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Abstract: 
Neural Network Modeling is introduced in this 

paper to classify and predict Interference Path Loss 
measurements on Airbus 319 and 320 airplanes.  
Interference patterns inside the aircraft are 
classified and predicted based on the locations of 
the doors, windows, aircraft structures and the 
communication/navigation system-of-concern.  
Modeled results are compared with measured data 
and a plan is proposed to enhance the modeling for 
better prediction of electromagnetic coupling 
problems inside aircraft.    

Introduction: 
Several modeling techniques have been 

proposed to address the concern about 
electromagnetic interference (EMI) caused by the 
use of Portable Electronic Devices (PEDs) onboard 
commercial airplanes.  The EMI caused by these 
devices may endanger the safety of passengers.  
PEDs may act as transmitters, both intentional and 
unintentional, and their signals may be detected by 
various receivers on the aircraft.  Researchers at 
NASA Langley Research Center, Eagles Wing 
Incorporated, and United Airlines have collected 
measurement data in an effort to understand the 
EMI pattern on aircraft.  Previous publications 
include graphical and statistical models of 
Interference Path Loss (IPL) on several United 
A319 and A320 airplanes.  IPL is the measurement 
of the radiated field coupling between passenger 
cabin locations and aircraft communication and 
navigation receivers, via their antennas.  The 
measurement is required for assessing the threat of 
PEDs to aircraft radios, and is very dependant upon 
airplane size, the interfering transmitter’s position 
within the aircraft, and the location of the particular 
antenna for the aircraft system of concern.   

1 Testing Methodology: 
Before attempting to understand the analysis of 

IPL data, it is necessary to review how the data was 
measured.  IPL, as addressed herein, is particularly 
focused upon in-band, on-channel type EMI to 
aircraft radios, via their antennas.  This does not 
include EMI to aircraft radios outside their radio 
frequency (RF) passband, and does not include 
radiated field (or conducted) coupling to wiring and 
equipment apertures. 

IPL Data 
IPL data was taken by radiating a low powered 

continuous wave (CW) test signal, frequency-
synchronized to the spectrum analyzer sweep and 
fed to the test transmitting antenna via a double-
shielded RF cable.  The spectrum analyzer, laptop 
computer controller, signal generators, RF 
amplifiers and preamplifiers were located inside the 
aircraft.  The spectrum analyzer input cable was 
connected to the aircraft radio receiver rack cable in 
the avionics equipment bay.   

To perform an IPL measurement, the team 
measured the RF power loss between the calibrated 
signal source and a spectrum analyzer, via the entire 
length of test cables plus the aircraft cable, plus the 
free space loss between the reference antenna and 
the aircraft antenna.  To obtain a calibrated IPL 
measurement, test cable losses were measured 
separately by connecting the two ends of the test 
cables to the input and output of the spectrum 
analyzer, and subtracting this loss, in dB, from the 
raw measurement.  Individual IPL measurements 
were obtained by moving the test antenna from one 
window to the next, throughout the airplane.  A 
complete description of the measurement process 
may be found in [1]. 
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Test Systems and Locations: 
IPL measurements were taken along all 

windows of A320 and A319 airplanes.  From an 
electromagnetic coupling point-of-view, the A319 
and A320 airplanes are structurally different, with 
different numbers of windows and exits, as well as 
with aircraft antennas installed at different 
locations. Figure 1 includes a side profile for the 
A319 and A320.   As described previously, IPL 
measurements were taken with respect to each of 
the systems pointed to in Figure 1.  Measurements 
were taken at each window location of the aircraft, 
on both port and starboard side, resulting in 32 
measurements for the A319 and 40 measurements 
for the A320.  Table 1 includes a list of the systems 
tested along with their operating frequencies. 

 
Figure 1: Aircraft systems tested on A-319 (top) 

and A-320 (bottom) 

 
Table 1: Frequency Spectrums of Systems 

tested  
Aircraft Systems Frequency Spectrum 
LOC 108-118 MHz 
GS 325-340 MHz 
DME 960-1215 MHz 
ATC 1090 MHz 

VHF 118-138 MHz 

IPL data was taken on both port and starboard 
sides of the aircraft.  Due to the symmetry of the 
aircraft, the two measurement sets from port and 
starboard were considered two trials for each 

system, instead of two independent measurements.  
Eight systems were tested on the A319 (with two 
trials each for port and starboard, resulting in 16 
datasets for the A319).  Seven systems (with two 
trials) were tested on the A320, resulting in 14 
datasets.  Therefore, a total of 30 datasets were 
available for training and testing of neural networks 
as explained in the next sections.  For each of the 30 
datasets, data was taken in both vertical and 
horizontal polarizations. 

2 Neural Network Modeling 
Modeling techniques, such as ray tracing and 

fuzzy logic, have been proposed to study the 
interference patterns inside commercial aircraft due 
to PEDs; however, we suggest that none of the 
other modeling techniques can provide the useful 
results with as little computational effort as Neural 
networks.  Neural networks not only have the 
capability to learn various interference patterns 
according to the locations of doors, windows and 
aircraft antenna location, but they also learn 
interference patterns from one aircraft to the other.  
This dynamic capability can significantly improve 
modeling accuracy for other aircraft, which may 
eventually eliminate the need to take time 
consuming and tedious IPL measurements of other 
aircraft. 

Introduction to Neural Networks 
Feed-forward neural networks have been 

widely used for various tasks, such as pattern 
recognition, function approximation, dynamical 
modeling, data mining, time-series forecasting and 
more.  Many solutions in different fields have been 
obtained that were otherwise impossible through 
other modeling techniques, such as Markov models 
and complex computational models.  Artificial 
neural networks (ANNs) are computational systems 
whose architecture and operation are inspired from 
the knowledge about biological neural cells 
(neurons) in the brain.  ANNs can be described 
either as mathematical and computational models 
for non-linear function approximation, data 
classification, clustering and non-parametric 
regression or as simulations of the behavior of 
collections of model biological neurons.  Neural 
modeling has shown incredible capability for 
emulation, analysis, prediction, and association.  
ANNs can be used in a variety of powerful ways:  
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to learn and reproduce rules or operations from 
given examples; to analyze and generalize from 
sample facts and make predictions from these; or to 
memorize characteristics and features of given data 
and to match or make associations from new data to 
the old data.   

The backpropagation algorithm is the most 
important algorithm for the supervised training of 
multi-layer feed-forward ANNs.  It derives its name 
from the fact that error signals are propagated 
backward through the network on a layer-by-layer 
basis.  The backpropagation algorithm is based on 
the selection of a suitable error function or cost 
function, whose values are determined by the actual 
and desired outputs of the network and which is 
also dependant on the network parameters such as 
the weights and the thresholds.   

 The layer which intakes the input values is 
known as the input layer; similarly, the last layer is 
known as the output layer.  The layers in between 
the input and output layers are known as hidden 
layers and consist of several arbitrary number of 
nodes.  Figure 2 is a good illustration of a feed-
forward neural network structure in which three 
layers are shown.  The dashed arrows going upward 
show the application of the backpropagation 
algorithm used to update the two weight matrices 
labeled at the two interconnections of the three 
layers. 

 
Figure 2: Feed Forward Neural Network 

The main goal of backpropagation is to train 
weights such that they minimize the squared error 
described as follows: 

where n is the number of training samples, k is the 
number of output units; the values being subtracted 
are yk, the target output with fk(x), which is the 
output produced by the neural network undergoing 
training or testing. In backpropagation, the weights 
of the network are updated starting with the hidden 
to output weights, followed by the input to hidden 
weights, with respect to the sum of square error 
mentioned above and through a series of weight 
update rules, called the delta rules.  

ANN Structure used for IPL data 
A three-layer ANN model was created with one 
input layer, one hidden layer and one output 
layer.    

Input Layer: 
For each of the 30 datasets, 13 different 
characteristics were fed into the Neural 
networks as inputs.  These characteristics are 
shown in Table 2: 

Table 2: Input characteristics for ANN 
Features A319 A320 

Aircraft Length (cm) 3383 3750 
Port vs. Starboard  1 or 0 1 or 0 

Number of Windows 32 40 
Exit 1 location 767 780 
Exit 2 location 2810 3050 

Emergency Exit 1 loc. 1604 1002 
Emergency Exit 2 loc. 1604 1709 
Aircraft system loc. (x) 200  3383 200 3750 
Aircraft system loc. (y) -206.8  +206.8 -206.8 +206.8 
Aircraft system loc. (z) -15 +15 -15 +15 
Op. freq. (start, MHz) 108 1565 108 1565 
Op. freq.  (stop, MHz) 108 1585 108 1585 

System’s dominant pol. H (0) or V (1) H (0) or V (1) 
 
In the table, the various lengths and aircraft 
system and exit locations were determined 
through detailed schematic drawings, provided 
by the courtesy of United Airlines.  These 
measurements, represented in centimeters, refer 
to the station (STA) numbers, provided in the 
schematics.   
The objective of this work was also to create a 
single neural network to learn about two 
structurally different aircraft.  For example, the 

E y f xk
n

k
n

k

K

n

N

= −
==
∑∑1

2
2

11
[ ( )]

3



A319 only has one emergency exit (at STA 
1604), while the A320 has two over wing 
emergency exits (at STA1002 and STA1709).  
These inconsistencies were taken into 
consideration by reserving two input nodes for 
emergency exits and duplicating the emergency 
exit location for the A319.  Therefore, nodes 6 
and 7 in Table 2 are STA1002 and STA1709 
respectively for the A320; however, both nodes 
are STA1604 for the A319.       

Output Layer: 
As per the objective of this research, the output 
nodes consisted of the IPL measurements (in 
dB) at each window location.  Therefore, 32 
output nodes are required for the A319 and 40 
output nodes are required for the A320.  
However, in order to create a single neural 
network for both structurally different aircraft, 
same number of output nodes was necessary.  
To avoid data loss, A319 data was duplicated at 
8 locations (every 4th window) to result in a 
total of 40 windows.   

Final ANN Structure: 
Ideally, two 13-input, 40-output neural 

networks should have been used for this 
simulation (one for horizontal and vertical 
polarization, respectively).  The top structure in 
Figure 3 shows a 13-input, 40-output ANN.  
The number of hidden nodes is dependant on 
the number of inputs and outputs.  Although no 
particular formula is available to calculate the 
number of hidden nodes, too many or too few 
hidden nodes can cause the ANN to under-learn 
or over-learn during training, thus leading to 
inaccurate results during testing.  Assuming 
that 20 hidden nodes were needed for efficient 
classification, this would result in 13x20 input-
hidden connections and 20x40 hidden-output 
connections, resulting in a total of 1060 node-
to-node connections. The ANN model for 1060 
nodes required more processing power than 
was readily available for the time constraints of 
this analysis.  Due to computer resource 
limitations, as well as for a more efficient and 

faster design, four 20-output, neural networks 
were instead created: two for vertical 
polarization in the front and rear half of the 
airplane and two more for horizontal 
polarization in the front and rear airplane 
halves.  Each of the four feed forward, back 
propagation network were created with 13 
inputs, 15 hidden units in hidden layer, and 20 
units in the output layer. This structure had 
13x15 input-hidden connections and 15x20 
hidden-output connections, resulting in a total 
of 495 connections.  
 

 
Figure 3: Original ANN structure (top) vs. Final 

Structure (bottom) 

3 ANN Modeling Results 
Using the ANN structure defined in Section 2, 
IPL data was used to train the ANN and then 
testing was performed to estimate the accuracy 
of the trained ANN.   

Training and Testing Data Division: 
Training data inputs and outputs are used to set 
the weights of the ANN properly, with the goal 
of minimizing the error rate.  Once the weights 
are set (using the training set’s outputs and 
back propagation algorithm), testing data input 
is passed through the ANN structure, and the 
computed outputs are compared with actual 
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testing data’s outputs to determine the accuracy 
of the ANN prediction.  Table 3 shows the 
systems tested for each aircraft type.   

Table 3: Available data from each aircraft 
type 

A319 A320 
ATC-B ATC-B 
ATC-T ATC-T  
DME-L DME-L  
GS-L GS-L 

LOC-L LOC-L 
VHF-C VHF-C 
VHF-L VHF-L 
VHF-R  

Fifteen ANN simulations were performed as 
per the availability of data in Table 3.  In each 
simulation, one system was reserved as test 
system, while all the other fourteen systems 
were used to train the ANN.  For example, for 
the first simulation, A319’s ATC-B was 
reserved to test the ANN, while all other 
systems (A319’s ATC-T, DME-L, GS-L, LOC-
L, VHF-C, VHF-L, VHF-R, A320’s ATC-B, 
ATC-T, DME-L, GS-L, LOC-L, VHF-C and 
VHF-L) were used to train the ANN.   

ANN Results 
Figures 4 to 18 are the results from each of the 
fifteen simulations.  System tested by the ANN 
is specified in the caption of each figure.  The 
light (green) lines represent the training data 
(from the other fourteen systems in the training 
set), while the solid (red) represents the test 
data (unknown to the ANN).  The dashed line 
(red) represents the ANN output based on the 
13 inputs of the test dataset.  Please refer to 
Table 4 for a comparative analysis of ANN 
results.  
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Figure 4: A319- ATC-B (Vertical Polarization) 
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Figure 5: A319- ATC-T (Vertical Polarization) 
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Figure 6: A319- DME-L (Vertical Polarization) 
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Figure 7: A319- GS-L (Horizontal P.) 
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Figure 8: A319- LOC-L (Horizontal P.) 
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Figure 9: A319-VHF-C (Vertical P.) 
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Figure 10: A319- VHF-L (Vertical P.) 

 
Figure 11: A319- VHF-R (Vertical P.) 
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Figure 12: A320- ATC-B (Vertical P.) 
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Figure 13: A320- ATC-T (Vertical P.) 

 
Figure 14: A320- DME-L (Vertical P.) 
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Figure 15: A320-GS-L (Horizontal P.) 
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Figure 16: A320-LOC-L (Horizontal P.) 
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Figure 17: A320- VHF-C (Vertical P.) 
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Figure 18: A320- VHF-L (Vertical P.)  
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Table 4: Actual vs. ANN IPL comparison 

System Actual 
Mean 

ANN 
Mean 

Actual 
Std. 

ANN 
Std. 

ATC-B 58.1 59.5 2.5 1.3 

ATC-T 56.3 59.9 1.7 1.5 

DME-L 61.6 63.6 2.9 7.2 

GS-L 60.0 70.7 2.0 1.9 

LOC-L 67.8 55.3 3.1 2.6 

VHF-C 60.4 68.9 3.8 4.9 

VHF-L 59.1 74.4 3.3 3.6 

A
31

9 

VHF-R 65.9 60.3 4.9 2.0 

ATC-B 70.6 67.2 4.5 6.2 

ATC-T 72.0 62.4 4.1 5.9 

DME-L 70.6 73.6 3.6 3.4 

GS-L 66.0 70.1 3.4 2.3 

LOC-L 69.6 61.5 4.6 7.9 

VHF-C 67.2 66.7 5.5 6.7 

A
32

0 

VHF-L 65.1 71.1 3.7 6.2 

Table 4 shows the means and standard 
deviations for actual IPL data versus ANN 
simulated IPL data for all fifteen simulations.  
ATC-B and DME-L tested exceptionally well with 
very close means and standard deviations for both 
A319 and A320 simulations.  The maximum 
difference of 15.5 dB occurred in prediction of 
A319’s VHF-L.  The A319’s actual VHF-L mean is 
59.1 dB, while A320’s VHF-L has an actual mean 
of 65.1 dB.   When the A319’s VHF-L was being 
tested, the ANN used A320’s VHF-L as a reference, 
along with correlation to other systems to predict 
the IPL pattern for A319’s VHF-L.  Therefore, 
although there is error between actual and predicted 
data, the higher IPL prediction for A319’s VHF-L 
shows that the ANN indeed learned from other 
systems and predicted accordingly.  ANN 
prediction errors will continue to decline as more 
training data is incorporated.  Past comparisons of 
measurement data from B737 and B747 airplanes 
showed variations of 3 to 6 dB between similar 
airplanes, so 3 to 6dB variations between ANN 
predictions and measured IPL data should be 
considered optimal. [6,7] 

It is also interesting to note that A319’s DME-
L has a mean of 61.6 dB, while A320’s DME-L has 
a mean of 70.6 dB. The ANN performs very well in 
predicting DME-L patterns for both aircraft, 
showing that the ANN is in fact also dynamically 
learning from other systems, instead of simply 
copying A320 DME-L results for A319 prediction 
and vice versa. The same dynamic learning applies 
to ATC-B for both aircraft. 

Also, VHF-R was only tested on the A319 
(and not on the A320); therefore, when testing the 
A319’s VHF-R, the ANN did not have reference to 
another aircraft’s VHF-R patterns.  Learning from 
all non-VHF-R systems, the ANN was able to 
predict the A319’s VHF-R pattern very efficiently 
with only a 5 dB mean difference.   

4 Conclusion 
Modeling of IPL inside commercial aircraft 

has been a concern for many years.  Although 
several modeling techniques have been proposed, 
the techniques have been too complex or inflexible 
for practical application to various structurally 
different aircraft.  Neural network modeling, based 
on artificial intelligence, is an excellent selection 
for this application, due to its ability to learn and 
predict various IPL patterns from one aircraft to 
another for various system antennas installed in 
different aircraft locations.   

The analysis presented in this paper shows that 
measurement data from two structurally different 
aircraft can be integrated together for effective 
ANN learning.  With vigorous simulations, ANNs 
were trained to predict IPL patterns inside 
commercial aircraft, depending on the locations of 
exits, locations of antennas, the length and structure 
of aircraft as well as the location, operating 
frequency and polarization of the aircraft system of 
concern.  Incorporation of other aircraft, such as 
B757 and B737 should further enhance the 
modeling.  Most importantly, the measurement and 
ANN simulation results are statistically comparable.  
Statistical comparisons are necessary for 
developing risk analyses for EMI caused by PEDs 
being used on board airplanes. 
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