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Hybrid acoustic prediction methods have an important advantage over the current Reynolds
averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively
universal subscale motion and not the configuration dependent larger scale turbulence.
Unfortunately, they are unable to account for the high frequency sound generated by the
turbulence in the initial mixing layers. This paper introduces an alternative approach that directly
calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients
in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those
used in current RANS based noise prediction methods to determine the unknown sources in the 
equations for the remaining unresolved components of the sound field. The resulting prediction
method would then be intermediate between the current noise prediction codes and previously
proposed hybrid noise prediction methods.

I. Introduction
 Current noise prediction methods are usually based on acoustic analogy approaches  which (as a minimum)

require modeling the entire unsteady flow that actually produces the sound and are therefore unlikely to be universal
beyond the data base for which they are calibrated. This difficulty would not occur if the sound field were
determined from a direct Navier-Stokes (DNS)   solution or even an ordinary Large Eddy Simulation (LES).
Unfortunately, the computer resources needed to resolve all the relevant length scales are enormous—often well
beyond those available on present day machines. A reasonable compromise would be to use LES simulations with

6,17,5

1

very broad filter widths. This approach was adopted by Bastin, Lafon and Candel , Bodony and Lele , and others.l2 7,8,9

They found that simulations of this type are reasonably accurate at low frequencies, but significantly underpredict
the high frequency component of the spectrum. It is now known that this occurs because these methods do not
account for the sound generated by the unresolved turbulence scales, which can correspond to the entire unsteady
flow in the thin shear layers near the nozzle lip24 as well as to the sub-filter scale motion further downstream9. The
present paper is an attempt to resolve these difficulties by directly calculating the low frequency sound from a
hybrid RANS/LES computation and determining the remaining small scale, or high frequency, sound by modeling
the source terms in an appropriate set of linear equations.

 The relevant equations are obtained by dividing each of the flow variables in the Navier-Stokes equations into
a component that satisfies universal set of conservation laws, which include, among other things, the Reynolds
averaged Navier-Stokes (RANS) equations as well as the Favre20 filtered Navier-Stokes equations with arbitrary
closure models for the sub-filter scale stresses (i.e., the equations that are actually used in most LES calculations)
and a residual component that satisfies the Navier-Stokes equations with the base flow equations subtracted out. By
introducing new (in general non-linear) dependent variables10,11,12 the latter equations can be rewritten in the form of 
the linearized Euler equations with sources that have the same form as those that would be produced by external
stress and heat flux perturbations. The corresponding source strengths, which depend on the non-linear residual
Reynolds stresses, can, in principle, be modeled, and the resulting linear equations can be solved by using a Greens’
function approach. The result can then be used to obtain an expression for the far field pressure autocovariance in 
terms of the residual-scale turbulent motion. The latter would only depend on the correlation (i.e., the lower order
statistics) of this motion if the base flow were taken to be a steady RANS solution. But the result for any time
dependent base flow, such as an LES solution to the filtered Navier-Stokes (or FNS) equations, appears to depend
on the detailed instantaneous residual -scale stresses--which are very difficult to model.

 Current RANS based noise prediction codes, such as the JeNo15 code, determine the unknown source
strengths from experimental data. This cannot be done with prediction methods that involve time dependent base
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flows because, as a practical matter, experimentalists are limited to documenting the reproducible (i.e., non-random)
characteristics of these sources, such as their correlations or other lower order statistics. It is therefore important to
derive a formula for the residual sound field that depends only on non-random quantities the can be measured with
currently available experimental techniques. The present paper is an attempt to obtain such an equation by exploiting
the statistical independence (i.e., the decoupling) of any base flow solution (such as a hybrid RANS/LES simulation)
from the detailed sub-scale fluctuations that would occur in an actual experiment. The only coupling that can occur
in these simulations is through the base flow stresses and heat flux vector—which are assumed to be modeled in
terms of the remaining base flow variables and their derivatives in hybrid RANS/LES computations. The base flow
solutions are therefore calculated from a closed set of equations that involve only base flow variables. The chaotic
subscale fluctuations in any realization of the flow, i.e., in an actual experiment, can, therefore, not be correlated
with the fluctuations in these solutions.

The present paper assumes that the model for the residual (i.e., unresolved) stresses, say j , is

constructed from appropriately reduced experimental data (which can, in principle, be obtained from PIV 
measurements). While the actual (i.e., the experimental) resolved and residual motions are certainly correlated, the
experimentally based model for j must reflect the fact that the experimental residual-scale motions are

statistically independent of the fluctuations in the base flow (i.e., the hybrid RANS/LES) solution and must,
therefore be uncorrelated with the fluctuations in that solution. This does not, however, mean that the expectation or 
average value of the residual stresses will be statistically independent of the base flow solution, since the latter is
only required to represent a given realization of the flow on a time average basis and can significantly depart from it
at any instant of time.

As already indicated, the present paper introduces a hybrid approach in which the base flow corresponds to
a typical hybrid RANS/LES solution that goes from a RANS type solution near the nozzle lip (where the initial
shear layers are too thin to be resolved by the necessarily coarse LES computation24) to a (fairly coarse)LES solution
further downstream. We adopt the so called universal modeling approach13 which assumes that the unknown stresses
and heat flux in the base flow equations are modeled by a RANS/LES model that goes from a time average (i.e.,
RANS type) model near the nozzle lip to a pure spatial LES-type model further downstream. There is no need to
complicate matters by requiring that the base flow satisfy the filtered Navier-Stokes equations with inhomogeneous
filtering as was done, for example, by Germano4 because the combined result (i.e., the base flow plus residual
equation solution) is, in principle, exact. But the subscale stress correlations in the residual pressure equation (that
go continuously from the full fluctuating stress near the nozzle lip to the instantaneous sub-filter scale stresses 
further downstream) ultimately have to be modeled.

At high Reynolds numbers the small scale motion is expected to be statistically independent of large
energy bearing scales in any realization of the flow. This does not, however, imply that all of the resolved motion
will be statistically independent of the subscale motion, because the near cutoff scales are expected to be highly
correlated. It is only the hybrid RANS/LES simulation of the resolved scales that is expected to be uncorrelated with 

the actual, i.e. the experimentally measured, subscale tensor j . But the propagation factor in the Greens’ function

solution is likely to be dominated by the large energy -bearing scales, and Kolmogorov’s 3hypothesis (which forms
the bases of many of the current subscale turbulence models13) indicates that the small scale motion should be 
statistically independent of these scales. It is, therefore, likely that the present decorrelation assumption will be
satisfied --at least on a global basis-- in the downstream region of the actual flow (where the implied filter width
eventually becomes small relative to the transverse length scale).

  The statistical independence assumption is trivially satisfied in the upstream region where the filtered 
equations reduce to the steady RANS equations because the fluctuating component of the base flow and, therefore,
the covariance of the base flow and fluctuating motion, is identically zero. It will not, however, be satisfied in the
intermediate blending region. But to the extent that the propagation factor is non-local and the blending region is
sufficiently small the present decorrelation assumption should be reasonably well satisfied in any actual realization
of the flow.

A major attraction of the current hybrid approach is that the subscale stresses that have to be modeled in
the downstream region should be much more universal than the large scale stresses that have to be modeled with the
usual RANS based methods. Unfortunately, the present approach still requires full unsteady flow modeling in the
initial mixing layers. On the other hand it is now believed that the sound produced by the larger scale motion at the
end of the potential core is highly coherent while the sound produced by the small scale motion in the initial mixing
layers (as well as by the smaller scale motion at the end of the potential core) is much more random23. The latter
should therefore be less sensitive to variations in retarded time then the former, which implies that it should also be
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less sensitive to the details of the source structure and, therefore, that relatively universal source models can be
constructed.

This is consistent with the prevailing view that RANS based codes can adequately predict the larger angle sound
field, which is primarily generated in the initial mixing layers, but tend to under-predict the small angle sound field,
which is believed to be generated near the end of the potential core15,23. The present approach can be viewed as a
framework for directly calculating the latter while retaining the current RANS based approach to calculate the
former. But, unlike the RANS approach, the present formalism explicitly accounts for the scattering of the small
scale sound by the large scale motion--an effect that was emphasized by Crighton6. To the extent that this
phenomenon is nonlocal, the present statistical independence assumption should be very appropriate to its
computation.

II. Sub-Filter Scale Equations  in Vector Form Equation Section 2
We decompose the pressure p , density  and velocity ,iv 1, 2,3i , into base flow components ˆ ˆ, p

and  and residual components defined byiv

(2.1)i i iˆ ˆ, v v v , p p p
where the base flow components satisfy a universal set of conservation laws, which include, among other things, the

RANS equations as well as the Favre20 filtered Navier-Stokes equations (in which case ˆ  and ˆ, p i i
ˆv v /

would correspond to filtered and Favre20 filtered quantities respectively ). The residual components can be shown to 
satisfy the 5 formally linear equations11,12

 (2.2)for 1 2 3 4 5L u s , , , , ,

where

1 2 3

1

2i ju v , , v , v , v , , , p j (2.3)

 denotes the solution vector and the first order linear operator L  is defined by 

2
0 4 4 5L D c K (2.4)

with

5 4 4
1 1

1 1j j j

j j j

v
K v i, j ,

x x x
2 3, ; (2.5)

and

0

0 41 2 3 j

j
j

ij ij ij

v , , , ,
j

D v ;
t x

p ;

, j , , ;
x

5
(2.6)

 The source function  is defined bys
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1

2j j j ii jj jjs D D   (2.7)

with

4 1j
j j

v
D

x x
 (2.8)

where

4 01j jv v , v h , v5 0  (2.9)

5 0j  and 4 andij j  are the base flow stresses and heat flux vector, which would be given by

4 0 0
1

1
2ij i j i j j j j ii j ij iˆ ˆv v v v , h v h v v v if the base flow were chosen to be

the FNS equations. Finally, 2 2
0 0

1 1

2 2
h h v , h h v , 2c RTwhere  is the squared base flow sound

speed, and, as usual, the viscous terms, which are believed to play an insignificant role in the sound generation
process, have been neglected. The Latin indices go from 1 to 3, while the Greek indices go from 1 to 5.

Equations (2.7) to (2.9) show that the source term in equation (2.2) consists of two parts: a part

associated with the residual (or subscale) motion and a base flow componentij ij that is the same as the source 

that appears in the hybrid RANS/LES equations. The subscale motion generated by this latter source component is
completely determined by the base flow solution because it is generated by that solution and is determined by

equation (2.2) whose coefficients depend on that solution, while the subscale motion generated by  is determined

by the base flow solution as well as by the experimentally measured residual motion and is, therefore, correlated
with both these entities.

ij

Then since equation (2.2) is linear, it makes sense to divide its solution vector into the two components
sgu u u f  (2.10)

where

1
2

f
j j ii jjL u D D  (2.11)

and
1

2
sg

j j ii jL u D D j  (2.12)

 It is clear that these results will remain unchanged if ij and ij are redefined by

j j jv v x (2.13)

j j j x  (2.14)

where j x  is an arbitrary time independent quantity. The overbar will now be used more specifically to denote

time averages. Then j y  would equal j y  in the upstream region where the base flow is steady if j were

defined by the original equation (2.8),. Appendix B shows that this will also be approximately true in the downsteam

region where the original j corresponds to the sub-grid stresses and heat flux in the FNS equations and are given
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in the paragraph following equation (2.9). We, therefore, take j x  to be the (approximate) common value of

these two quantities and thereby insure that the derived stresses (2.13) and (2.14) have zero time average and, more

importantly, that in the upstream region where the base-flow is steady. The solution to equation (2.10) is,

therefore, entirely driven by the initial conditions in this region. Notice that steady sources cannot generate any
sound at subsonic Mach numbers.

0j

Since, the coefficients and sources in equation (2.11) are all resolved quantities, i.e. they involve only
variables that appear in the base follow equations, it can be solved right along with these equations with no
additional modeling and little additional effort. These two sets of equations (i.e., equations (2.11) and the base flow 
equations) are completely closed once the base flow stress model has been selected. The pressure components of the

solution vectors, say  andf ˆp p , can then be added together to obtain the component of the pressure

L f ˆp p p (2.15)

that is completely determined by the base flow ( i.e., the hybrid RANS/LES) solution. It may even be possible to

calculate these solutions on the same mesh, since fu is expected to be composed of the larger sub-grid scales7. But 

even if this is not the case, the solution to the linear equation (2.11) should still be relatively inexpensive compared
to the base flow solution.

The solution to equation (2.10) can also be used to iteratively calculate at least a portion of the modeled
stresses in the hybrid RANS/LES equations in order to gradually introduce the required unsteadiness into the
downstream LES solution. This type of calculation, which is sometimes known as mean field theory, should only be
required in the blending region between the pure RANS and LES regions. It is expected to provide a better
representation of the actual physics than current techniques for inputting unsteadiness into LES computations.

 III. Vector Greens’ Function Solution for sg Equation Section 3
Solving equations (2.12) is potentially much more difficult than solving equations (2.11), because of the

additional source modeling requirement and because its solution can depend upon both the base flow and residual

motions. To separate out these effects, we introduce the vector Greens’ function21 g ,t ,x y  which satisfies 

the inhomogeneous linear equations

t
L g ,t , t

x,
x y x y (3.1)

with delta-function type source term together with the causality condition 

0g ,t , for tx y  (3.2)

to obtain

1

2

1

2j

sg
j j ii jj

V

j j kk
V

u ,t g ,t , D D d d

,t , , , d d

x x y y

x y y y y

(3.3)

where

41
j

j j

g ,t v
,t , g ,t ,

y y

x y,
x y x y (3.4)
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From the acoustics perspective the primary interest is in the 4th pressure-like component of (3.3), which

only involves the 4th component vector Greens’ function
4

g ,t ,x y . The latter quantity can, in principle, be

found by solving be solving the system (3.1). But since this consists of 15 first order equations, it turns out to be

simpler to compute the adjoint Greens’ function 4 , ,ag y x t . Equations (A1) to (A4) show that it is related to

4
g ,t ,x y  by the reciprocity relation

4 4, , , ,ag t g ty x x y  (3.5)

and satisfies the system

4 4y,
 , ,a aL g t ty x x y  (3.6)

of five first order equations, which are given in component form by (A-5a,b,c). These equations suggest that

4 4
ag : ,t g , ,ty x y x  will be a stationary random function of its third argument, , which results

from the time dependence of the coefficients in 
y,

aL that are determined from the base flow ( i.e., the hybrid

RANS/LES) solution and are, therefore, random functions of time. (Notice that this argument would not appear if 
the base flow were steady.)

It therefore follows from equations (2.3), (3.4) and (3.5) that the 4th component of equation (3.3) can be 
written (with the obvious notation) as

:
jsg j

V

,t ,t , d dx y x y y  (3.7)

where, like 4 4
ag : ,t g , ,ty x y x , the propagation factor

1
: :

2j j j kk,t ,t ,ty x y x y x:  (3.8)

along with

44

: 1

:

4

jk

j a

j

,t k , ,

,t
g , ,t

y

y x

y x
y x

2 3

(3.9)

should be random functions of their third arguments ,since the third arguments of the six independent components
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4 4
44

:

11

2 2

jk

a a
k j j ak

j k j k

,t

g , ,t g , ,t vv
g , ,

y y y y

y x

y x y x
ty x

(3.10)

of :jk ,ty x (which arise from the third argument of 4g : ,ty x as well as the -dependence of

) also have this property.kv / y j

IV. Subscale Pressure Autocovariance Equation Section 4

Since , the far field pressure autocovariancesg sg,t p ,t as xx x

1

2

T

sg sg sg
T

T

, lim p ,t p ,t dt for large
T

x x x x (4.1)

becomes

1
, : , , , ,

2

T

sg i j i j
T V

t t t t t t d d dt dt
T

y  x y y y

1
, : , , , ,

2

T

i j i j
T V

t t t t t t t d d dt dt
T

y x y y y (4.2)

where

, : , , : , : ,

: , : ,

j l j l

j l

t t t t t t t t t t dt

t t t t t t dt

y  x y x y x

y x y x

(4.3)

is a stationary random function of its fourth and fifth arguments. It follows that 

, : , ,i j t t t ty  x   and 

; , , , ,i j i jR t t t t ty y y (4.4)

are both stationary random functions of t .
It is appropriate to regard these two quantities as being uncorrelated in the present approach because the base

flow solution, which is determined from a closed set of equations that only involve the base flow variables, should
be statistically independent of (i.e., decoupled from) the chaotic subscale motion in the actual experiment used to
model these quantities. (In fact the entire experimental flow should eventually become de-correlated from the hybrid
LES/RANS simulation where the randomness comes from the numerical round off errors and/or the random initial
conditions-- which are themselves uncorrelated with the initial conditions in the experiment18,19. It is therefore

reasonable to require that any experimentally based model used to represent j  be statistically independent of the

base flow motion (and consequently with the coefficients of aL ,).

This means that the covariance
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1
, :

2

T

i j i j
T

T

lim t ,t t , t R ; ,t ,t dt
T

y x y  (4.5)

where

, :

, : , :

i j

i j i j

t ,t t , t

t ,t t , t t , t

y  x

y x y x
 (4.6)

i j i j i jR ; ,t ,t R ; ,t ,t R ; ,ty y y (4.7)

1
, : , :

2

T

i j i j
T

T

t , t lim t ,t t , t dt
T

y x y x (4.8)

and

1
2

T

i j i j
T

T

R ; ,t lim R ; ,t ,t dt
T

y y (4.9)

should equal zero. It therefore, follows that ,sg x  can be written as an integral

, , : ,sg i j i j
V

t t R t d d dtx y x y ; , y (4.10)

of the product of two non-random functions.
The first of these functions, which can be expressed as the integral 

, : , :i j i jt , t t ,t t ,t dty  x y  x  (4.11)

over time of the correlation

1
, : : :

2

T

i j i l
T

T

t ,t t ,t lim t ,t t t t ,t dt
T

y  x y x y x (4.12)

of the two random propagation factors :i t ,t t ty x and :l t ,ty x , can be thought of as an 

expected or mean propagation factor. It can be determined as part of the hybrid LES/RANS computation. The
second function, which, can be thought of as a source function, describes the low order statistics of the unknown
component of the residual fluctuations. It has to be modeled, but it should be much easier to do this than to model
the instantaneous values of these fluctuations (which would have to be done if the source and propagation

fluctuations were not de-correlated).Notice that this de-correlation only implies that the fluctuation i j  (and

not i j itself) is independent of the unresolved scales. It may, therefore, be appropriate to paramatize the model for

this quantity (i.e., the functional form inferred from the experimental data) and determine the parameters from the
hybrid RANS/LES solution.
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We can also think of,  andi
ˆp̂,v and p , andiv  as the filtered and unfiltered components of the

pressure, velocity and density in the downstream region of anactual flow. Then the adjoint Greens’ function, and

therefore the propagation factor , should be dominated by the large energy -bearing scales of that flow, while i j

Kolmogorov’s 3hypothesis (which forms the bases of many of the current subscale turbulence models13) indicates
that the small scale motion should be statistically independent of these scales. It is, therefore, likely that the present
decorrelation assumption will be satisfied --at least on a global basis-- in the downstream region of that flow (where
the implied filter width eventually becomes small relative to the transverse length scale).

The statistical independence assumption is trivially satisfied in the upstream region where the base flow
equations reduce to the steady RANS equations because the fluctuating component of the base flow and, therefore,
the covariance (4.5) is identically zero. It will not, however, be satisfied in the intermediate blending region. But to 
the extent that the propagation factor is non-local and the blending region is sufficiently small this should have
relatively little effect on the predicted sound field.

V. Conclusions 
An exact equation for the sound generation by the residual turbulence scales in a hybrid RANS/LES based

simulation11,12 is used to obtain a formula for the residual -scale acoustic pressure autocovariance in terms of the 
residual -scale turbulence correlation tensor by exploiting the statistical independence of the hybrid RANS/LES 
solution and the experimentally determined residual motion. The residual acoustic radiation can therefore be
calculated by introducing appropriate models for this relatively universal correlation while determining the
configuration dependent large scale sound directly from the hybrid RANS/LES solution.

  The approach also accounts for the scattering of the small scale sound by the large scale motion-an effect
that was emphasized by Crighton6. To the extent that this phenomenon is non-local, the present statistical
independence assumption should be very appropriate to its computation.

At high Reynolds numbers the small scale motion should be statistically independent of the large energy
bearing scales in any realization of the flow. But this does not imply that the resolved scales in the downstream LES 
region (i.e., the scales larger than the filter width) are all statistically independent of the sub-scale motion, especially
near the filter cut off. It is only the hybrid RANS/LES simulation of the filtered scales that is expected to be

uncorrelated with the actual, i.e. the experimentally measured, residual-scale tensor j . But to the extent that the

propagation factor  is non-local and dominated by the large energy bearing scales, Kolmogorov’si j
3 hypothesis

that the small scale motion is statistically independent of these scales suggests that the present de-correlation
assumption will be satisfied in any actual realization of the flow. The hope is that the resulting equation (4.10) will
accurately predict the subscale pressure autocovariance in that flow to the same extent as the hybrid RANS/LES 
solution predicts its large scale statistics.

A major attraction of the current hybrid approach is that the sub-scale stresses that have to be modeled in
the downstream region should be much more universal than the large scale Reynolds stresses that have to be
modeled with the usual RANS based methods. Unfortunately, the present approach still requires full unsteady flow 
modeling in the initial mixing layers. The hope is that it will be possible to obtain analytically based models for this
region that exhibit a fair degree of universality. Other extensions and modifications of this approach are, of course,
possible. The base flow can, for example, be taken as a hybrid URANS/LES solution in order to make the near
nozzle modeling more universal. It may also be possible to use quasi-linear instability wave models to account for
the sound generated in this region14.

Appendix A 

 The adjoint Greens’ function ag ,y x ,t , which satisfies the adjoint equation21,22,8

y,
 , ,a aL g t ty x x y (A1)

where
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2

4 4 51
1

a D c
L K

D
(A2)

 and

,i
i

D
v

D y
y  (A3)

 is related to the direct Greens’ function g ,t ,x y  by the reciprocity relation 

ag , ,t g ,t ,y x x y (A4)

It is determined by the system (3.6) which, when written out in full, becomes8

2
4 544

4 4

1
0

1

a aa
j ija ai

j
i i j i

vDg ggc
g g

D y y y y
4

4 (A5a)

444
441

aa
jai

i j

vgDg
g

D y y
x y t (A5b)

54
4

1
0

a
ij a

i
j

Dg
g

D y
 (A5c)

Then when ,,x y 2 2
0 constantc c and

2
4 0 44

444

54

0
1

1 (A6b)

0

a a
i

i

aa
i

i

a

g c g

y

gg
t

y

g

x y

(A6a)

(A6c)

which shows that satisfies the inhomogeneous wave equation44
ag

2 2
244 44
02

a a

i i

g g
c

y y
x y t (A7)

  The relevant solution which satisfies the causality condition
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44 , , 0 forag t ty x (A8)

is

44 2
0 0

1
, ,

4
ag t t

c c

x y
y x

x y
  (A9)

So that when x x

44 2
0 0

1

4
a x

g
xc xc c

x y
0

t (A10)

  Notice that the far field adjoint Greens’ function can be calculated directly by allowing x x  in (A7).

Appendix B

Since the subscale motion in the downstream region is likely to behave incompressibly13, we neglect density

variations in this appendix and set . Since the subscale stress model is specified independently of the choice of

filter in most LES computations, we are at liberty to choose the implied filter more or less arbitrarily and can even
choose it to be a general space-time filter13. We therefore define it by4

f̂ f f f f f  (B1)

where  denotes an arbitrary spatial filter, as before, denotes a time average and f f f denotes the 

fluctuating component of f .  Recall that n n
n

a will be a filter when the
n

are filters and the constants

sum to unity, that the filter of a filter is a filter and that the time average commutes with spatial filtering. It

follows that
na

f̂ f (B2)

and, therefore, in view of equations (2.9) and the following paragraph, that

ij ij i j i j i j i j i j

i i j j j j i i

ˆ ˆ ˆ ˆv v v v v v v v v v

ˆ ˆ ˆ ˆv v v v v v v v

y y

(B3)

which is just the sum of the covariances of  withiv̂ jv  and of  withjv̂ iv  and should therefore vanish when these

quantities are uncorrelated.
Now as explained above, they cannot be completely uncorrelated in any actual realization of the

downstream flow because the filtered and sub-filter scales will be strongly correlated near the filter cutoff. But, as 
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argued by Kolmogorov 3, the small scale motion should be de-correlated from the large energy containing scales at
high Reynolds numbers. We, therefore, expect that

ij ijy y (B4)

when the cutoff for the filter  is within the inertial sub-range. The result should be exact in the present context

where the subscale motion is determined from an actual realization of the flow--and therefore uncorrelated with .

Equation (B-4) should also hold for

iv̂

4 j y and 4 j y to the extent that  is small compared to .2v h
We can therefore choose the undefined function of position in equations (2.13) and (2.14) to be the

common value of these two quantities and thereby obtain

0j jy y (B5)

when  and  are defined in this fashion. This means that they are pure fluctuating quantities, which is an 

appropriate requirement to impose on a true sound source.
j j
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