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A number of potential NASA missions could benefit from closed-Brayton-cycle (CBC) 
power conversion systems.  The human and robotic mission power applications include 
spacecraft, surface base, and rover scenarios.  Modeling of CBC subsystems allows system 
engineers, mission planners and project managers to make informed decisions regarding 
power conversion system characteristics and capabilities.  To promote thorough modeling 
efforts, a critical review of CBC modeling techniques is presented.  Analysis of critical 
modeling elements, component influences and cycle sensitivities is conducted.  The analysis 
leads to quantitative results addressing projections on converter efficiency and overall power 
conversion system mass.  Even moderate modeling errors are shown to easily over-predict 
converter efficiencies by 30% and underestimate mass estimates by 20%.  Both static and 
dynamic modeling regimes are evaluated.  Key considerations in determining model fidelity 
requirements are discussed.  Conclusions and recommendations are presented that directly 
address ongoing modeling efforts in solar and nuclear space power systems. 

Nomenclature 
A = heat transfer area 
c = specific heat of solid 
hc = convective heat transfer coefficient 
T = temperature of solid 
Te = Far-field fluid temperature 
t = time 
V = volume of solid 
η = efficiency 
Θ = dimensionless temperature 
ρ = density of solid 
τ = characteristic time scale 

I. Introduction 
LO

Brayto

SED-Brayton-cycle (CBC) power conversion is one method that can be used in space power systems.  

n system conceptual designs for milliwatt to megawatt power converters have been developed (Baggenstoss 

and Ashe1, Harty, et al.2, Shaltens and Mason3, Hyder et al.4, Mason5).  When optimizing a CBC-based power 

conversion system (PCS), numerous features affect overall system performance; a partial list of influential factors 
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includes turbomachinery efficiency, heat exchanger effectiveness, working-fluid composition and cycle 

temperatures and pressures. 

II. Literature Review 
More than 270 works on Brayton-related space power system topics appear in the literature over the last 30 

years.  Six examples of steady-state analyses are Tilliette6, Owen7, Baggenstoss and Ashe1, Barrett and Reid8, 

Mason5 and Johnson and Mason9. 

Tilliette6 examined 25-kWe-class Brayton systems.  Liquid metal cooled and direct gas cooled reactors were 

evaluated as heat sources; fast and thermal spectrums were included.  Recuperated and non-recuperated Brayton 

systems were evaluated.  Tilliette demonstrated that a CBC was adaptable for all 10 of the configurations examined.  

Owen7 evaluated 10-kWe- to 100-kWe-class CBC concepts using pumped loop, heat pipe and direct gas reactor 

cooling schemes.  Thermoelectric conversion was also examined; comparative advantages of a CBC system were 

given.  Baggenstoss and Ashe1 detailed key mission design requirements for CBC systems.  They examined power 

outputs from 0.5 to 3,300 kWe.  Heat sources considered included isotope, solar and reactor; liquid-metal-cooled 

and direct-gas-cooled reactors were examined.  Barrett and Reid8 evaluated CBC performance as influenced by 

working fluid molar mass and cycle peak pressure.  Their results indicated performance degradation due to increased 

mechanical losses at higher operating pressures.  Mason5 gave an extensive assessment of a 100-kWe CBC design 

including system-level optimization results for variations in key design parameters.  Johnson and Mason9 evaluated 

design-point CBC performance as number of converters, cycle peak pressure and shaft speed varied.  Off-design 

operating modes that reduced reactor heat input were also assessed. 

Compared to steady-state assessments, far fewer CBC transient analyses have been published.  Four relevant 

recent evaluations are Traverso et al.10, Traverso11, Ulfsnes et al.12 and Wright13.  Using a mass inventory control 

scheme, Traverso et al.10 showed stable behavior of a 24-kW solar-dynamic CBC converter with heat rejection 

radiators subjected to orbital sink temperature periodicity.  In a description of a transient code validation case, 

Traverso11 also showed the importance of thermal energy storage in the turbine wheel of a commercial microturbine.  

Ulfsnes12 studied the transient behavior of a semi-closed O2/CO2 gas turbine.  The study confirmed the highly 

integrated complexity of component interactions in a closed cycle system.  With the exception of shaft speed 

calculations, transient variations in gas constant and specific heat ratio were found to have only minor effects on 

overall cycle performance.  Wright13 modeled an integrated closed-Brayton-cycle and gas-cooled fission reactor 

 
American Institute of Aeronautics and Astronautics 

 

2



power system.  The model demonstrated stable behavior and showed that the system was capable of load following.  

Wright showed that temperature feed back mechanisms in reactor control caused what he labeled “counterintuitive” 

behavior; his model response to a step decrease in electrical load was an increase in reactor power output. 

III. Present Objectives 
Cast in the context of previous studies, the present work has three principal objectives:  to demonstrate the 

system-level impacts of differing levels of refinement in modeling closed-Brayton-cycle power conversion systems, 

to recommend a minimum CBC modeling fidelity for conceptual design studies, and to identify issues related to 

mass estimation and transient modeling related to the conceptual design of CBC energy conversion systems for 

space applications. 

IV. Fidelity Necessity 
System and subsystem models are tools used to aid in answering engineering design questions.  The requisite 

fidelity of a model depends on what questions are being considered.  Different constraints exist for the development, 

execution and validation of steady-state versus transient simulations.  For conceptual design and sizing of CBC 

power systems, steady-state thermofluid design models are typically used to generate performance and mass 

estimates.  If dynamic interactions with other subsystems are of interest, an integrated transient model is needed to 

conduct the investigation.  In either case, there exists a minimum set of component and subsystem models that are 

needed to adequately characterize the system.  If one oversimplifies the models, erroneous conclusions may be 

drawn from the analysis results.  Elaboration on some key influential factors is warranted. 

A. Steady State 
Many engineers are familiar with the thermodynamics of the ideal Brayton cycle.‡  The cycle is frequently 

introduced in the first thermodynamics course of an undergraduate mechanical or aerospace engineering curriculum.  

At first introduction, an instructor may also cover real-behavior of compressors, turbines and heat exchangers.  From 

an introductory course then, we might model a recuperated CBC as shown in Fig. 1.  This configuration shows the 

basic elements of a CBC, but it omits bearings, compressor bleed flow paths (used to cool bearings and the 

alternator rotor), heat exchanger details, and elements of other subsystems that directly influence CBC performance.  

                                                           
‡ In actuality, by its definition the Brayton cycle must be an ideal set of thermodynamic state paths that result in a 
closed process.  The “closed-Brayton-cycle” vernacular is used to distinguish a closed-loop converter from an open-
loop gas-turbine engine.  The nomenclature “ideal” Brayton cycle clarifies that real (non-ideal) component 
performance is not considered.  In practice, real performance is included in many “Brayton” analyses. 
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Parameters needed to solve the simple cycle thermodynamics of the Fig. 1 representation include turbomachinery 

efficiencies, recuperator effectiveness and irreversible component flow losses (or “pressure drops”).  These 

performance parameters must be carefully selected to preserve the realness of the model.  Overestimation of 

performance capability can yield unrealistic cycle efficiencies; underestimation can forecast detrimentally heavy 

subsystem masses.  As an illustration, we use a pedigreed high-fidelity CBC modeling code, the NASA Closed 

Cycle Engine Program (CCEP)8,9,14,15,16, to explore the effects of overestimating performance.  Figure 2 shows a 

more realistic CBC diagram that includes heat rejection subsystem (HRS) information; inclusion of this subsystem is 

key to understanding gas cooler performance and auxiliary load requirements such as required pumping power.  For 

convenience, the heat source subsystem is shown as a generic system because vastly different models are required 

for different heat sources such as solar, chemical, or nuclear.  However, for the same reasons HRS definition is 

needed, some detailing of the heat source subsystem is also mandatory to complete a thorough power system 

analysis.  Since we are not actually conducting a system analysis but instead are seeking to illustrate CBC modeling 

issues, the generic source subsystem will suffice for the present work.  A 100-kWe, two-engine configuration is 

presented in Fig. 2; numerical values in the figure are multiplied or divided accordingly.  Figure 2 represents the first 

oversimplified case in which we zero the compressor bleed flows, mechanical losses (bearings and windage) and 

electrical (EM) losses.  Unrealistically optimistic turbomachinery efficiencies are also selected.  The result is a 

configuration with each 50-kWe engine running at 31.9% converter efficiency,  

 η converter = alternator electrical output / cycle heat input (1) 

In Fig. 3, we add 2% compressor bleed flow for bearing and rotor cooling.  At the entrance to the turbine, the mixing 

of compressor bleed flow with flow from the heat source heat exchanger (HSHX) leads to a lower turbine inlet 

temperature and degraded converter efficiency of 30.1%.  Figure 4 shows the effect of using design performance 

maps to estimate turbomachinery efficiencies.  (Mean-line design codes are even better estimates of compressor and 

turbine performance and are preferred to generic conceptual design maps.)  Even though the original polytropic 

efficiencies were held to less than 90% (ec = 87%, et = 89%), the design performance maps for the corrected mass 

flow rates, specific speeds and pressure ratios represented reduce each wheel isentropic efficiency by three points or 

more (85% to 82% for the compressor; 90% to 86% for the turbine).  The converter efficiency suffers and drops to 

25.1%.  Figures 5 through 7 display cases that add bearing, windage and electromagnetic losses yielding 
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progressively more realistic performance estimates.  Ultimately, the Fig. 7 converter efficiency falls to 21.7%.  The 

fidelity increase from Fig. 2 to Fig. 7 revises the efficiency prediction from 31.9% to 21.7% – a relative reduction of 

32%.  As the converter efficiency falls, more heat input is required, more heat rejection is required, cycle state points 

vary, auxiliary loads change accordingly, and system mass estimates increase.  Blending empirical and geometric 

mass estimators (discussed in section VI.), the combined CBC and HRS subsystem mass estimates increases from 

1899 kg to 2308 kg – a jump of nearly 22%.  This example suggests that if a designer can tolerate 30% 

overestimation of efficiency or 22% underestimation of subsystem mass, the model of Fig. 2 would be adequate.  In 

the conceptual design phase, a 22% underestimation of mass could deplete an entire subsystem mass margin 

allocation.  Additionally, in even the earliest conceptual design for a space power system, 30% error in calculated 

efficiency is unacceptable.  Conducting CBC analyses without consideration of realistic turbomachinery 

efficiencies, mechanical losses and electromagnetic losses is at best troublesome and at worst seriously misleading.  

Unfortunately, the fidelity level at which previous “non-CCEP” studies have been conducted is unclear. 

Higher-level system models are often used during the integrated conceptual design of a spacecraft.  Estimates 

from high-fidelity subsystem models serve as inputs to the larger space-system-level mass and performance 

optimization tool.  By necessity, parametric representation of the subsystem is frequently used to simplify the 

higher-level model.  Caution must be exercised to ensure the representation in the simplified model is relevant to the 

question the larger model is being used to address.  At a minimum, design points derived from the simplified 

parametric model must be verified using the high-fidelity code.  (As a matter of good design practice, the 

parameterization and verification steps inherently require a high-fidelity model exist.)  As computing power 

continues to increase, more and more subsystem details can be added to higher-level models, but a fidelity 

difference between subsystem and space system models will likely remain. 

B. Transient 
1. Analytical Formulation 

Integrated transient models are used to evaluate dynamic subsystem interactions such as nuclear reactor and 

power conversion control algorithms.  When building transient models, the same fundamental issue arises – what 

level of fidelity is required?  In the gas-turbine controls community, three levels of transient models are often 

discussed:  detailed nonlinear thermodynamic models, linearized dynamic models, and real-time piecewise linear 

dynamic models (RPLDM)17.  The aforementioned CCEP results are examples of detailed thermodynamic nonlinear 
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model output.  Due to the computational complexity of detailed nonlinear models, they are most often used in 

engine and subsystem design capacity without real-time implementation.  Linearized models are created using the 

detailed nonlinear model for performance characterization around an operating point.  By selecting a number of 

discrete operating points, linearized model coefficients can be combined with nonlinear steady-state operating 

curves to create an RPLDM for system control schemes.  (A complication to note regarding RPLDM 

implementation in a control algorithm is that characteristics of each “as built” engine will differ.  Flexibility in early 

model architecture must be maintained to allow customization for each engine controller.) 

As it is for any model, the predicted subsystem performance from a dynamic model is only as good as the 

fidelity captured in the code.  In addition to the aforementioned steady-state fidelity issues associated with 

performance and loss modeling, in a transient model, the desired fidelity is often a question of what timescales are 

present in the problem.  Fortunately, in the development of CBC subsystems for space applications, at least three 

distinct timescales present themselves and can often be used to clarify modeling needs.  The characteristic electrical, 

mechanical and thermal timescales in a CBC PCS design problem may differ by orders of magnitude.   

For instance, as user loads are shorted or switched on and off, the electrical voltage and current transients 

typically represent millisecond or smaller-order timescales.  An alternator’s managed response to an ion thruster 

recycle event18 recorded in Fig. 8 serves as a good example of this type of timescale response.  As the thruster shorts 

and resets (a recycle), the parasitic load in the system is adjusted such that the alternator voltage and current 

transients last less than 6 milliseconds.   

Displaying a slightly slower response, dependent upon component geometries and rotational speeds, shaft 

dynamics may be represented by millisecond-to-second characteristic times.  For instance, a graph showing shaft 

speed of a 2-kWe CBC during transient testing of commanded shutdown and restart19 is shown in Fig. 9.   

Slower yet (although there are exceptions), subsystem level thermal timescales tend to be the longest – ranging 

from seconds to hours.  A Brayton solar-dynamic system thermal response to heat flux variation during a ground test 

simulating orbital operations3 is captured in Fig. 10.  If through examination of the governing differential equations, 

an engineer can estimate and isolate the timescales in the problems of interest, simplifications in transient modeling 

may be achieved by separating the inconsequential physical phenomenon from the relevant factors and removing the 

unimportant parameters from the models. 
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For example, when trying to estimate the power profile and total energy required to start a CBC converter from 

rest, the electrical and mechanical timescales dominate the initial system response.  A multi-kilowatt CBC 

turboalternator using gas-film, compliant-foil bearings is easily capable of achieving “lift-off” (when the foils lift off 

of the shaft and the shaft is hydrodynamically supported by the gas film) in less than one second.  After lift-off, the 

system is “motored” (using the alternator as a motor to rotate the shaft) until the system reaches a thermofluid 

transition point at which the converter becomes self-sustaining and power producing.  Depending on the size and 

performance characteristics of the converter, the thermal response may take minutes.  To simplify transient 

modeling efforts addressing start-up power profiles, a short-time-scale electro-mechanical model of the 

turboalternator (including the shaft and bearings but ignoring the thermal response of the CBC system) might be 

adequate to predict the initial power profile in the first second.  The short-time model would simulate parameters 

such as motor torque, break-away torque, shaft inertia and bearing contact friction.  A second model considering the 

subsystem thermal response and motoring time needed until self-sustaining action is reached would address 

component mechanical losses and thermal capacitances to allow integration at larger time scales thereby completing 

the power profile and energy estimates.  The simplification achieved by timescale identification and separation often 

leads to easier model development and execution.  Yet, one must still be sensitive to possible exceptions.  For 

instance, if the relatively fast thermal response of the bearing foils is relevant to the contact friction phenomenon, a 

locally integrated thermal model may still be needed in the start-up analysis. 

 
2. Experimental Validation 

As characteristic scales are being evaluated, it is worthwhile to consider what methods will be used to verify 

model predictions.  To attain reasonable confidence in predictive capabilities, models (steady-state and transient) 

must be validated using empirical data.  When planning an experiment to validate a highly integrated dynamic 

model, similitude of critical dimensionless scales is desirable.  The degree to which dimensionless scales are not 

matched directly impacts the credibility of the verification.  For example, a simple lumped-capacitance thermal 

model of an isolated, insulated duct in a Brayton system is characterized by the first-order ordinary differential 

equation representing conservation of energy, 

 0)( =−+ ec TTAh
dt
dTVcρ  (2) 
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The familiar temperature time-response equation results, 

  (3) τ/)( tetΘ −=

The characteristic time constant, τ, is made up of physically significant duct and flow parameters, 

 AhVc cρτ =  (4) 

To increase the usefulness of a validation experiment, the experimental apparatus used to generate integrated 

duct model verification data should possess a similar time constant to a flight-like system.  A 10-cm diameter cast-

iron commercial pipe flowing air with a time constant of 184 s may not be a good representation of a stainless steel 

flight-like compressor inlet duct flowing He-Xe with a time constant of 62 s.  Certainly, this is an over-simplified 

example – an experiment is not needed to provide the first-order solution.  However, for components with 

complicated geometries and multiple characteristic scales (such as a heat exchanger), the opportunity to achieve 

similitude is quickly lost as non-prototypic hardware enters a verification test loop.  Even if something as simple as 

the lumped-capacitance time scale is matched, it may be of very limited use.  Biot numbers, Bi = hcD/ks, for the 

aforementioned duct cases are significantly greater than 0.1; this invalidates the lumped-capacitance assumption 

altogether.  Even as higher-order models are developed, integrated experiments using flight-like components are 

required to verify that modeling assumptions still do not oversimplify the problem. 

V. Cycle Sensitivity 
Thermodynamic performance of CBC energy converters can be strongly affected by individual component 

characteristics.  Even in the oversimplified Fig. 1 representation, the overall converter efficiency is very sensitive to 

recuperator effectiveness.  Turbomachinery efficiencies and heat exchanger effectivenesses are commonly known to 

influence cycle performance.  However, cycle sensitivity to parameters such as bearing film thickness or alternator 

gap size is less recognized. 

Bearing film thickness and alternator gap size both affect the total frictional losses associated with shaft rotation.  

These viscous losses directly rob the turbine of useful shaft work.  For a converter that runs at 25% efficiency, each 

kilowatt of viscous loss can require up to one kilowatt of heat rejection and 4 kWt in additional heat source supply 

capability (a fraction of the viscous heating can be recovered as useful work if the heated fluid travels through the 

recuperator or turbine).  The selection of an appropriate design-point bearing film thickness is an extremely 

complicated trade study involving items such as bearing load capacity, bearing and shaft geometry, off-design 

 
American Institute of Aeronautics and Astronautics 

 

8



expectations, thermal management and rotordynamics.  Likewise, trades in electromagnetic efficiency, 

rotordynamics, material properties, and operating stresses are needed to set the operating “air” gap distance in the 

alternator.  Since the cycle working fluid is sheared in the bearing-film and alternator-gap separations, mechanical 

losses (bearing and windage) are significantly impacted by the separation values.  Figure 11 presents a gross 

windage loss estimator as film thickness and peak operating pressure vary for a 100 kWe system.  (For thrust and 

journal bearings, effective film thickness and operating pressure cannot be treated as independent parameters; 

bearing load capacity couples the two parameters and requires load estimates to optimize the thickness setting.)  In 

the windage model results of Fig. 11, loss estimates become significant at the higher pressures.  These losses cause 

cycle optimized state points to change.  The more intricate loss models encompassed in CCEP16 allow us to evaluate 

cycle sensitivities to loss estimates.  Comparing Figs. 5-7 and 12 identifies cycle impacts due to mechanical loss 

sensitivities.  At a peak operating pressure of 1 MPa, Fig. 7 shows total mechanical losses of approximately 9 kW; at 

3 MPa, Fig. 12 totals 23 kW of mechanical losses.  Unfortunately, significant variation exists in different loss 

models.  Figure 13 shows a cycle similar to that of Fig. 12 but using a different empirical loss model.9  The 

mechanical losses shown in Fig. 13 at 3 MPa are less than 14 kW (a 40% reduction); a related increase in Fig. 12 to 

Fig. 13 converter efficiency from 14.7% to 16.1% is noted.  Not only is converter efficiency affected, but other 

design factors are also sensitive to mechanical losses.  For example, start-up auxiliary power requirements are 

heavily influenced by mechanical loss and total motoring time estimates.  To reduce the uncertainty associated with 

loss estimates, a focused research program is currently underway at the NASA Glenn Research Center.  The 

research will better quantify bearing and windage mechanical losses under different operating conditions in fluids of 

various molecular weights and correlate the observed losses with a physics-based loss model. 

VI. Mass Models 
In CBC conceptual design models, two methods of mass estimation are prevalent.  The first method uses 

empirical curve fits that present “as-built” component masses as a function of a few (frequently one) characteristic 

performance variables.  The second method is to have a detailed geometric characterization of the component and 

determine the mass by summing the known volume and material density products.  Both methods have advantages 

and disadvantages. 

The empirical method is generally simpler and easily included in higher-level integrated system models.  For 

example, to size a turboalternator or CBC heat exchanger, the specific mass (kg/kW) curves in Figs. 14 and 15 could 
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be used.  The curves are anchored by prototypical hardware built as part of previous research programs.  

(Uncertainties due to few “as-built” data points can, of course, propagate to large uncertainties in subsystem mass 

estimates.)  If the empirical method is used, unjustified extrapolation outside the empirical database must be 

avoided.  Additionally, without a more detailed physical model to scale the hardware, the modeler relies on the 

completeness of the independent variables identified.  Because of the problems listed, it is often difficult to fully 

assess the impact of advanced technologies using historical hardware-based functional relationships. 

The use of more detailed component design information provides a second mass estimation method.  Using this 

technique, the CCEP code manipulates information such as that given in Table 1 to estimate the mass of a plate-fin 

counterflow recuperator.  The detailed information seems to yield a more fundamental mass calculation, but one 

must recognize that other empirical relationships (such as pressure-drop and heat transfer correlations) are involved 

in producing the detailed geometric configuration.  If the design details are generated using a fundamental physics-

based algorithm, this method can usually be successfully adapted to investigate advanced technologies (like new 

materials, fabrication methods, etc.).  This method is also less constrained by designs that lie outside the historical 

database.  However, whenever a conceptual design estimate can be validated with “as-built” reference data in a 

reasonable and unrestrained manner, the hardware-based comparison is usually preferred.  

 

VII. Conclusions 
Each performance model’s required capabilities are driven by the design question being investigated.  However, 

as a general recommendation, to attain acceptable results, conceptual design analyses used to size closed-Brayton-

cycle space power conversion subsystems must include realistic representations of turbomachinery efficiencies, 

mechanical losses and electromechanical losses.  Efficiency errors of 30% and mass estimate errors of 20% are 

possible using even moderately unrealistic representations. 

Transient CBC performance models can benefit from timescale identification and segregation.  Characteristic 

electrical, mechanical and thermal timescales in closed-Brayton-cycle subsystems can vary from fractions of 

milliseconds to hours.  Simpler development and use of integrated dynamic models may be possible using timescale 

separation techniques. 
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Dimensionless similitude between ground test units and flight systems is essential to meaningful experimental 

validation of transient models.  Special attention must be devoted to evaluating ground test hardware with respect to 

flight-like characteristic dimensionless scales. 

Cycle energy balances are sensitive to mechanical losses in bearings and alternators.  Comprehensive bearing 

and windage loss models are difficult to generate due to the complexity and number of variables in the related trade 

spaces.  Existing loss models yield significantly different loss predictions.  Using two available models, a 40% 

difference in mechanical loss predictions was demonstrated for a 100-kWe (two-engine) closed-Brayton-cycle 

subsystem operating at 3 MPa peak pressure.  More research is needed to reduce the uncertainty in journal and thrust 

bearing loss predictions over a range of operating conditions using fluids of various molecular weights. 

Closed-Brayton-cycle subsystem mass estimates are typically empirically based or calculated from more detailed 

component design information.  Both methods have advantages and disadvantages but, if not overly constraining, 

grounding a mass estimate in “as-built” data is frequently advantageous. 
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Fig. 1 Simple recuperated Brayton cycle. 
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95 kW In EM loss 0.0 kWt 145 kW Out

Brg Loss 0.000 kWt 98%
107 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
216 kWt Ratio = 1.190 TIT/CIT 2.87

97% Cyc eff 31.90%

110.6 m2 902 K
550 K 222 kWt 0.991 MPa

0.999 MPa

530 K 569 K 95%
Tsink 0.276 MPa 0.506 MPa 920 K
200 K

DP/Pcold = 0.0052
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.11 kWe
12.7%

16.1 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 2 CBC with specified turbomachinery η, 0% compressor bleed, no bearing, windage, or EM losses. 
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HeXe
NaK 393 K 5% Bleed 1150 K 1.25 kg/s
0.97 kg/s 0.138 MPa 0.051 kg/s 0.963 MPa 40.0 mol wt
1.03 kg/s 166 kWt 72% He

 395 K 2% 28% Xe
1143 K (1 of 2)

85.000% 90.000%
1.27 kg/s

400 K 915 K
0.500 MPa 0.515 MPa 332 kWt 339 kWt
CPR 2.00 Speed 45 krpm TPR 1.869
100 kW In EM loss 0.0 kWt 150 kW Out

Brg Loss 0.000 kWt 98%
116 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
235 kWt Ratio = 1.347 TIT/CIT 2.86

97% Cyc eff 30.10%

125.3 m2 894 K
550 K 223 kWt 0.992 MPa

0.999 MPa

518 K 575 K 95%
Tsink 0.276 MPa 0.506 MPa 912 K
200 K

DP/Pcold = 0.0050
DP/Phot = 0.0150

1.18 kWe
14.1%

19.1 gpm
DP 138 kPa

50.0 kWe

  C T  

100%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 3 CBC with specified turbomachinery η, 2% compressor bleed, no bearing, windage, or EM losses. 

 

HeXe
NaK 393 K 5% Bleed 1150 K 1.55 kg/s
1.20 kg/s 0.138 MPa 0.063 kg/s 0.962 MPa 40.0 mol wt
1.26 kg/s 199 kWt 72% He

 394 K 2% 28% Xe
1143 K (1 of 2)

82.051% 86.326%
1.58 kg/s

400 K 925 K
0.500 MPa 0.515 MPa 398 kWt 406 kWt
CPR 2.00 Speed 45 krpm TPR 1.869
128 kW In EM loss 0.0 kWt 178 kW Out

Brg Loss 0.000 kWt 98%
149 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
301 kWt Ratio = 1.328 TIT/CIT 2.86

97% Cyc eff 25.13%

157.4 m2 903 K
556 K 280 kWt 0.991 MPa

0.999 MPa

524 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 922 K
200 K

DP/Pcold = 0.0055
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.28 kWe
15.9%

23.4 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 4. CBC with map-based turbomachinery η, 2% compressor bleed, no bearing, windage, or EM losses. 
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HeXe
NaK 393 K 5% Bleed 1150 K 1.64 kg/s
1.25 kg/s 0.138 MPa 0.066 kg/s 0.962 MPa 40.0 mol wt
1.31 kg/s 210 kWt 72% He

 436 K 2% 28% Xe
1144 K (1 of 2)

82.178% 86.664%
1.67 kg/s

400 K 925 K
0.500 MPa 0.515 MPa 420 kWt 428 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
135 kW In EM loss 0.0 kWt 189 kW Out

Brg Loss 3.922 kWt 98%
157 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 3.9 kWt
323 kWt Ratio = 1.310 TIT/CIT 2.86

97% Cyc eff 23.82%

166.5 m2 904 K
556 K 297 kWt 0.991 MPa

0.999 MPa

528 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 922 K
200 K

DP/Pcold = 0.0056
DP/Phot = 0.0150

1.31 kWe
16.2%

24.4 gpm
DP 138 kPa

50.0 kWe

  C T  

100%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 5. CBC with map-based turbomachinery η, 2% compressor bleed, bearing losses only. 

 

HeXe
NaK 393 K 5% Bleed 1150 K 1.75 kg/s
1.34 kg/s 0.138 MPa 0.071 kg/s 0.962 MPa 40.0 mol wt
1.41 kg/s 224 kWt 72% He

 483 K 2% 28% Xe
1145 K (1 of 2)

82.298% 87.084%
1.79 kg/s

400 K 924 K
0.500 MPa 0.515 MPa 447 kWt 456 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
144 kW In EM loss 0.0 kWt 203 kW Out

Brg Loss 4.127 kWt 98%
168 kWt Wnd loss 4.782 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 8.9 kWt
350 kWt Ratio = 1.320 TIT/CIT 2.86

97% Cyc eff 22.35%

180.0 m2 904 K
555 K 318 kWt 0.991 MPa

0.999 MPa

529 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 923 K
200 K

DP/Pcold = 0.0058
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.38 kWe
16.6%

26.3 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 6. CBC with map-based turbomachinery η, 2% compressor bleed, bearing and windage losses only. 
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HeXe
NaK 393 K 5% Bleed 1150 K 1.81 kg/s
1.38 kg/s 0.138 MPa 0.073 kg/s 0.962 MPa 40.0 mol wt
1.45 kg/s 231 kWt 72% He

 507 K 2% 28% Xe
1145 K (1 of 2)

82.348% 87.302%
1.85 kg/s

400 K 924 K
0.500 MPa 0.515 MPa 462 kWt 471 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
149 kW In EM loss 2.6 kWt 211 kW Out

Brg Loss 4.224 kWt 98%
173 kWt Wnd loss 4.704 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 11.559 kWt
365 kWt Ratio = 1.315 TIT/CIT 2.86

97% Cyc eff 21.65%

186.4 m2 905 K
555 K 329 kWt 0.991 MPa

0.999 MPa

531 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 923 K
200 K

DP/Pcold = 0.0060
DP/Phot = 0.0150

1.39 kWe
16.9%

27.1 gpm
DP 138 kPa

50.0 kWe

  C T  

95%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 7. CBC with map-based turbomachinery η, 2% compressor bleed, bearing, windage, and EM losses. 

 

 
 

Fig. 8. Alternator transient during a thruster recycle. 
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Fig. 9. Shaft speed during transient testing. 

 

 
 

Fig. 10. Thermal variation of solar-dynamic Brayton. 
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Figure 11. Windage loss estimator. 

 

HeXe
NaK 393 K 5% Bleed 1150 K 2.77 kg/s
1.97 kg/s 0.137 MPa 0.104 kg/s 2.888 MPa 40.0 mol wt
2.08 kg/s 339 kWt 72% He

 574 K 2% 28% Xe
1147 K

80.269% 83.766%
2.83 kg/s

400 K 934 K
1.500 MPa 1.544 MPa 678 kWt 692 kWt
CPR 2.00 Speed 45 krpm TPR 1.870
234 kW In EM loss 3.3 kWt 310 kW Out

Brg Loss 12.986 kWt 98%
272 kWt Wnd loss 9.820 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 26.140 kWt
582 kWt Ratio = 1.223 TIT/CIT 2.87

97% Cyc eff 14.74%

281.0 m2 915 K
559 K 513 kWt 2.974 MPa

2.994 MPa

547 K 585 K 95%
Tsink 0.275 MPa 1.518 MPa 933 K
200 K

DP/Pcold = 0.0049
DP/Phot = 0.0150

1.55 kWe
21.8%

38.7 gpm
DP 139 kPa

50.0 kWe

  C T  

94%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 12. CBC at 3MPa peak cycle pressure; includes map-based turbomachinery η, 2% compressor bleed, 
bearing, windage, and EM losses. 
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HeXe
NaK 393 K 5% Bleed 1150 K 2.53 kg/s
1.81 kg/s 0.137 MPa 0.095 kg/s 2.888 MPa 40.0 mol wt
1.90 kg/s 311 kWt 72% He

 521 K 2% 28% Xe
1146 K

79.851% 83.408%
2.59 kg/s

400 K 934 K
1.500 MPa 1.544 MPa 621 kWt 634 kWt
CPR 2.00 Speed 45 krpm TPR 1.870
215 kW In EM loss 3.3 kWt 282 kW Out

Brg Loss 5.279 kWt 98%
250 kWt Wnd loss 8.371 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 16.983 kWt
525 kWt Ratio = 1.228 TIT/CIT 2.86

97% Cyc eff 16.09%

255.8 m2 914 K
560 K 466 kWt 2.974 MPa

2.994 MPa

544 K 586 K 95%
Tsink 0.275 MPa 1.518 MPa 933 K
200 K

DP/Pcold = 0.0048
DP/Phot = 0.0150

50.0 kWe

  C T  

94%

1.52 kWe
20.4%

35.5 gpm
DP 139 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

 
 

Fig. 13. CBC at 3MPa peak cycle pressure; includes map-based turbomachinery η, 2% compressor bleed, 
and alternate loss model. 

 

 
 

Figure 14.  Specific mass curve for turboalternators. 
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Fig. 15.  Specific mass curves for heat exchangers. 
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Table 1.  Recuperator geometric characterization. 

 
 

Recuperator
Item Value Units
Total Length = 0.820 m
Total Width = 0.325 m

Total Height = 0.459 m
Divider Plate Thick = 0.000203 m

Sideplate Thick = 0.00254 m
Outer shell Thick = 0.00356 m

Headers
Item Value Units

Inlet Header Length = 0.193 m
Inlet Header Width = 0.248 m

Outlet Header Length = 0.203 m
Outlet Header Width = 0.257 m

Fin Pitch = 197 fins/m
Fin Length = N/A

Fin Thickness = 0.0001524 m
Core General

Item Value Units
Core Length = 0.42418 m
Core Width = 0.313182 m

Fin Pitch = 630 fins/m
Fin Length = 0.00318 m

Fin Thickness = 0.0001524 m
Cold Stream Core (High Pressure)

Item Value Units
Flow Area = 0.0513 m2 

Plate Spacing = 0.00318 m
DHYD = 0.001946 m

# Sandwiches = 60
Heat Xfer Area = 46.5 m2 

Hot Stream Core (Low Pressure)
Item Value Units

Flow Area = 0.0645 m2 
Plate Spacing = 0.00389 m

DHYD = 0.002073 m
# Sandwiches = 61

Heat Xfer Area = 54.9 m2  
Recuperator mass = 158 kg 
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