ABSTRACT

Method and system for fabricating an electrical interconnect capable of supporting very high current densities (10^6-10^10 Amps/cm^2), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiO_2 or Si_3N_4, is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

19 Claims, 7 Drawing Sheets
Deposit conductive substance (film) with thickness \(h_1 \) on substrate

Deposit catalyst substance with thickness \(h_2 \) in selected pattern on exposed surface of metallic substance

Grow array of MWCNTs on catalyst deposits using plasma enhanced CVD process. Optionally, deposit a coating of selected nitrate on at least one MWCNT

Allow insulation substance containing an oxide of silicon in vapor form to settle into and form a solid structure in interstitial regions between adjacent MWCNTs

Apply CMP to planarize exposed surface of insulation substance

Connect exposed ends of two or more MWCNTs

FIG. 1
FIG. 7

FIG. 10
FIG. 8A
Create patterned raised structure

FIG. 8B
Conductive layer deposition

FIG. 8C
Catalyst layer deposition

FIG. 8D
Electric-field guided CNT growth

FIG. 8E
Dielectric encapsulation

FIG. 8F
Chemical Mechanical Polishing
FIG. 9A Create patterned raised structure

FIG. 9B Conductive layer deposition

FIG. 9C Catalyst layer deposition

FIG. 9D Electric-field guided CNT growth

FIG. 9E Dielectric encapsulation

FIG. 9F Chemical Mechanical Polishing
CARBON NANOTUBE INTERCONNECT

ORIGIN OF THE INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provision of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Atat. 435; 42 U.S.C. 2457).

FIELD OF THE INVENTION

This invention relates to use of carbon nanotubes (CNTs) as interconnects for integrated circuit (IC) manufacturing.

BACKGROUND OF THE INVENTION

An interconnect in an integrated circuit distributes clock, regulatory and other signals as well as power or ground voltages to various components and circuits on a chip. The International Technology Roadmap for Semiconductors (ITRS) emphasizes the high speed transmission requirements on a chip as the driver for future interconnect development. Near term and long term interconnect requirements for microprocessors (MPs) and for dynamic random access memories (DRAMs) are outlined in the ITRS. MPs require local, intermediate and global wiring solutions and present both material and processing difficulties. Susceptibility of common interconnect materials to electromigration at high current densities (above 10^6 Amps/cm2) is a problem. Copper interconnect, introduced in 1998, is now routinely used, even with minimum feature size down to 130 nm. However, electrical resistivity of copper increases with decreasing dimensions and is attributed to scattering at surfaces and at grain boundaries. These size effects are due to interface roughness and by use of small grain sizes, which are hard to overcome and cannot be avoided by simply cooling to lower the resistivity. With reference to processing, present interconnect technology relies upon successful development of three processes: dry etching to create trenches and vias; deposition to fill metal plugs; and planarization. The aspect ratio of contact apertures is now 12:1 and may reach 23:1 by the year 2016. Creating high aspect ratio apertures with straight walls and uniform diameters using dry etching is an extremely difficult task and is expected to become progressively more difficult with each succeeding generation. HBr etching of SiO$_2$ for a 9:1 aspect ratio contact hole has been found to provide a 135 nm diameter at one end and a 70 nm diameter at the other end of the hole by Hwang, Meyyappan, Mathod and Ranade, Jour. Vac. Sci. Technol. vol. 20B (2002) 2199. Aspect ratio-dependent etching becomes a serious problem with each new decrease in feature size. Plasma damage and cleaning of high aspect ratio features also pose concerns. Void-free filling of a high aspect ratio aperture is another concern.

Well known properties of CNTs, such as high current carrying capacity and material robustness, would make the CNTs ideally suited for use in electrical interconnects, if the fabrication problems could be resolved.

What is needed is a procedure or process sequence and associated system for providing an electrical interconnect, using an array of CNTs, that (1) provides reasonably uniform diameter CNTs with aspect ratios up to or higher than 100:1, (2) allows use of a variety of gap-filling insulating materials, (3) allows use of current densities of 10^6 Amps/cm2 and higher, (4) shows substantially no degradation at moderate or high current densities over long time intervals, and generally meets DRAM and microprocessor requirements.

SUMMARY OF THE INVENTION

These needs are met by the invention, which provides a procedure and associated system for fabricating an electrical interconnect (oriented vertically, horizontally or at a selected angle to the horizontal) with a gap-filling insulating material and with arbitrary but approximately uniform nearest neighbor CNT spacing to control electrical parameters such as electrical resistivity, maximum current density, representative cross sectional area for passage of current and the like.

The fabrication procedure includes the following processes: (1) depositing a selected electrically conductive substance of a first selected thickness on a substrate of selected material in a selected pattern; (2) depositing a selected catalyst substance in a selected pattern in a selected second thickness on the conductive substance; (3) growing an array of spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern to a selected MWCNT length, using a plasma enhanced CVD process, so that each MWCNT is approximately normally aligned relative to an exposed surface of the catalyst substance at a first end of each MWCNT; (4) depositing a selected insulator material in an interstitial region between at least two MWCNTs and around each MWCNT so that the selected insulator encapsulates each MWCNT and the adjacent substrate surface (optional); (5) performing chemical mechanical polishing (CMP) and related processing of the selected insulator and the MWCNT array to provide an approximately planar surface of the selected insulator in which a second end of each of at least one MWCNT is exposed; and (6) providing an electrical interconnect between a second end of at least one MWCNT and another electrical connection.

This process supports CNT aspect ratios of 100:1 and higher, a variety of CNT array patterns, nearest neighbor CNT spacings of between 30 nm and 10 μm, current densities up to 10^6 Amps/cm2, and high current density operation over time intervals up to at least a few weeks with no substantial change in relevant electrical properties.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a flow chart illustrating a procedure for practicing the invention.

FIGS. 2A–2F illustrate suitable array patterns for a catalyst used in the invention.

FIG. 3 is an electron microscope image showing ends of multi-wall CNTs extending above a planarized material (SiO$_2$) in which the CNTs are embedded.

FIGS. 4A–4F illustrate procedure steps corresponding to FIG. 1.

FIGS. 5A–5F are electron microscope images of CNTs.

FIGS. 6A–6C are atomic force microscope images of CNT arrays.

FIG. 7 is a graphical view of measured current versus voltage for a single MWCNT and for an MWCNT bundle fabricated according to the invention.

FIGS. 8A–8F and 9A–9F illustrate fabrication of CNT interconnects using raised structures, according to the invention.

FIG. 10 illustrates use of the invention to build a multi-level structure.
3 DESCRIPTION OF BEST MODES OF THE INVENTION

FIG. 1 is a flow chart of a procedure for fabricating an electrical interconnect according to one embodiment of the invention. In step 11, a selected conductive substance, having a conductive substance (film) first selected thickness h1 in a range 1 nm≤h1≤5 nm, or greater if desired, is deposited on a selected substrate. The substrate material may include a silicon oxide, SiOx, a selected nitride, SiNy, or another suitable insulating material, of thickness 200-500 nm or greater, on an Si wafer. The conductive substance may be Al, Mo, Cr, Ti, Ta, Pt, Ir or doped Si. A careful choice of the conductive substance (e.g., Mo, Cr or Ti) will eliminate or suppress diffusion of carbon within or through the conductive substance layer.

In step 12, a selected catalyst substance, such as Ni, Fe or Co, is deposited in a selected pattern, with a second thickness h2 in a range 1 nm≤h2≤30 nm, or higher if desired, on an exposed surface of the conductive substance. The selected pattern or grid for the catalyst substance may be rectangular (including a square), triangular, hexagonal, polygonal, linear, curvilinear or another suitable pattern, as illustrated in FIGS. 2A-2F, with a nearest neighbor spacing d in a range 30 nm≤d≤10 μm. The nearest neighbor spacings d are approximately uniform, or vary independently, and d can be less than 30 nm or greater than 10 μm if the circumstances are appropriate. Provision of a smaller spacing value d will provide a lower value for electrical resistivity p for the system, and inversely, so that resistivity can be controlled in part, by the choice of d.

In step 13 in FIG. 1, a single CNT or an array of at least two spaced apart CNTs are grown in a temperature range 400°C≤T≤1000°C. (or higher, if desired) on part or all of the pattern of catalyst deposits set down in step 12. It is unlikely, but possible, that one or more additional CNTs may grow at locations other than the catalyst or pattern locations. The CNTs thus grown are preferably multi-wall CNTs (“MWCNTs”) and are encouraged to grow from a first end of each CNT approximately normal to the surface of the conductive substance deposited in step 11. An array of MWCNTs can be grown to greater heights than can a corresponding array of single wall CNTs (“SWCNTs”), before the CNTs begin to interlace with each other and form a forest of CNTs. An MWCNT is usually a tubular or conical arrangement of several layers (2-8 or more) of CNTs that are grown by a somewhat different process than is an SWCNT. An MWCNT can reach a height in a range 0.1 μm to 20 μm, or higher if special precautions are taken, and the average diameter D of an MWCNT can lie in a range 10 nm≤D≤200 nm. Preferably, the MWCNTs are grown using a plasma enhanced CVD growth process, using an inductively coupled plasma process or a dc plasma assisted hot filament process in which an electric field is imposed, having a direction approximately normal to the conductive substance surface and having a field intensity E in a range 20 volts/cm≤E≤5,000 volts/cm. Microwave or electron cyclotron resonance or radiofrequency, capacitively coupled plasmas can also be used to fabricate the MWCNTs. A thermal CVD process will not provide free-standing MWCNTs of sufficient height for the invention, under normal conditions. Relatively tall MWCNTs can be grown, with an aspect ratio (ratio of CNT length to CNT average diameter) as high as 100:1.

In step 14, a precursor substance, including an oxide or a nitride of silicon, is provided, and allowed to settle into and form a solid insulating structure around the CNTs, in interstitial regions between adjacent MWCNTs, and on other surfaces. The source gas for the insulator deposition may be tetraethoxysilane (TEOS) or another appropriate insulating precursor that (1) can settle and conformally form a solid SiOx or SiNy, or similar structure in a region having a feature size in a range 30 nm-2 μm, or higher if desired, and (2) has very low (substantially 0) electrical conductivity.

If carbon diffusion into or through the insulator is a concern, a thin layer of thickness 1-10 nm of a selected nitride is optionally deposited, in step 14, on one or more (preferably all) of the CNTs to suppress such diffusion. This is similar to deposit of a thin layer of a selected nitride around Cu wire to suppress diffusion of Cu through whatever material would otherwise be in contact with the Cu.

In step 15, chemical mechanical processing (CMP) is applied to the assembly produced in steps 11-14 to planarize the exposed surface of the SiOx or SiNy, and to expose a second end of most or all of the MWCNTs. The second end of many of the CNTs may extend above the planarized surface of the TEOS by ~10 nm, as suggested in the SEM image in FIG. 3. This arrangement allows one or more of the exposed second ends of the MWCNTs to be connected to form an electrical interconnect (step 16, optional).

FIGS. 4A-4F illustrate the steps discussed in connection with the steps in the flow chart in FIG. 1.

FIGS. 5A-5F show scanning and transmission electron microscopy (SEM, TEM) images of some CNT arrays at various stages of processing. Well separated, vertically aligned MWCNTs are grown on 100 nm diameter and 2 μm diameter catalyst deposits in FIGS. 5A and 5B, respectively, which are defined by e-beam and uv-beam lithography, respectively. The 2 μm deposits each have approximately 20 MWCNTs growing thereon. The MWCNTs have aspect ratios up to about 100:1, with lengths varying from 0.1 μm to 20 μm and diameters varying from 10 nm to 200 nm, depending upon catalyst deposit diameter and thickness. FIG. 2C is an image of MWCNTs on a catalyst film deposited on alignment markers over 10 μm in diameter. Each MWCNT grown has substantially uniform diameter from the first end (at the catalyst) to the second end. The attachment of the MWCNTs is quite strong so that the MWCNTs cannot be wiped off easily.

One or more MWCNTs can also be grown in a direction oriented at a selected angle θ, including 0=0, to a horizontal line (i.e., parallel to the insulating surface), by orienting a direction of an electrical field E used to provide the plasma (step 13 in FIG. 1) in the direction relative to the horizontal line. One approach to such directed growth is discussed by Delzeit, Stevens, Nguyen and Meyyappan in “Directed Growth Of Single-Walled Carbon Nanotubes,” Int. Jour. of Nanoscience, vol. 1 (2002) 197-203, where electrical field intensities of 0.5-2 Volts/μm were used for SWCNT orientation.

SiOx deposition (from step 14 in FIG. 1) is found to be conformal around each MWCNT, metallized substrate surface and dielectric film. When the SiOx film size grows beyond about 2 μm, the film tends to break into grains about 2-3 μm in diameter. For catalyst deposit diameters smaller than about 2 μm, we find that the MWCNT is normally embedded in a single SiOx grain, whereas the MWCNT grown on a catalyst deposit with a larger size often lies in more than one SiOx grain, as indicated in FIGS. 5D, 5E and 5F.

Voids of size up to about 100 nm often occur in the SiOx film as a result of grain boundaries. This undesirable feature can be avoided or controlled, for catalyst deposit diameters less than about 2 μm, by providing a very slow CVD rate for
the TEOS deposit. CMP (step 15 in FIG. 1) removes the excess silicon oxide and breaks the MWCNT bundle that extends above the exposed silicon oxide surface, resulting in a planarized SiO$_2$ surface with second ends of the MWCNTs exposed, as indicated in FIG. 5G. In some instances, the second ends of the MWCNTs extend above the planarized surface by 1-50 nm.

The planarized SiO$_2$-MWCNT structure can be subjected to current-voltage-current (I-V) measurements, using atomic force spectroscopy (AFM), modified with a current sensing module, referred to as a CAFM. Electrical properties of individual CNTs can be measured, using a contact mode cantilever beam coated with a Pt or similar conductive film. Nominal MWCNTs now available. This performance can be achieved.

The invention disclosed herein eliminates problems associated with etching, cleaning and filling of high aspect ratio electrical interconnect structures. Modern IC technology requires multi-level fabrication and metallization, which is also provided by the invention, in at least three ways.

(1) For multi-level vertical interconnects, the planarized device in step 16 of FIG. 1 can be used as a (new) substrate to repeat or iterate the processing steps 11-16 to generate a second layer. This approach can be applied several times to provide a multi-level CNT interconnect system.

(2) For substantially horizontal interconnects, the catalyst is deposited in raised spots, 10 nm–10 μm in height, and an electric field is applied during CNT growth to generate substantially horizontally aligned CNTs. MWCNTs and/or SWCNTs can be grown in this manner. Either PECVD or simple thermal CVD can be used for CNT growth. The electric field prevents or suppresses van der Waals interactions so that the applied electric field can direct growth of free suspended CNTs between the raised features. A dielectric encapsulation step and a CMP step, analogous to steps 14 and 15, can be applied to produce a planarized structure with CNT interconnect lines embedded within the insulating materials. See Ural, Li and Dai, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces,” Appl. Phys. Lett. 81 (2002) 3463, for additional details.

FIGS. 8A–8F and 9A–9F illustrate how vertical and/or horizontal CNT interconnect structures and more complex vertical/horizontal interconnect structures may be generated. In FIG. 8A, a raised surface with a pattern is created. In FIG. 8D, a conductor layer is deposited. In FIG. 8C, a catalyst layer is deposited on one or more of the raised structures. In FIG. 8D, electric field-guided CNT growth is implemented, for example, between two adjacent raised structures (with $\theta=90^\circ$ in this Figure). In FIG. 8E, one or more (preferably all) of the CNT interconnects thus grown are encapsulated with a selected dielectric. FIG. 8F, CMP processing is selectively applied to the exposed surface(s) of the structure provided in FIG. 8E. FIGS. 9A–9F correspond to FIGS. 8A–8F, respectively, where a sequence of two or more vertical/horizontal CNT interconnect structures are fabricated.

(3) A single level or multi-level CNT can be generated to provide a three-dimensional structure. This is particularly attractive for microprocessor architectures. FIG. 9 illustrates a multi-level interconnect structure, having diagonal and horizontal MWCNTs, that can be fabricated using the invention.

What is claimed is:

1. A method for fabricating an electrical interconnect, the method comprising:

 - depositing a selected conductive substance of a first selected thickness on a substrate of selected material;
The method of claim 1, further comprising providing an electrical interconnect between an exposed second end of said at least one MWCNT and a selected electrical component.

17. The method of claim 16, further comprising passing an electrical current in a range having a current density in a range between 10^5 Amps/cm2 and 10^{10} Amps/cm2 through said at least one MWCNT.

18. A method for fabricating an electrical interconnect, the method comprising:

- depositing a selected conductive substance of a first selected thickness on a substrate of selected material,
- depositing a selected catalyst substance in a selected pattern in a selected second thickness on the conductive substance;
- providing an electric field, oriented substantially at a selected angle θ relative to an exposed surface of the conductive substance, where the electric field has an intensity in a range of $20-5,000$ volts/cm and the angle θ lies in a range of about $0^\circ \leq \theta \leq 90^\circ$;
- growing an array of one or more spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern in a selected second thickness on the conductive substance;
- performing chemical mechanical polishing of the selected insulator and of the MWCNT array to provide an approximately planar surface of the selected insulator where the electric field has an intensity in a range of $20-5,000$ volts/cm and the angle θ lies in a range of about $0^\circ \leq \theta \leq 90^\circ$;
- growing an array of one or more spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern in a selected second thickness on the conductive substance;
- performing chemical mechanical polishing of the selected insulator and of the MWCNT array to provide an approximately planar surface of the selected insulator where the electric field has an intensity in a range of $20-5,000$ volts/cm and the angle θ lies in a range of about $0^\circ \leq \theta \leq 90^\circ$;
- growing an array of one or more spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern in a selected second thickness on the conductive substance;
- performing chemical mechanical polishing of the selected insulator and of the MWCNT array to provide an approximately planar surface of the selected insulator where the electric field has an intensity in a range of $20-5,000$ volts/cm and the angle θ lies in a range of about $0^\circ \leq \theta \leq 90^\circ$;
- growing an array of one or more spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern in a selected second thickness on the conductive substance;
- performing chemical mechanical polishing of the selected insulator and of the MWCNT array to provide an approximately planar surface of the selected insulator where the electric field has an intensity in a range of $20-5,000$ volts/cm and the angle θ lies in a range of about $0^\circ \leq \theta \leq 90^\circ$;
- growing an array of one or more spaced apart multi-wall carbon nanotubes ("MWCNTs") on the selected pattern in a selected second thickness on the conductive substance;
- providing a coating of a selected thickness of a selected nitride for at least one of the array of MWCNTs, before the insulator material is deposited around the at least one of the MWCNTs.

* * * * *