9)

Bi 7

and in fact CE! may be derived from ¢! as follows,!

C(q) = (4 — |a*) - Tsz3 — 2q4 [a%] +2q ¢" (10)

where I5,3 is the 323 identity matrix and Ex] is the cross product matrix

0 —-g q
lgx]=| & 0 -—a (11)
—q2 ¢ 0

Successive rotations are defined using the quaternion rotation operator listed in eq. (8). For example,

vr = g7’ @upi @47 = qr' ® 47 @ vei ® 47 ® ar' (12)
It is evident that the quaternion ¢2! is a representation of the attitude of the i’th satellite local body
reference frame (F'p;) relative to the i’th satellite target reference frame (Frp;). If the target reference frame

tracks the desired satellite state, then the generalized vehicle attitude tracking problem can be given as

Bi  TiBi
dri gB‘ - 0 as t — 00 (13)
()i — #1

There is a sign ambiguity on the scalar part of the quaternion in equation (13)). An attitude performance
vector for the i'th satellite may be established as

T
zt)=|q" , lgal—1 , QT] (14)
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Formulation of Optimal Attitude Controller

Using the performance vector defined in eq. (14]), a regulator performance index may be specified as (for
example)

1

t
50 =5 [ Gz o R (15)

which incorporates u,; as the actuator control effort, and @); and R; are gain weighting matrices. z; may
also include translational states if a coupled translational and rotational controller is required. Although not
shown, J; may include operational constraints using Lagrange multipliers and the calculus of variations.
The locally optimal controller C; at the i’th satellite may be specified as

C;: tmin Ji(t) (16)
Over the entire formation, the globally optimal controller C is given by

C: tmin Ji(t) (17)

This completes the statement of the optimal control problem using the general framework presented.
From this point forward, the paper focuses on the attitude determination problem, and the existence of a
sufficiently optimal controller is presumed.

ITII. Attitude Estimation

The method of attitude representation chosen for this algorithm is the quaternion, as given in eq. (4).
The quaternion is generally preferred for spacecraft applications because of its lack of singularities and its
computational efficiency. However, there are only three degrees of freedom in the rotation group and so
precautions must be taken to prevent the covariance matrix from becoming singular over time.

Following the method employed by Markley,'” the true attitude is represented as a small error deviation
(0g) from a reference attitude quaternion (gref), as expressed by the quaternion product

q(t) = 6q(a(t)) @ gres(t) (18)
Note that the deviation vector a(t) has only three degrees of freedom and the components of a are called
Modified Rodrigues Parameters'®

a = 4etan (¢p/4) (19)

The factor of 4 causes the magnitude of |a| = ¢ for small rotations. The second order approximation to
the error quaternion is given by'”

~ a/2
dq(a) ~ [ L la/s ] (20)

This method, known as the multiplicative extended Kalman filter (MEKF'), avoids numerical stability
problems that can occur from the normalization of the quaternion ¢.
Time Update
Attitude state propagation is performed using the kinematic quaternion relation

@ Gref (21)

~ 1 g’I‘(i
Qref = 5 [ Of

If the vehicle’s attitude motion approximates that of a rigid body in an inertial reference frame, Euler’s
equations may be used to propagate w,. s

w'r‘ef = J_l [(Jgref) X g7"(3f +MD +MC] (22)
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where it is assumed that the body frame (Fpg;) defines the principal axes of the vehicle. J is the 3x3
diagonal matrix of principal moments of inertia, and M and M are disturbance and control moments,
respectively.

Covariance propagation is performed according to the differential equation

P=FP+ PFT 4+ GQGT (23)

The linear approximation to the time derivative of @ is'”

a= fla,t) = —w,.; ¥ a+n(t) (24)

and 7(t) is a zero-mean white noise process.
The matrices listed in eq. (23) are then given as

F(t)= 0 = ,0,4] 25)
Glt) = 5 = I (26)

and
E [a(t) ()] = Q0)3(t - 7) 1)

Measurement Update

Up to this point the filter design has been independent of the sensing technology that is needed to determine
the attitude of the vehicle. If the vehicle is in Earth orbit, it is possible to sense its attitude with a GPS
receiver.

The method of attitude determination employed
in this study is GPS interferometry using differen-
tial carrier phase measurements. It is assumed that
the cycle ambiguities have been resolved, therefore
the carrier phase measurements may be converted
directly to range Ar measurements between anten-
nas. The geometry of this measurement is shown
in figure 2. The carrier phase measurement Ag¢;; is
made between two antennas with baseline vector b,
tracking a GPS satellite with line of sight vector [;

GPS Carrier Wave —

»

> b. A

GPS Antennas Aig = Arij —hij + Bt vig =L by = kij + B + vig

(28)

k;; is the known single difference cycle ambiguity,
B; is a bias term, and v;; is measurement noise. The
bias term is removed by differencing measurements
along the same baseline j between GPS satellites ¢ and k

Figure 2. Carrier Phase Interferometry.

VA = Agij — Agrj =b; - (L; — L) — (kij — ki) + (Vij — vij) (29)

Since the integers k are known, they may be incorporated into the carrier phase measurements and the
measurement equation may be rewritten as

y=0b;(l; — L)+ wij —vkj) =h+v (30)

In order to evaluate the dot product in eq. (30)), the vectors must be coordinated in the same reference
frame. The line of sight vectors (I) are known in the external reference frame, but the antenna baseline
vectors (b) are given in the body frame, so they must be transformed to evaluate the dot product
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h=1[Clg)-b]" - —1) (31)

The quaternion ¢ is now substituted using equations (18)), (10), and (20) to give the linear approximation

C(q) = C(éq ® q'r‘ef) = C(éq)C(QTef) ~ (I3x3 - [QX]) C(qref) (32)

h may now be written in terms of the attitude deviation vector, a

h(a) ~ [(Ises — [ax]) Clares) - ;)" - (I = 1) (33)

which may be rearranged as

ha) = h+ (L= L)' - (Clares) - by) x a (34)
where h is the expected measurement at the attitude given by gr.f. The measurement sensitivity matrix
is
oh
HT = 50 = (1= 1) X]- (Clarep) - y) (35)

The Kalman Gain matrix is computed as

K =P(-)HT[HP(-)HT + R} (36)

where R is the covariance of the zero mean measurement white noise, E [v(t)v?(7)] = R(t)6(t — 7). The
error state update is then completed

a=K(y—h) (37)

qref(“") = 6(](@) ® qref(_) (38)

The error covariance is updated according to

P(+) = (Isp3 — KH) - P(—) (39)

This completes the derivation of the vehicle attitude estimator. The filter will be adjusted for relative
attitude observations in a later section.

IV. Relative Attitude Simulation

For the purposes of demonstrating the relative attitude concept using GPS receivers, a 6N degree of
freedom simulation was developed, where N is the number of vehicles in the formation. In the example used
in this paper, N = 2, however the results can be generalized to N > 2.

The translational dynamics are specified as a simple leader-follower arrangement with 2 satellites in the
same orbit whose elements are specified by table [I. The anomaly of the follower satellite was adjusted to
lag the leader satellite by a constant distance, R = 100 km. Since the focus of this study is on the attitude
estimator performance, no perturbations are considered in this basic simulation.

Table 1. Orbit elements for leader satellite

at t=0."
Element Value Element Value
h 800.0 km Q 0
i 89.9 deg w 0
e 0 1Z0) 0

* Follower satellite lags leader by 100 km.
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The formation target reference frame (Fr) is assigned to the leader satellite with the i

i-axis pointed along the zenith vector, the j-axis is rotated 90 degrees in the direction _P% 25ke
of motion, and ¢ X j = k. The frame rotates with the leader satellite’s center of mass,
and therefore defines a Local Vertical Local Horizontal (LVLH) reference for this circular B 25kg
orbit. The follower satellite is assigned a similarly defined LVLH target reference frame 10 ft
at its location (Fpe). The attitude of each vehicle’s body axes (Fp1 and Fgo) are given i @ 0k
relative to their respective target reference frame (Fr and Frs). Since the satellites are « £
not in the same position, Fr # Frps. = 10 ft
The rotational dynamics are specified as follows. A 50 kg, axisymmetric satellite is B 25kg
proposed as shown in figure 3. The satellite is a twin-boom configuration with each boom O 25ke

extending 3.05 m (10 ft) in length. The main body of the satellite is a 40 kg homogeneous
cylinder with radius 0.23 m and height 0.38 m. The booms are modelled as lumped masses Figure 3. Gravity
of 2.5 kg at the center of each span. Each boom tip is also modelled as a homogeneous Gradient Satel-
cylinder, with mass 2.5 kg, radius 0.115 m, and height 0.19 m. The entire structure is lite.
assumed to be rigid and symmetric. The principal axes of the structure define the local
body frame (F).

Using this simple mass model, the inertia properties are calculated as .J, = 1.09 kg m?, and Jy=J, =714
kg m2. The non-dimensional inertia ratios are

kpiten = (Jy — Jz)/J= = 0.985 (40)
kron = (Jz - Jz)/Jy = 0.985 (41)
kyow = (J — Jy)/Js =0 (42)
According to linearized gravity gradient dynamic analysis, the vehicle attitude motion is represented with
respect to the LVLH frame according to the following differential equations®®
1 . . .
Yaw: - (o = naby | + [y + 02 ] = 0+ (Moo + Mas) (43)
yaw
1 - . . )
Roll:  — —— [, + iy | + iy —4n%y, | = 04 (Mo, + May) (44)
roll
1 .
Pitch: [M + [3n20.] = 0+ (M. + Maz) (45)
pitch

n is the angular rate, which is 0.595 rev/hr for this case. Control and disturbance moments could
be applied to the right hand side of eqs. 43~ 145 as shown, but will be assumed 0 for this analysis. The
homogenous solution to the linearized gravity gradient equations of motion for small deflections is a pair of
oscillators. For this configuration, the natural frequencies are

Wpiteh = N(3kpizen)’ = (0.595)(3 - 0.985)%% = 1.02 rev/hr (46)

Wiy = 11+ 3kpo)%° = (0.595)(1 + 3(0.985))°® = 1.18 rev/hr (47)

The unforced response of the leader satellite is simulated with an initial condition offset of 30 degrees
in pitch and roll relative to the target reference frame (¢£'). This response is shown in the left hand side
of figure 4] on the next page. The follower satellite undergoes a very similar motion which is offset in phase
angle by the difference in anomaly. The true relative attitude between the two vehicles is given by (see eq. 12
on page [3)

Bt =g ®ar =qr ®qp? (48)

The relative attitude motion between the leader and the follower is shown as a 3 — 2 — 1 Euler angle
sequence in the right hand of figure |4/ on the next page. The Euler angles are extracted from the quaternion
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Leader Satellite, Gravity Gradient Attitude Simulation Leader—Follower Relative Attitude, Expressed in FBl Frame

Yaw (deg)
Delta yaw
o

-0.02

-0.04

Roll (deg)
Delta roll
S

[ 0.5 1 15 2 25 3
15 T T T T T
g 51
3 3
b= s
T 805 J
40 \ ; \ ; \ o i i i i i
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time (hours) Time (hours)
(a) Leader Simulated Attitude. (b) Leader-Follower Relative Attitude.

Figure 4. Simulated leader absolute attitude (q?l) and leader-follower relative attitude (qgf .

qB3%. Since the satellites are only 100 km apart, the relative attitude motion between the leader and follower
satellites is small. The pitch bias is due to the difference in local vertical direction between the two satellites.

It is possible that the initial conditions of the gravity gradient motion between the satellites could be
offset by different amplitudes and phase angles. In this case, there would almost certainly be larger relative
motion between the two vehicles. However, due to the fact that the satellites have the same mass properties
and orbits, it is expected that over time they will settle into gravity gradient motion of similar amplitude
that is phase shifted by the value of the anomaly. This case is the one that is simulated.

V. Relative Attitude Results Using GPS Receivers

To simulate the performance of a GPS receiver in this application, the attitude estimator in section
IIT processed simulated GPS measurements for each satellite undergoing the dynamics in section IV. The
estimator is given simulated carrier phase measurements for all GPS signals that are within a 60 degree cone
angle for each satellite’s upward-facing axis of symmetry (the ig, and ig, directions). The carrier phase
measurements are made from GPS antennas that lay along the vertices of a 1 m cube that is aligned with
the satellite’s body axes (3 total baselines per satellite). All antenna boresight directions are pointed along
the vehicle axis of symmetry. Signal blockage due to structure is not considered, but carrier phase multipath
is simulated in the form of correlated measurement noise.

To compute the relative attitude, an estimator is run independently for each satellite, producing the
absolute attitude estimates, ¢! and ¢P2. The relative attitude estimate is then computed (compare to
eq. 48 on the preceding page)

~ ~ ~ —=B1 ~
o =dp®ar> =4; ®ar? (49)

The resultant attitude error is then computed as follows. For the absolute attitude error of the leader
satellite, the leader absolute error quaternion is given by

Qabserr = qgl & 4151 = 6151 ® quBl (50)

The relative attitude error of the follower satellite to the leader satellite is likewise specified

Grelerr = QB3 @ 457 = o3 ® 453 (51)

In each case, the error is reported as a 3 — 2 — 1 Euler angle sequence, where the error Euler angles are
extracted from the error quaternions gupserr and @rejer~- Performance statistics are computed using the error
Euler angles.
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Leader Absolute Attitude Error, Noise Free Case
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(a) Leader Attitude Error. (b) Leader-Follower Relative Attitude Error.

Figure 5. Noise free absolute attitude error ({upserr) and leader-follower relative attitude error (Greierr)-

Noise Free Simulation

Before introducing the effects of measurement noise, it is instructive to observe the estimator’s performance
in the noise free case. This may be considered as a best case bound on the performance for this algorithm.

The result, shown in figure |5, demonstrates the main thesis of this paper. The three-axis absolute attitude
performance of 0.181 degrees root mean squared (RMS) is typical for this sensor under these dynamic
conditions. There is a slight bias of absolute attitude in pitch. The estimator is limited by geometrical
considerations associated with the number and direction of available measurements at each measurement
epoch. Also, although the measurements are perfect, the estimator is not designed for this case. The absolute
attitude performance could be improved by “tuning” the estimator for this special case, but this is not done
since the actual application includes measurement noise.

The relative attitude accuracy is strikingly better at 0.006 degrees RMS. Although the absolute attitude
estimators for both satellites have errors associated with dynamics and measurements, these effects largely
cancel out and leave a much more accurate relative state. The jumps that occur in figure 5b are associated
with rising or setting GPS satellites. The jumps could be removed by adding logic to handle these cases.

Uncorrelated Measurement Noise Simulation

Every sensor is subject to measurement noise and GPS receivers are no exception. In the case of differential
carrier phase measurements, the predominant source of noise is signal multipath due to reflections from
nearby surfaces. Although deterministic in nature, multipath is difficult to model due to the high number of
possible reflections. The stochastic signature of this noise is that of a time correlated random variable with
a characteristic standard deviation (o,,) and time constant (7).2%

In satellite applications, multipath can be a severe source of measurement noise. There are usually a
large number of highly reflective surfaces in the vicinity of the GPS antenna. Multipath can be minimized by
locating the antennas carefully to reduce reflections and by utilizing hardware practices such as the addition
of antenna choke rings. Based on the results of previous orbit experiments, a standard deviation ¢, =5 cm
is considered to be typical for a Low Earth orbit satellite attitude application.?!

In the worst case scenario of totally uncorrelated measurement noise (correlation coefficient p = 0), there
is no benefit to differencing attitude solutions between satellites. In fact, relative attitude solution error is
increased due to the independence of the noise sources. This case is shown in figure [0l on the next page. The
introduction of measurement noise has increased the absolute attitude error to 0.295 degrees RMS, but the
most significant development is that the relative attitude error has increased to 0.327 degrees RMS.
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Leader Absolute Attitude Error, 5 cm uncorrelated measurement noise Leader-Follower Relative Attitude Error, 5 cm uncorrelated measurement noise
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Figure 6. Uncorrelated noise absolute attitude error (f,pser) and leader-follower relative attitude error (Greierr)-

Correlated Measurement Noise Simulation

It is hypothesized that for similar satellite designs that are operating in similar orbits and attitudes, error
sources that are geometrically dependent such as multipath will be correlated to some extent. In order to
investigate the effect of correlated measurement noise on the relative attitude solution accuracy, the carrier
phase measurements are simulated with varying levels of correlated noise between the leader and follower
satellites. As the correlated noise is added, the total noise is adjusted so that o, = 5 cm. Since the total
noise level is the same in a probabilistic sense, it is possible to see the benefit of attitude differencing when
correlated noise sources are present.

Figure [7l on the following page shows that this is the case. This plot shows the attitude performance
when the multipath noise is highly correlated (p = 0.9) between satellites. The absolute attitude accuracy
is approximately unchanged at 0.279 degrees RMS, but the relative attitude accuracy is improved at 0.084
degrees RMS.

These results are collected in table 2. An intermediate case for p = 0.5 is also listed. As expected, the
relative attitude performance improves with the amount of multipath correlation.

VI. Conclusion

This paper examined how GPS receivers may be employed as attitude sensors in Earth orbiting satellite
formations. GPS receivers enjoy advantages as standalone navigation and attitude sensors when the size and
cost of the vehicles are tightly constrained. It may be possible to meet the mission requirements in some
cases with a minimal hardware complement of a single GPS receiver and possibly a simple additional sensor
such as a magnetometer or sun sensor.

The mission presented here is hypothetical, but it is considered to be representative of several Earth

Table 2. Performance Summary for Attitude Simulation.

Case Comment on p Oabserr Orelerr
(cm) (deg RMS) (deg RMS)

1 Noise Free 0 — 0.181 0.006

2 Uncorrelated 5 0 0.295 0.327

3 Somewhat Correlated 5 0.5 0.291 0.210

4 Highly Correlated 5 0.9 0.279 0.084
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Leader Absolute Attitude Error, 5 cm correlated measurement noise, p=0.9 Leader-Follower Relative Attitude Error, 5 cm correlated measurement noise, p=0.9
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(a) Leader Attitude Error. (b) Leader-Follower Relative Attitude Error.

Figure 7. Correlated noise (p = 0.9) absolute attitude error (Gupserr) and leader-follower relative attitude error
(‘jr'eler'r‘)'

orbiting formation applications. The design of a GPS attitude estimator is codified using a multiplicative
extended Kalman filter (MEKF) method. The typical performance of such a system is demonstrated in
the presence of measurement noise. When the measurement noise is correlated among the satellites in the
formation (correlation coefficient p > 0.5), improvements in the relative attitude accuracy can be obtained.
For the case considered in this study, highly correlated GPS measurements (p = 0.9) produced more than a
threefold improvement in relative attitude accuracy.

Although GPS measurements will never be fully correlated, it may be possible to create a high level of
correlation by using the same satellite design and controlling the vehicle attitude so that the geometry of
the multipath reflections is similar for each satellite. Attitude control is not addressed in this paper, but a
general framework for evaluating the optimality of a formation attitude control system is given.

This work represents an early step in the design of formation attitude estimation systems. In this
study, the GPS measurements were processed separately for each satellite and the attitude solutions were
differenced. Although good results were obtained, additional work could improve the performance of the
relative estimation algorithm by centrally processing all of the available measurements. This would allow
the estimator to take maximum advantage of all the correlations in the measurements. It would also be
valuable to demonstrate the performance of this system using a real-time hardware-in-the-loop test facility.
Experience has shown that hardware tests can expose implementation issues that are not apparent in a
simulation study. These additional investigations are left as future work.
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