ABSTRACT: Technologies for Aircraft Noise Reduction

By Dennis Huff
NASA Glenn Research Center

Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New “chevron” nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
Technologies for Aircraft Noise Reduction

Dennis L. Huff
Chief, Acoustics Branch
NASA Glenn Research Center
Cleveland, Ohio

West Park Airport Committee Meeting
February 16, 2006
Technology Benefit: Reduced Noise Exposure

1997 Baseline Key
- Green: 55 dB
- Yellow: 65 dB
- Airport

AST Technology Benefit (Advanced Subsonic Technology)
- 5 dB Reduction (TRL 6)
- Doesn’t meet public expectations
- Constrained growth

QAT Technology Benefit (Quiet Aircraft Technology)
- 10 dB reduction
- 65 dB contour is within airport
- Enables projected air travel growth
- Reduces community noise impact
New Technology Enables Aircraft To Meet Future Requirements

- **History**: JT3D, JT8D, JT9D, CF6, CFM56

- **Current**: JT8D-200, PW2000, PW4000, V2500, GE90, PW6000

- **Future Goals**: Stage 2, Stage 3, Stage 4

NASA Goals for Technology Development

Average Noise Level Relative to Stage 3 (EPNdB)

- Year of Certification: 1960 to 2020
Aircraft Fleet Noise Reduction Needed For 55 LDN Noise Contours Within Airport Boundaries

According to a document from the U.S. Environmental Protection Agency (EPA) published in the 1970's, 55 LDN is the outdoor noise exposure level "requisite to protect the public health and welfare with an adequate margin of safety". The phrase "health and welfare" is defined as "complete physical, mental and social well-being and not merely the absence of disease and infirmity".
NASA’s Noise Reduction Research Programs

Airframe
- Landing Gear
- High-lift system
- Integrated Propulsion

Engine
- Fan
- Jet
- Core

Aircraft operations

Aircraft Goal: 10 dB Quieter than 1997 Technology
Major Engine Noise Test Facilities at NASA Glenn

9x15 Wind Tunnel

W8 Fan Rig

AeroAcoustic Propulsion Lab

Test Facilities Provide Component-Level Noise Assessments
Engine Noise Sources
(P&W PW8000 Engine, Conceptual)

- Fan
- Stator
- Compressor
- Turbine
- Combustor
- Exhaust
- Inlet
Engine Noise Reduction Technologies

- Higher Bypass Ratio
- Scarf Inlets
- Forward-Swept Fans
- Swept/Leaned Stators

- Chevron Nozzles
- Noise Prediction
- Active Noise Control
Trailing Edge Blowing

Benefits:
- Reduced Fan Noise

Testbed: 9x15 Wind Tunnel
Jet Noise Reduction With Chevron Nozzles
Engine Noise Diagnostic Testing at Honeywell

Engine:
Honeywell HTF7000

2005/06 Engine Tests Include:
- Internal flow measurements
- Microphone arrays to map engine acoustic field
- Fan noise modal measurements
- In-situ impedance measurement

Noise Reduction Technologies:
- Forward-Swept Fan
- Advanced acoustic liners

Small Engine Test Supports Business & Regional Jet Applications
Design of Low Noise Engine Initiated at P&W

Ultra-High Bypass “Advanced Geared Turbofan”

Low Noise Because of:
• Low fan tip speed
• Low jet exhaust velocity

Enabling Technologies:
• Fan drive gear system
• Variable area fan nozzle

Additional Noise Reduction Advanced Technologies

Wind Tunnel Fan Operability Test Planned for 2006
“Toboggan” Landing Gear Fairings

Benefits:
- Reduced Gear Noise

Flight Test In August 2005
Continuous Line Mold Flap & Slat Cove Filler

Baseline: High Noise Regions

Low-Noise Wing

Benefits:
- Reduced Flap and Slat Noise
Simulation of Sound Propagating to Ground

Movie shows propagation of sound to grid of ground receiver locations

- Rotorcraft (CH53E) flight description:
 - Begins traveling south at 2000’ altitude in level flight, 110kts
 - Slows to 50kts, and then descends at 50kts to 100’
 - Performs 90° CCW turn while moving eastward at 50kts
 - Accelerates to 110kts while climbing to 2000’
 - Travels east at 110kts, then turns 90° to south and then accelerates to 180kts
Hear the Quiet Airplanes of the Future

- A major airframe/engine opportunity is a Boeing 737 replacement that will require ~ 35,000 lb thrust engines.

- Using the best noise reduction technologies under development now, what are the predicted noise levels for a new engine?

- This audio demonstration contains projected noise levels for an engine for simulated takeoff and approach power conditions. It is based on actual model scale jet and fan data taken in NASA’s wind tunnels.

Contact: Dennis L. Huff
Chief, Acoustics Branch
NASA Glenn Research Center
Quiet Airplanes of the Future

Advanced Engines & Airframe
- Lower Fan Tip Speeds
- Lower Jet Exit Velocities
- Variable Area Nozzle
- “Soft” Fan Stator Vanes
- Fan Trailing Edge Blowing
- Bypass Acoustic Splitter
- “Toboggan” Landing Gear Fairings
- Continuous Mold Line Flap
- Slat Cove Filler

Airport Boundary
Projected level required for objectionable noise to be contained within airport boundary.

Predicted Source Noise Reduction Relative to Current Fleet Average Take-Off Condition

Current Fleet
Advanced Engines & Airframe
Airport Boundary

EPNdB

Audio Sequence
1 2 3

Inlet Aft

Click on picture to play sound demo:
Quiet Airplanes of the Future

Advanced Engines & Airframe
- Lower Fan Tip Speeds
- Lower Jet Exit Velocities
- Variable Area Nozzle
- “Soft” Fan Stator Vanes
- Fan Trailing Edge Blowing
- Bypass Acoustic Splitter
- “Toboggan” Landing Gear Fairings
- Continuous Mold Line Flap
- Slat Cove Filler

Airport Boundary
Projected level required for objectionable noise to be contained within airport boundary.

Click on picture to play sound demo:

Predicted Source Noise Reduction Relative to Current Fleet Average Approach Conditions

<table>
<thead>
<tr>
<th></th>
<th>Current Fleet</th>
<th>Advanced Engines & Airframe</th>
<th>Airport Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPNdB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-8</td>
<td>-24</td>
</tr>
<tr>
<td>Approach</td>
<td>12</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Conditions</td>
<td>-24</td>
<td>-20</td>
<td>-16</td>
</tr>
</tbody>
</table>

Audio Sequence

1. Inlet
2. Aft
3. Airport Boundary
Single Fan On Blended Wing Body (BWB)

Fan Diameter: 154.2”
Dual Fan On Blended Wing Body (BWB)

Fan Diameter 105.1”
Dual Fan – Conceptual Applications
Summary

• Considerable progress has been made over the past 15 years developing technologies for aircraft noise reduction.

• NASA has been working closely with aerospace companies to identify opportunities to introduce new technologies into engines and aircraft.

• Limited technologies are retrofit-able, most will require development with new vehicles.

• Benefits near airports are incremental due to slow turnover from existing aircraft to newer aircraft with better noise reduction technologies.

• Technologies exist today to produce aircraft/engine combinations that can move the average 65 LDN noise contour near the airport boundaries if the entire fleet were replaced.