Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

Dongming Zhu, Kang N. Lee and Narottam P. Bansal
NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio

Abstract:

Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400°C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.
Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

Dongming Zhu ¹, Kang N. Lee ¹*, Narottam P. Bansal ²
¹Durability and Protective Coatings Branch, ²Ceramics Branch
Materials and Structures Division
NASA Glenn Research Center, Cleveland, Ohio

This work was supported by NASA Aeronautics Program

The 30th Annual Cocoa Beach International Conference on Advanced Ceramics and Composites
Cocoa Beach, Florida
January 22-27, 2006
Introduction

- Environmental barrier coatings (EBCs) are critical to future gas turbine engine systems
 - Further increase engine operating temperatures, thus helping achieve engine efficiency, emission and performance goals

 - Provide effective thermal and environmental protections for critical engine components (especially light-weight ceramic matrix composite combustors), thus improving engine reliability and durability

- Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications

- Thermophysical properties at high temperatures are needed for coating system design and development

 - Thermal expansion and thermal conductivity of selected rare earth silicate materials characterized in this study
Thermal Expansion and Laser Heat Flux
Thermal Conductivity Test Apparatus
— Dilatometer and laser heat flux rig
Ceramic Thermal Conductivity Measurements

\[k_{\text{ceramic}} = \frac{q_{\text{thru}} \cdot l_{\text{ceramic}}}{\Delta T_{\text{ceramic}}} \]

Where

\[q_{\text{thru}} = q_{\text{delivered}} - q_{\text{reflected}} - q_{\text{radiated}} \]

7.9 μm pyrometer for \(T_{\text{ceramic-surface}} \)

\[q_{\text{reflected}} = \alpha q_{\text{delivered}} \]

\[q_{\text{radiated}} = 5.67 \varepsilon_{\text{total}} [T_{\text{ceramic-surface}}(K)/1000]^4 \]

\[\Delta T_{\text{ceramic}} = T_{\text{ceramic-surface}} - T_{\text{ceramic-back}} \]

7.9 μm pyrometer for \(T_{\text{ceramic-back}} \)

\[q_{\text{thru}} \]

\[l_{\text{ceramic}} \]

\[q_{\text{thru}} \]
Thermal Expansion of Selected Rare Earth Silicates

![Graph showing thermal expansion of various rare earth silicates as a function of temperature.](image-url)
Thermal Conductivity of Selected Rare Earth Silicates

Graph showing the thermal conductivity of various rare earth silicates as a function of temperature.
Summary and Conclusions

- Thermal expansion and thermal conductivity of rare earth silicates evaluated at high temperatures

- Rare earth silicates are potential materials for EBCs
Future Work

• The effects of specimen porosity, composition and microstructure associated with materials processing and testing on the properties being further investigated

• Stability of rare earth silicates in combustion environment under thermal cycling being evaluated