Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results…even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:

 NASA Access Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076–1320

 301–621–0390
FY 2004 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
FOREWORD

In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>NASA CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>9</td>
</tr>
<tr>
<td>MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION</td>
<td>11</td>
</tr>
<tr>
<td>INDEX</td>
<td>55</td>
</tr>
</tbody>
</table>

During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18-m³ multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH₂) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH₂ saturation pressure from 133 to 70 kPa in 188 min.

Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3–300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashion with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished via cooperative efforts with Department of Energy labs, industry, universities, and other NASA Centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

Documentation of the internal science research at the Biological and Physical Space Research Laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. The report documents flight and ground experiments in microgravity materials science and biotechnology science and space radiation. All of the work described includes significant scientific contributions by internal scientists (usually as principal or co-investigator on the research grant). Much of the research is in collaboration with external scientists. All the funding was provided as the result of competitive proposals evaluated by internal or external peer review processes. The external flight and ground research that our laboratory supports for the NASA program will be reviewed in a separate report.

This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 2002. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.

The purpose of this research effort was to (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties.
Often, a single method or technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. This is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated. In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated at 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples.

This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.

A laser space calibration experiment is considered using the 12-J, 15-Hz high-performance CO₂ laser surveillance sensor (HI-CLASS) system on the 3.67-m aperture advanced electro-optics system (AEOS). The objectives are to provide accurate range and signature measurements of orbiting calibration spheres, demonstrate high-resolution tracking capability of small objects, and precision drag determination for low-Earth orbit (LEO). Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbation analyses, and comparing radar and optical signatures. A global positioning system (GPS), laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in LEO, the microsatellite will pass over AEOS on the average of two times per 24-hr period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS AEOS will detect the microsatellite as it rises above the horizon, using Space Command-generated acquisition vectors. GPS data will be transmitted to the ground providing independent on-orbit, submeter accuracy location information for the microsatellite.
A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or “modified Lockheed equation.” Results from the two models were very comparable and were within 5–8 percent of the measured data at the 300 K boundary condition.

The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17–4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housings. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing’s nut factor, the fastener preload had a factor of safety of <1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.
and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

TM—2004–213394

September 2004

This Technical Memorandum (TM) lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2003. Entries in the main part of the TM are categorized according to NASA Reports (arranged by report number), Open Literature and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this TM should be directed to Dr. A.F. Whitaker (SD01; 544–2481) or to one of the authors.
During fiscal year 2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. This study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers, including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. This Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be ≈124.5, occurring near July 2002 ± 5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23 — 120.8 in April 2000.
given of a Marshall Space Flight Center-led study intended to develop and assess various candidate systems for protection of the Earth against NEOs. Details of analytical tools, trajectory tools, and a tool that was created to model both the undeflected inbound path of an NEO as well as the modified, postdeflection path are given. A representative selection of these possible options was modeled and evaluated. It is hoped that this study will raise the level of attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

TP—2004–213143 April 2004
Plasma Sail Concept Fundamentals. G.V. Khazanov, P. Delamere,* K. Kabin,** and T.J. Linde***. Space Science Department, Science Directorate, *University of Colorado, **University of Alberta, and ***The University of Chicago.

The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50–80 km/s after an acceleration period of ≈3 mo. Such velocities will enable travel out of the solar system in a period of ≈7 yr—almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably (≈10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

TP—2004–213173 May 2004

The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm’s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm’s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.

TP—2004–213281 June 2004

On the basis of the maximum amplitude-early rise correlation, cycle 23 could have been predicted to be about the size of the mean cycle as early as 12 mo following cycle minimum. Indeed, estimates for the size of cycle 23 throughout its rise consistently suggested a maximum amplitude that would not differ appreciably from the mean cycle, contrary to predictions based on precursor information. Because cycle 23’s average slope during the rising portion of the solar cycle measured 2.4, computed as the difference between the conventional maximum (120.8) and minimum (8) amplitudes divided by the ascent duration in months (47), statistically speaking, it should be a cycle of shorter period. Hence, conventional sunspot minimum for cycle 24 should occur before December 2006, probably near July 2006 (±4 mo). However, if cycle 23 proves to be a statistical outlier, then conventional sunspot minimum for cycle 24 would be delayed until after July 2007, probably near December 2007 (±4 mo). In anticipation of cycle 24, a chart and table are provided for easy monitoring of the nearness and size of its maximum amplitude once onset has occurred (with respect to the mean cycle and using the updated maximum amplitude-early rise relationship).

TP—2004–213284 June 2004

From early in the Shuttle program, the National Aeronautics and Space Administration has modeled hydrogen chloride (HCl) release by burning solid propellant in the solid rocket boosters. In 1998, the United States Air Force 45th Space Wing
instituted more stringent launch commit criteria (LCC) for the Titan and Delta vehicles and proposed that the same LCC be applied to the Shuttle to enhance safety of onsite visitors and offsite public. Two types of health and safety standards were applicable: (1) Expected casualties and risk and (2) air quality emergency response.

This study addresses the issues using the U.S. Environmental Protection Agency-recommended model, CALPUFF. Results were compared to those produced by the USAF model, REEDM, developed for projecting air quality from nominal launches. Model performance was also evaluated against results of a Kennedy Space Center-sponsored study at the Los Alamos National Laboratory (LANL) using a computer-intensive, wildfire model.

CALPUFF and the LANL model are capable of multipuff modeling of multiple sources. REEDM is a single-source, single-puff model. This study revealed significant deficiencies in REEDM when applied to the catastrophic failure problem. CALPUFF results indicate that, if a Shuttle abort were to occur over land, serious levels of HCl exposure could occur out to distances of at least 10 km, sufficient range to include major onsite visitor viewing areas. A preliminary survey of mitigation alternatives indicates cost-effective measures could be implemented that are sufficiently protective. Recent safety initiatives in response to the Columbia Accident Investigation Board report are not reflected here.

TP—2004–213339 August 2004

This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates <0.1 rd(Si)/s compared to similar transistors irradiated at dose rates >1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shut-downs, and other variables encountered during the space flight are documented.
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining U.S. leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.

The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20–24, 2003. Hosted by NASA's Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers in the areas of Plasma Propulsion and Tethers, Ground Testing Techniques, Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment, Materials Characterizations, Models and Computer Simulation, Environment Specifications, Current Collection and Plasma Probes in Space Plasmas, and On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.

NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Sub-systems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and “plug and play” capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.
An improved specification of the plasma environment has been developed for use in modeling spacecraft charging. It was developed by statistically analyzing a large part of the LANL Magnetospheric Plasma Analyzer (MPA) data set for ion and electron spectral signature correlation with spacecraft charging, including anisotropies. The objective is to identify a relatively simple characterization of the full particle distribution that yields an accurate prediction of the observed charging under a wide variety of conditions.

CR—2004–213227 June 2004

This effort analyzed the low-energy deposition Pulse Height Analyzer (PHA) data from the Combined Release and Radiation Effects Satellite (CRRES). The high-energy deposition data had been previously analyzed and shown to be in agreement with spallation reactions predicted by the Clemson University Proton Interactions in Devices (CUPID) simulation model and existing environmental and orbit positioning models (AP-8 with USAF B-L coordinates). The scope of this project was to develop and improve the CUPID model by increasing its range to lower incident particle energies, and to expand the modeling to include contributions from elastic interactions. Before making changes, it was necessary to identify experimental data suitable for benchmarking the codes; then, the models to the CRRES PHA data could be applied. It was also planned to test the model against available low-energy proton or neutron SEU data obtained with mono-energetic beams.

CR—2004–213228 June 2004

One can truly predict the charging and pulsing in space over a year’s time using only the physics that worked for periods of an hour and less in prior publications. All portions of the task were achieved, including the optional portion of determining a value for conductivity that best fit the data.
ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
GALLAGHER, D.L. SD50

ADAMS, J.H. SD50

ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
LECLAIR, A. UAH
GALLAGHER, D.L. SD50
WEST, E.A. SD50
WEINGARTNER, J.C. Mason University
WITHEROW, W.K. SD50

ADAMS, M. SD50
LEE, J.K. SD50
JONES, C. SD50

ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
WEST, E.A. SD50

ADAMS, J.H. SD50
ADRIAN, M.L. UAH
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZELY, A.R. Southern University
GANEL, O. University of Maryland
ET AL.

ALBYN, K. Edward Cheer
EDWARDS, D.L. ED31

ALBN, K. ED31
ALRED, J. Boeing Space Station

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
<th>Conference/Meeting Details</th>
</tr>
</thead>
</table>

BECKER, W. Max Planck Institute
WEISSKOPF, M.C. SD50
ARZOUMANIAN, Z. USRA
LORIMER, D. University of Manchester
CAMILO, F. Columbia University
ELSNER, R.F. SD50
KANBACH, G. Max Planck Institute
REIMER, O. Ruhr-Universität
SWARTZ, D.A. USRA
ET AL.

BECKER, W. Max Planck Institute
WEISSKOPF, M.C. SD50
TENNANT, A.F. SD50
JESSNER, A. Max Planck Institute
ZHANG, S.N. SD50/UAH

BENEFIELD, M.P.J. TD05
BELCHER, J.A. TD05

BENFORD, A. University of Texas Pan Am
TINKER, M.L. ED21

BENFORD, A. University of Texas Pan Am
TINKER, M.L. ED20

BERNHARDSDOTTER, E.C.M.J. SD46
PUSEY, M.L. SD46

NG, J.D. SD46
GARRIOTT, O.K. SD46

BERNHARDSDOTTER, E.C.M.J. UAH
PUSEY, M.L. SD46
NG, J.D. UAH
GARRIOTT, O.K. UAH

BHANDWAR, A. Vikram Sarabhai Space Center
BRANDUARDI-RAYMONT, G. U. College London
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
RAMSAY, G. Mullard Space Science Laboratory
RODRIGUEZ, P.R. XMM-Newton SOC
SORIA, R. University College London
WAITE, JR., J.H. University of Michigan
CRAVENS, T.E. University of Kansas

BHANDWAR, A. SD50
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
WAITE, JR., J.H. University of Michigan
CRAVENS, T.E. University of Kansas
OSTGAARD, N. University of Bergen
CHANG, S.-W. UAH/SD50
METZGER, A.E. Jet Propulsion Laboratory
MAJED, T. University of Michigan

BLACKWELL, W.C. Jacobs Sverdrup
MINOW, J.I. Jacobs Sverdrup
O’DELL, S.L. ED44
CAMERON, R.A. Harvard-Smithsonian
VIRANI, S.N. Harvard-Smithsonian

BLAKESLEE, R.J. SD60
BAILEY, J.C. SD60
BUECHLER, D.E. SD60
GOODMAN, S.J. SD60
MCCAUL, JR., E.W. SD60
HALL, J. SD60

BLEVINS, J.A. TD40
GOSTOWSKI, R. TD40
CHIANESE, S. Penn State University

BLUME, J.L. ED43

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60
CECIL, D.J. SD60
PETERSEN, W.A. SD60

Lightning Contribution to Improvement of Passive Microwave Vertical Structure and Rainfall Estimation—Abstract Only. For presentation at and publication in Proceedings of

BOCCIPPIO, D.J. SD60
PETERSON, W.A. UAH
CECIL, D.J. UAH

BOCCIPPIO, D.J. SD60
MIKATARIAN, R. Boeing
KOONTZ, S. Johnson Space Center
ALBYN, K. ED31
FINCKENOR, M. ED31

BONAMENTE, M. UAH/SD50
JOY, M.K. SD50
CARLSTROM, J.E. Enrico Fermi Institute
LAROQUE, S. University of Chicago

BONAMENTE, M. SD50
LIEU, R. SD50
KAASTRA, J. SD50

BRADFORD, R.N. FD40

BRADFORD, R.N. FD40
LISOTTA, A.J. Ames Research Center

BRADFORD, R.N. FD40
MEHROTRA, A. Ames Research Center
LISOTTA, A.J. Ames Research Center

BRADFORD, R.N. FD40
THIGPEN, W.W. Ames Research Center

BRADFORD, R.N. FD40
THIGPEN, W.W. Ames Research Center
LISOTTA, A.J. Ames Research Center
REDMAN, S. UAH

BRAGG-SITTON, S.M. TD40
FORSBACKA, M. NASA Headquarters

BRAGG-SITTON, S.M. University of Michigan
KAPERNICK, R.J. Los Alamos National Laboratory
GODFROY, T.J. TD40

BRAGG-SITTON, S.M. TD40
REID, R.S. TD40

BRANDUARDI-RAYMONT, G. Mullard Space Sci. Lab
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
RAMSAY, G. Mullard Space Science Laboratory
RODRIGUEZ, P.R. XMM-Newton SOC
SORIA, R. Mullard Space Science Laboratory
WAITE, JR., J.H. University of Michigan

BROWN, A.M. ED19
MCGHEE, D.S. ED21

BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
LA CASSE, K. SD60
BLAKESLEE, R.J. SD60
DARDEN, C. SD60

BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
BAILEY, J.C. Raytheon ITSS

BURNS, H. ED31
ALBYN, K. ED31
EDWARDS, D.L. ED31
BOOTHE, R. ED31
FINCHUM, C. ED31
FINCKENOR, M. ED31

BURNS, L. Raytheon
DECKER, R. ED44

BURNS, L. Raytheon
KELLER, V.W. ED44

CAMPBELL, J.W. FD02
PHIPPS, C. Photonics Associates
SMALLEY, L. UAH
REILLY, J. Northeast Science & Technology
BOCCIO, D. SUNY

CANFIELD, S. Tennessee Technological University
BEARD III, J.W. Tennessee Technological University
PEDDIESON, J. Tennessee Technological University
EWING, A. Ewing Research
GARBE, G. TD05

CANNING, F.X. ISR
WINET, E. ISR
ICE, B. ISR
MELCHER, C. ISR
PESAVENTO, P. ISR
HOLMES, A. ISR
BUTLER, C. ISR
COLE, J. TD40
CAMPBELL, J. TD40

CANNING, F.X. ISR
WINET, E. ISR
ICE, B. ISR
MELCHER, C. ISR
PESAVENTO, P. ISR
HOLMES, A. ISR
BUTLER, C. ISR
COLE, J. TD40
CAMPBELL, J. TD40

CANNING, F.X. ISR
WINET, E. ISR
COLE, J. TD40
CAMPBELL, J. TD40

CARDELINO, H. Spellman College
CARDELINO, C.A. Georgia Institute of Technology
MOORE, C.E. SD46
DIETZ, N. Georgia State University
MCCALL, S.D. Spellman College
BACHMANN, K. North Carolina State University

CARPENTER, P.K. SD46
ARMSTRONG, J. SD46

CARPENTER, P.K. SD46
ARMSTRONG, J. NIST

Improvements in Electron-Probe Microanalysis: Applications to Terrestrial, Extraterrestrial, and Space-Grown

CARRASQUILLO, R.L. BAGDIGIAN, B. PERRY, J.L. LEWIS, J.

CARRASQUILLO, R.L. CLOUD, D. BEDARD, J.

CARRIER, M. ZOU, X. LAPENTA, W.M. JEDLOVEC, G.J.
Assessing the Usefulness of AIRS Radiance Observations in a 4D-Var Assimilation Scheme Using the Penn State/NCAR Mesoscale Model Version 5 (MM5) and a Stand Alone Radiative Transfer Algorithm (SARTA)—Abstract Only. For presentation at the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, September 20–24, 2004.

CARRINGTON, C.K. DAY, G.

CARRINGTON, C.K. HOWELL, J.T. DAY, G.

CARTER, L. TATAR, J.D. MASON, R.

CARRASQUILLO, R.L. BAGDIGIAN, B. PERRY, J.L. LEWIS, J.

CARRASQUILLO, R.L. CLOUD, D. BEDARD, J.

CARRASQUILLO, R.L. CLOUD, D. Hamilton Sundstrand
BEDARD, J. Hamilton Sundstrand

CARRIER, M. Florida State University
ZOU, X. Florida State University
LAPENTA, W.M. SD60
JEDLOVEC, G.J. SD60
Assessing the Usefulness of AIRS Radiance Observations in a 4D-Var Assimilation Scheme Using the Penn State/NCAR Mesoscale Model Version 5 (MM5) and a Stand Alone Radiative Transfer Algorithm (SARTA)—Abstract Only. For presentation at the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, September 20–24, 2004.

CARRINGTON, C.K. Boeing Phantom Works
DAY, G.

CARRINGTON, C.K. Boeing Phantom Works
DAY, G.
F AZELY, A.R. Southern University
GANEL, O. University of Maryland

CHANG, S.-W. SD50
GALLAGHER, D.L. SD50
SPANN, J.F. SD50
MENDE, S. SD50
GREENWALD, R. SD50
NEWELL, P.T. SD50

CHAUVERS, G. TD40
CHANG-DIAZ, F. Johnson Space Center

CHAUVERS, G. TD40
CHANG-DIAZ, F. Johnson Space Center
BREIZMAN, B. University of Texas
BENGTSON, R. University of Texas

CHEN, F. SD60
KISSEL, D.E. SD60
WEST, L.T. SD60
RICKMAN, D. SD60
LUVALL, J.C. SD60
ADKINS, W. SD60

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46
VEKILOV, P.G. SD46

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46

VekiLOV, P.G. SD46
DE YOREO, J.J. SD46

CHOU, S.-H. SD60
LAPENTA, W.M. SD60
JEDLOVEC, G.J. SD60
MCCARTY, W. UAH
MECIKALSKI, J.R. UAH

CHOUHARY, D.P. SD50

CHOUHARY, D.P. SD50

BALASUBRAMANIAM, K.S. National Solar Observatory
SUEMATSU, Y. National Astronomical Observatory

CHOUHARY, D.P. SD50
MOORE, R.L. SD50

CHOUHARY, D.P. SD50

FALCONER, D.A. SD50
POJOGA, S. Prairie View A&M University
HUANG, T.S. Prairie View A&M University
KRUCKER, S. University of California
UDDIN, W. Aryabhata Research Institute

CHOUHARY, D.P. SD50
STERLING, A.C. SD50
MOORE, R.L. SD50

CHRISTIAN, H.J. SD60

CHRISTIAN, H.J. SD60

CHRISTL, M.J. SD50

CISSOM, R.D. FD32
WATSON, K. ARES Corporation

CISZAK, E.M. SD46
DOMINIAK, P.M. SD46

CLAYTON, L. ED25

CLINTON, JR., R.G. SD40

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD41
COOK, M.B. SD30
WARGO, M.J. NASA Headquarters
MARZWELL, N.I. Jet Propulsion Laboratory

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD40
SCHLAGHECK, R.A. SD40
BASSLER, J.A. SD40
COOK, M.B. SD40
WARGO, M. J. NASA Headquarters
SANDERS, G.B. Johnson Space Center
MARZWELL, N.I. Jet Propulsion Laboratory

COFFEY, V.N. SD50
CHANDLER, M.O. SD50
SINGH, N. UAH
MILLER, J. UAH
MOORE, T.E. Goddard Space Flight Center

COFFEE, V.N. SD50
MORRIS, C.E.K. NP01
TYSON, R.W. NP01

COOKE, W.J. Morgan Research Corporation
MOUSER, D. Morgan Research Corporation
SUGGS, R.M. ED44

CORDER, E.L. ED12
BRISCOE, J.M. ED12

CORDER, E.L. ED12
BRISCOE, J.M. ED12

CRAVEN, P.D. SD50
MOORE, T.E. SD50
GALLAGHER, D.L. SD50
Thermal N+ in the Inner Magnetosphere—Abstract Only. For presentation at the American Geophysical Union 2004...

CRUZ, A. SD46
BORS, K. SD46
JANSEN, H. SD46
RICHMOND, R.C. SD46

CRUZEN, C. FD32
DYER, S. FD33

CUNTZ, M. University at Texas/Arlington
SUSS, S.T. SD50

CUNTZ, M. SD50
SUSS, S.T. SD50

CURRERI, P.A. SD46
SIBILLE, L. BAE Systems

DARROUZET, F. Belgian Institute
LEMAIRE, J.F. Belgian Institute
DECREAU, E. Universite d’ Orleans
DE KEYSER, J. Belgian Institute
MASSON, A. Research and Scientific
GALLAGHER, D.L. SD50
SANTOLIK, O. MMF, Prague
TROTIGNON, J.G. Universite d’ Orleans
RAUCH, J.L. Universite d’ Orleans
ET AL.

DAVIS, R.N. University of Alabama
POLITES, M.E. University of Maryland
TREVINO, L.C. ED10

DAVIS, S.E. ED36
ENGEL, C.D. ED36
RICHARDSON, E.R. ED36

DECKER, R.K. ED44
LEACH, R. ED44

DECKER, R.K. ED44
LEACH, R. Morgan Research Corporation/ED44

DETKOVA, E.N. Institute of Microbiology
PIKUTA, E.V. SD50
HOOVER, R.B. SD50

DOBSON, C. TD40
HRBUD, I. Purdue University

DOMINIAK, P.M.
CISZAK, E.M.

DORNEY, D.J.
MARCU, B.

DUMBACHER, D.L.

EDWARDS, D.L.
HOLLERMAN, W.
HUBBS, W.S.
GRAY, P.A.
WERTZ, G.E.
NEHLS, M.K.
SEMME, C.L.

EDWARDS, D.L.
HOVATER, M.
HUBBS, W.S.
WERTZ, G.E.
HOLLERMAN, W.
GRAY, P.A.

EDWARDS, D.L.
NEHLS, M.K.
SEMME, C.L.
HOVATER, M.
GRAY, P.A.

EDWARDS, D.L.
SEMME, C.L.
HOVATER, M.
NEHLS, M.K.
GRAY, P.A.
HUBBS, W.S.
WERTZ, G.E.

EDWARDS, D.L.
SEMME, C.L.
HOVATER, M.
NEHLS, M.K.
GRAY, P.A.
HUBBS, W.S.
WERTZ, G.E.

ELSNER, R.F.
BHARDWAJ, A.
WAITE, JR., J.H.
LUGAZ, N.
MAJEED, T.E.
CRAYEN, T.
FORD, P.
GRAY, P.A.

Forecasting Coronal Mass Ejections From Magnetograms—Abstract Only. For presentation at the Living With a Star Workshop, Boulder, CO, March 23–26, 2004;

FARR, R.A. TD72
ELAM, S.K. TD61
HICKS, E.D. Jacobs Sverdrup
SANDERS, T.M. TD72
LONDON III, J.R. TD70
MAYNE, A.W. TRW (Retired)
CHRISTENSEN, D.L. Lockheed Martin

FERGUSON, C.K. SD22
ABUSHAGUR, M. SD22
ENGLISH, J.M. SD22
NORDIN, G.P. SD22

Design and Analysis of a MEMS Miro-Translation Stage With Indefinite Travel—Abstract Only. For presentation at the Nanospace 2003, Galveston, TX, February 2004.

FISHMAN, G.J. SD50

The Mystery of Gamma-Ray Bursts—Abstract Only. For presentation at the Rice University Space Exploration Series, Houston, TX, March 22, 2004.

FLANDRO, G.A. University of Tennessee
MAJIDALANI, J. University of Tennessee
SIMS, J.D. TD07

FLASAR, F.M. Goddard Space Flight Center
KUNDE, V.G. University of Maryland
ABBAS, M.M. SD50
ACHTERBERG, R.K. Science Systems & Applications
ADE, P. University of Cardiff
BARUCCI, A. Observatoire de Paris
BEZARD, B. Observatoire de Paris
BJORAKER, G.L. Goddard Space Flight Center
BRASUNAS, J.C. Goddard Space Flight Center
ET AL.

FORBES, J.C. TD62
XENOFOS, G.D. TD62
FARROW, J.L. Qualis Corporation/TD62
TYLER, T. TD63
WILLIAMS, R. TD64
SARGENT, S. Boeing/Rocketdyne
MOHAROS, J. Boeing/Rocketdyne

FOX, N.J. SD50
GOLDBERG, R. SD50
BARNES, R.J. SD50
SITWORTH, J.B. SD50
BEISSER, K.B. SD50
MOORE, T.E. SD50
HOFFMAN, R.A. SD50
RUSSELL, C.T. SD50
SPANN, J.F. SD50
ET AL.

FULLER, K.A. UAH
SMITH, D.D. SD46

WILLIAMS, R.
Overview of MSFC’s Applied Fluid Dynamics Analysis Group Activities—Presentation. For presentation at the MSFC Spring Fluid Workshop, MSFC, AL, April 13, 2004.

GARY, G.A.

GALLAGHER, D.L.

GALLAGHER, D.L.

GALLAGHER, D.L.

ADRIAN, M.L.

KHAZANOVA, G.V.

GARBE, G.

GARY, G.A.
GOODMAN, D.D.

GOODMAN, H.M.
REGNER, K.
CONOVER, H.
ASHCROFT, P.
WENTZ, F.
CONWAY, D.
LOBL, E.
BEAUMONT, B.
HAWKINS, L.
JONES, S.

GOODMAN, S.J.
The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.—Abstract Only. For presenta-
tion at and publication in Proceedings of the 18th International Lightning Detection Conference, Helsinki, Finland, June 7–9, 2004.

GOODMAN, S.J.
BLAKESLEE, R.J.
CHRISTIAN, H.
KOSHAK, W.
BAILEY, J.C.
HALL, J.
BUCHLER, D.E.
DARDEN, C.
ET AL.

GOODMAN, S.J.
FORSYTHE, E.L.
PUSEY, M.L.
Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth—Abstract Only. For presentation at the 10th International Conference on the Crystallization of Biological Macromolecules (ICCBM10), Beijing, China, June 5–8, 2004.

GOODMAN, S.J.
GORTI, S.
FORSYTHE, E.L.
PUSEY, M.L.

GOODMAN, S.J.
GOSTOWSKI, R.
Isothermal Calorimetric Observations of the Effect of Welding on Compatibility of Stainless Steels With High-Test

GOSTOWSKI, R. TD40

GREGG, M.W. ED22

GREGG, M.W. ED22

GREGORY, D.A. UAH
HERREN, K.A. SD70

GREINER, J.C. Max Planck Institute
KLOSE, S. Thuringer Landesstern.
REINSCH, K. Universitaats-Sternwarte
SCHMID, H.M. Institut fur Astronomie
SARI, R. California Institute of Technology
HARTMANN, D.H. Clemson University
KOUVELIOTOU, C. SD50
RAU, A. Max Planck Institute
PALAZZI, E. Istituto di Astrofisica
ET AL.

GRUGEL, R.N. SD46

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. SD46

GRUGEL, R.N. SD46
LUZ, P. SD46
SMITH, A. SD46
SPIVEY, R. SD46
SEN, S. SD46
ANILKUMAR, A.V. SD46

GUBAREV, M. SD50
O’DELL, S.L. SD50
KESTER, T. SD50
LEHNER, D. SD50
JONES, W. SD50
SMITHERS, M. SD50

GUBAREV, M. SD50
RAMSEY, B.D. SD50
APPLE, J. SD50

GULLORY, A.R. SD60
HADAWAY, J. UAH
STAHLM, P. SD72
ENG, R. SD72
HOGUE, W. SD72
Cryogenic Test Results of Hextek Mirror—Abstract Only.
For presentation at the Mirror Technology Days 2004,

HAINES, S.L. SD60
JEDLOVEC, G.J. SD60
LAfontAINE, F.J. SD60
Spatially Varying Spectrally Thresholds for MODIS Cloud
Detection—Abstract Only. For presentation at the 13th
Conference on Satellite Meteorology and Oceanography,

HAELE, J. TD32
Simulation Based Acquisition for NASA’s Office of
Exploration Systems—Abstract Only. For presentation
at the Huntsville Simulation Conference, Huntsville, AL,

HAMILTON, G.S. ED42
DUMAS, J.D. University of Tennessee
BROOKMAN, S. University of Maryland
TILGHMAN, N. QTEC
Evaluating the Usability of Pinchigator, A System for Navigating Virtual Worlds Using Pinch Gloves—Abstract Only.

HANSON, J.M. TD54
HALL, C.E. TD54
MULQUEEN, J.A. TD54
JONES, R.E. TD54
Advanced Guidance and Control for Hypersonics and Space
Access—Final Paper. For presentation at the JANNAF

HANSON, J.M. TD54
JONES, R.E. Sverdrup Technology
Test Results for Entry Guidance Methods for Reusable
Launch Vehicles—Final Paper. For presentation at the 42nd
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,

HANSON, J.M. TD54
JONES, R.E. TD54
Test Results for Entry Guidance Methods for Space

HATHAWAY, D.H. SD50
Recent Progress in Understanding the Sun’s Magnetic
Dynamo—Abstract Only. For presentation at Vanderbilt
University—Public Lecture, Nashville, TN, April 8,
2004.

HATHAWAY, D.H. SD50
Modern Solar Mysteries—Abstract Only. For presentation
at Vanderbilt University—Public Lecture, Nashville, TN,
April 8, 2004.

HATHAWAY, D.H. SD50
What the Long-Term Sunspot Record Tells Us About Space
Climate—Abstract Only. For presentation at the First
International Symposium on Space Weather, Oulu, Finland,

HATHAWAY, D.H. SD50
Flows in the Solar Convection Zone—Abstract Only. For presentation at the 35th COSPAR Scientific Assembly, Paris,

HATHAWAY, D.H. SD50
How Large-Scale Flows in the Solar Convection Zone May
Influence Solar Activity—Abstract Only. For presentation
at the NSO Workshop No. 22 Large-Scale Structures and
Their Role in Solar Activity, Sunspot, NM, October 18–22,
2004.

HATHAWAY, D.H. SD50
CHoudhARY, D.P. SD50

HATHAWAY, D.H. SD50
MEYER, P.J. SD50
TEMPLETON, G. SD50

HATHAWAY, D.H. SD50
NANDY, D. Montana State University
WILSON, R.M. SD50
REICHMANN, E.J. SD50
Erratum: “Evidence that a Deep Meridional Flow Sets the
Sunspot Cycle Period—Abstract Only. For publication in

HEATON, A.F. TD54

HEFNER, K. FD03
DAVIDSON, G. Northrop Grumman

HENDERSON, S.J. U.S. Military Academy
HAMILTON, G.S. ED42

HENLEY, M.W. Boeing/Phantom Works
HOWELL, J.T. FD02

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HERREN, K.A. SD70
COHEN, T. UAH
LIN, J. UAH
PAKHOMOV, A.V. UAH

HERREN, K.A. SD71
LIN, J. UAH
COHEN, T. UAH
PAKHOMOV, A.V. UAH
THOMPSON, M.S. Information Systems, Inc.

HOLLADAY, J.B. FD24
DAY, G. Boeing
GILL, L. Carleton Technologies

HOLLERMAN, W. University of Louisiana
ALBARDO, T. University of Louisiana
LENTZ, M. University of Louisiana
EDWARDS, D.L. ED31
HUBBS, W.S. ED31
SEMME, C.L. Qualis Corporation

HOLT, J.M. ED25
CLANTON, S.E. Jacobs Sverdrup

HONG, Y.-S. SD46/BAE Systems
ADAMEK, D.H. SD46/AZ Technology
BRIDGE, K. SD46/UAH
MALONE, C.C. SD46/BAE Systems
YOUNG, R.B. BAE Systems/UAH
KARR, L. SD46

HOOD, R.E. SD60
BLAKESLEE, R.J. SD60
CECIL, D.J. UAH
LAFONTAINE, F.J. Raytheon ITSS
HEYSFIELD, G. Goddard Space Flight Center
MARKS, F. NOAA Hurricane Research Division

HOOD, R.E. SD60
KAKAR, R. NASA Headquarters
Early Results of the NASA Convection and Moisture Experiment (CAMEX)—Abstract Only. For presentation at the 58th Interdepartmental Hurricane Conference, Charleston, SC, February 29–March 5, 2004.

HOOVER, R.B. SD50
PIKUTA, E.V. SD50
WICKRAMASINGHE, N.C. Cardiff Center
WALLIS, M.K. Cardiff Center

HOOVER, R.B. SD50
ROZANOV, A.Y. Paleontological Institute

HOOVER, R.B. SD50
ROZANOV, A.Y. Paleontological Institute
JERMAN, G. ED21
COSTEN, J. ED21

HOUSTON, J. Jacobs Sverdrup
GATTIS, C.B. ED21

HOWARD, R.T. ED19
JOHNSTON, A.S. ED19
BRYAN, T.C. ED19
BOOK, M.L. ED19

HOWELL, J.T. FD02
MANKINS, J.C. NASA Headquarters

HOWELL, J.T. FD02
O’NEILL, M. Entech, Inc.
FORK, R. UAH

HOWSMAN, T.G. Dynamic Concepts
O’NEIL, D.A. FD02
CRAFT, M.A. Dynamic Concepts

HU, Z.W. SD46
HOLMES, A. SD46
THOMAS, B.R. SD46
CHERNOV, A.A. SD46
CHU, Y.S. Argonne National Laboratory
LAI, B. Argonne National Laboratory

HULCHER, A.B. ED34

HULCHER, A.B. ED34

HUTCHENS, C. FD21
GRAVES, R. Allied

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
GANGOPADHYAY, A.K. Washington University
KELTON, K.F. Washington University

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
KELTON, K.F. Washington University
GANGOPADHYAY, A.K. Washington University

HYERS, R.W. SD46
MATSON, D.M. SD46
KELTON, K.F. SD46
ROGERS, J.R. SD46

IRWIN, D.E. SD60

IRAER, D.E. SD60
SEVER, T.L. SD60
GRAVES, S. UAH
HARDIN, D. UAH

JAAP, J. FD42
DAVIS, E. FD42

JAAP, J. FD42
MAXWELL, T. FD42

JACOBSON, D. XP01

JACOBSON, D. XP01

JEDLOVEC, G.J. SD60
Use of MODIS/AIRS Direct Broadcast Data for Short Term Weather Forecasting—Abstract Only. For presentation at the

JEDLOVEC, G.J. SD60
HAINES, S. UAH
SUGGS, R.J. SD60
BRADSHAW, T. NWS Forecast Office
BURKS, J. NWS Forecast Office

JOHNSON, D.L. ED44
VAUGHAN, W.W. UAH
KELLER, V.W. ED44

JOHNSON, D.L. ED44
VAUGHAN, W.W. UAH
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
<th>Event</th>
</tr>
</thead>
</table>
EDWARDS, D.L.
FINCKENOR, M.

KLOSE, S.
GREINER, J.C.
RAU, A.
HENDEN, A.A.
HARTMANN, D.H.
ZEH, A.
MASSETTI, N.
GUENTHER, E.
KOUVELIOTOU, C.
ET AL.

KLOSE, S.
GREINER, J.C.
RAU, A.
HENDEN, A.A.
HARTMANN, D.H.
ZEH, A.
RIES, C.
MASSETTI, N.
KOUVELIOTOU, C.
ET AL.

KLOSE, S.
HENDEN, A.A.
GEPPER, U.
HARTMANN, D.H.
KOUVELIOTOU, C.
LUGINBUHL, C.B.
STECKLUM, B.
VRBA, F.J.

KNOX, J.C.
KOUVELIOTOU, C. SD50

KOUVELIOTOU, C. SD50
WOOSLEY, S.E. University of California
PATEL, S.K. SD50
LEVAN, A. University of Leicester
BLANDFORD, R. Kavli Inst. for Particle Astrophysics and Cosmology
RAMIREZ-RUIZ, E. Institute for Advanced Study
WIJERS, R.A.M.J. University of Amsterdam
WEISSKOPF, M.C. SD50
TENNANT, A.F. SD50
ET AL.

KULPA, V. QS10

LAPEINTA, W.M. SD60
BRADSHAW, T. NWS Forecast Office
BURKS, J. NWS Forecast Office
DARDEN, C. NWS Forecast Office
DEMBEK, S. USRA

LEAHY, F.B. ED44

LEE, G.W. Washington University
GANGOPADHYAY, A.K. Washington University
KELTON, K.F. Washington University
HYERS, R.W. University of Massachusetts
RATHZ, T.J. UAH
ROGERS, J.R. SD50

LEE, J.A. ED33

LEE, J.K. UAH
NEWMAN, T.S. UAH
GARY, G.A. SD50

LI, C. UAB BAN, H. SD46 LIN, B. SD46 SCRIPA, R.N. SD46 SU, C.-H. SD46 LEHOCZKY, S.L. SD46 LITCHFORD, R.J. TD40 Density, Electrical Conductivity, and Viscosity of Hg0.8Cd0.2Te Melt—Abstract Only. For presentation at the 14th International Conference on Crystal Growth, Grenoble, France, August 10–13, 2004, and publication in the Journal of Crystal Growth.

LI, C. SD46 SCRIPA, R.N. SD46 BAN, H. SD46 LIN, B. SD46 SU, C.-H. SD46 LEHOCZKY, S.L. SD46 LOVELACE, J. SD46 Thermophysical Properties and Structural Transition of Hg0.8Cd0.2Te Melt—Abstract Only. For publication in the Journal of Non-Crystalline Solids, 2004.
MACH, D.M. UAH
BLAKESLEE, R.J. SD60
BAILEY, J.C. Raytheon ITSS
FARRELL, W.M. Goddard Space Flight Center
GOLDBERG, R.A. Goddard Space Flight Center
DESCH, M.D. Goddard Space Flight Center
HOUSER, J.G. Goddard Space Flight Center

Lightning Optical Pulse Statistics From Storm Overflights During the Altus Cumulus Electrification Study—Abstract Only. For publication in the Special Issue of Atmospheric Research, 2004.

MACLEOD, T.C. SD22
HO, F.D. UAH

MADDOX, W. UAH/CSPAR
SPANN, J.F. SD50
GERMANY, G. UAH/CSPAR

MAJUMDAR, A. ED25

MAKAL, A. SD46
HONG, Y.-S. SD46
POTTER, R. SD46
VETTAIKKORUMAKANKAUV, A.K. SUNY
KOROTCHKINA, L.G. SUNY
PATEL, M.S. SUNY
CISZAK, E.M. SD46

MALONE, R.W. QD01
MOSES, K. Futron Corporation

MARTIN, J.J. TD40
SALVAIL, P. Morgan Research Corporation

MARTIN, M.A. TD53
NGUYEN, H.H. TD53
GREENE, W.D. TD53
SEYMOUR, D C. TD53/ERC, Inc.

MAY, G. Institute for Technology Development
MITCHELL, B. SD10

MAZURUK, K. UAH
VOLZ, M.P. SD46

MCCAUL, JR., E.W. SD60
COHEN, C. USRA/SD60
KIRKPATRICK, C. UAH

MCCOLLUM, M. ED44

MCNAMARA, H. ED44
JONES, J. University of Western Ontario
KAUFFMAN, B. ED44
SUGGS, R.M. ED44
COOKE, W.J. Morgan Research Corporation/ED44
SMITH, S. Morgan Research Corporation/ED44

MCLEAN, JR., C.I. TD07

MCLEAN, JR., C.I. TD07

MEEGAN, C.A. SD50

MEINHOLD, A. MP71

MINAMITANI, E.F. BAE Systems
PUSEY, M.L. SD46
Fluorescent Approaches to High Throughput Crystallography—Abstract Only. For presentation at the 10th International Conference on the Crystallization of Biological Macromolecules, Beijing, China, June 5–8, 2004.

MINAMITANI, E.F. BAE Systems
PUSEY, M.L. SD46

MINOW, J.I. ED44
ALSTATT, R.L. Jacobs Sverdrup/ED44
NEERGAARD, L.F. Jacobs Sverdrup/ED44

MITCHELL, D.W. XP01

MONACO, L. SD46
MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

MOORE, R.L. SD50
FALCONER, D.A. UAH
PORTER, J.G. SD50
HATHAWAY, D.H. SD50
YAMAUCHI, Y. SD50

MOORE, R.L. SD50
FALCONER, D.A. SD50
STERLING, A.C. SD50

MOORE, R.L. SD50
STERLING, A.C. SD50

MOORE, R.L. SD50
YAMAUCHI, Y. NJIT

MORRIS, C.I. TD40

NALL, M.E. SD10
CASAS, J. SD10

NEERGAARD, L.F. Jacobs Sverdrup/ED44
DAVIS, V.A. SAIC
GARDNER, B. SAIC
MANDELL, M. SAIC
MINOW, J.I. ED44

NESTEROV, V.V. New Mexico Highlands University
ANTIPIN, M.Y. New Mexico Highlands University
NESTEROV, V.N. New Mexico Highlands University
MOORE, C.E. SD46
CARDELINO, B.H. Spellman College
TIMOFEEVA, T.V. New Mexico Highlands University

NETTLES, A.T. ED34
Non-Thermal Hard X-Ray Emission in Galaxy Clusters

NEWCHURCH, M.J. UAH
FULLER, K.A. UAH
BOWDLE, D.A. UAH
JOHNSON, S. SD60
KNUPP, K.R. UAH
GILLANI, N. UAH
BLAZAR, A. UAH
MCNIDER, R.T. UAH
BURRIS, J. Goddard Space Flight Center ET AL.,

NEWMAN, T.S. UAH
SANTHANAM, N. UAH
ZHANG, H. UAH
GALLAGHER, D.L. SD50

NEWTON, R.L. ED10
DAVIDSON, J.L. Vanderbilt University
ICE, G.E. Oak Ridge National Laboratory
LIU, W. Oak Ridge National Laboratory

NGUYEN, H.H. TD53
MARTIN, M.A. TD53

NICHOLS, K.F. FD41
SCHNEIDER, L. COLSA Corporation
BEST, S. FD41

NIX, M. TD53
STATON, E.J. Jacobs Sverdrup

NIXON, C.A. University of Maryland
CONRATH, B.J. Cornell University
IRWIN, P.G.J. University of Oxford
FOUCHET, T. University of Oxford/Meudon
ABBAS, M.M. SD50
LECLAIR, A. SD50
ROMANI, P.N. Goddard Space Flight Center
Meridional Variations of C_2H_2 and C_2H_6 in Jupiter’s Atmosphere From Cassini CIRS Infrared Spectra—Abstract Only. For publication in Icarus, 2004.

NUNES, JR., A.C. ED33

OELGOETZ, P. Boeing
JOHNSON, R. Boeing
TODD, D. Boeing
RUSSELL, S. ED32
WALKER, W. ED32

O’NEILL, D.A. FD02
MANKINS, J.C. NASA Headquarters

OVERBEY, B.G. Raytheon
ROBERTS, B.C. ED44

PALOSZ, B. SD46
GIERLOTKA, S. SD46

SWIDERSKA-SRODA, A. SD46
FIETKIEWICZ, K. SD46
KALISZ, G. SD46
GRZANKA, E. SD46
STEŁ’MAKH, S. SD46
PALOSZ, B. BAE Systems

PALOSZ, B. SD46
VOLZ, M.P. SD46
COBB, S.D. SD46
MOTAKEF, S. Cape Simulations, Inc.
SZOFRAN, F.R. SD46

PANOV, A.D. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANNELL, B. ED42

POLETTO, G. SD50
SUES, S.T. SD50
BEMPORAD, A. SD50
SCHWADRON, N. SD50
ELLIOTT, H.A. SD50
ZURBUCHEN, T. SD50
KO, Y. SD50

POPP, C.G. TD52
ROBINSON, P.J. Aerojet
VEITH, E.M. Aerojet

POTTER, R. SD46
HONG, Y.-S. SD46
CISZAK, E.M. SD46/UAH

PRESSON, K. FD24
TRICHIL, M. ALTEC

PRICE, M.W. Corning Inc.
SCRIPA, R.N. UAB
SZOFRAN, F.R. SD46
MOTAKEF, S. CAPE Simulations
HANSON, B. Corning Inc.

Analysis of Radial Segregation in Directionally Solidified Hg0.89Mn0.11Te—Abstract Only. For publication in the Journal of Crystal Growth, 2003.

PUSEY, M.L. SD46

LIU, Z.-J. University of Georgia
TEMPEL, W. University of Georgia
PRAISSMAN, J. University of Georgia
LIN, D. University of Georgia
WANG, B.-C. University of Georgia
GAVIRA, J.A. UAH
NG, J.G. UAH

QUATTROCHI, D.A. SD60
LUVALL, J.C. SD60

QUINN, J.E. TD51

RAMACHANDRAN, N. BAE Systems/SD46
LESLE, F.W. SD46

RAMACHANDRAN, N. BAE Systems/SD46
LESLE, F.W. SD46

Magnetic Control of Convection During Protein Crystallization—Abstract Only. For presentation at the International Conference on Crystal Growth, Grenoble, France, August 9–13, 2004.

RAMACHANDRAN, N. BAE Systems/SD46
LESLE, F.W. SD46

RAMACHANDRAN, N. BAE Systems/SD46
RAY, C.S. SD46
ROGERS, J.R. SD46

Precision Agriculture: Changing the Face of Farming—Abstract Only. For publication in Geotimes, November 2003.

RITCHIE, S.M.C. University of Alabama
LUO, Q. University of Alabama
CURTIS, S.S. University of Alabama
HOLLADAY, J.B. FD24
CLARK, D.W. FD24

ROBERTS, B.C. ED44

ROBERTS, B.C. ED44
KNUPP, K.R. UAH

ROBERTSON, F.R. SD60
LU, H.-L. USRA

ROBERTSON, F.R. SD60
LU, H.-L. SD60

STOTT, J.E. Hernandez Engineering
LO, Y. Hernandez Engineering

ROGERS, J.R. SD46
COOK, B. SD46

ROL, E. University of Amsterdam
VAN DER HORTS, A.J. University of Amsterdam
WIJERS, R.A.M.J. University of Amsterdam
STROM, R. University of Amsterdam
KAPER, L. University of Amsterdam
KOUVELIOTOU, C. University of Amsterdam
VAN DEN HEUVEL, E.P.J. University of Amsterdam

SACKHEIM, R.L. DA01

SACKHEIM, R.L. TD04
LONDON III, J.R. TD04
WEEKS, D.J. TD04

SCHLAGHECK, R.A. SD40
STAGG, E. Teledyne Brown Engineering

SCHNEIDER, J.A. Mississippi State University
BESHEARS, R. ED32
NUNES, JR., A.C. ED33
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding—Abstract Only. For presentation at the TMS (The Minerals, Metals, and

SIMS, W.H.
PEARSON, J.B.

SINGH, N.
KHAZANOV, G.V.

SINGH, N.
SAHA, S.
CRAVEN, P.D.
GALLAGHER, D.L.
JONES, J.

SINGHAL, S.N.

SKEELLEY, S.E.

SMITH, D.D.

SMITH, D.D.

SMITH, D.D.

SMITH, D.D.
CHANG, H.

SMITH, D.D.
CHANG, H.
FULLER, K.A.

SMITHERMAN, JR., D.V.

SNELL, E.H.
VAN DER WOERD, M.J.
MILLER, M.D.
DEACON, A.M.

SOKOLSKAYA, N.V.
Moscow State University
ADAMS, J.H.
SD50
AHN, H.S.
University of Maryland
BASHINDZHAGYAN, G.L.
Moscow State U.
BATKOV, K.E.
Moscow State University
CHANG, J.
Max Planck Institute
CHRISTL, M.J.
SD50
FAZELY, A.R.
Southern University
GANEL, O.
University of Maryland

ET AL.

SORENSEN, K.
TD05
SPANN, J.F. SD50

SPANN, J.F. SD50
GERMANY, G. UAH/CSPAR
MADDOX, W. UAH/CSPAR

SPANN, J.F. SD50
KHAZANOV, G.V. SD50
MENDE, S.B. UCB

STAHL, H.P. SD70

STAHL, H.P. SD70
FEINBERG, L.D. SD70
RUSSELL, J.K. SD70
TEXTER, S. Northrop Grumman

STAHL, H.P. SD70
LEISAWITZ, D.T. SD70
BENFORD, D.J. SD70

STAHL, H.P. SD70
ROWELL, G.H. Tennessee State University

STANOJEV, B.J. TD40
HOUTS, M. Los Alamos National Laboratory

STEEVE, B.E. ED22
KAPERNICK, R.J. Los Alamos National Laboratory

STELLINGWERF, R.F. Stellingwerf Consulting
ROBINSON, J.H. Morgan Research Corporation
EVANS, S.W. ED31
STALLWORTH, R. ED31
HOVATER, M. ED31

STELLINGWERF, R.F. Stellingwerf Consulting
ROBINSON, J.H. Robinson Consulting
RICHARDSON, S. ED31
EVANS, S.W. ED31
STALLWORTH, R. ED31
HOVATER, M. ED31
<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Title</th>
<th>Abstract/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEHOCZYK, S.L.</td>
<td>SD46</td>
<td>How to Do Science in an Engineering Organization—Abstract Only. For presentation at the New Mexico State University, Las Cruces, NM, October 3, 2003.</td>
<td></td>
</tr>
</tbody>
</table>

TURNER, S.

TURPIN, J.B.

VALENTINE, P.G.

MEYER, D.

SNOW, H.

VAN DER WOERD, M.J.

DNA in a Tunnel: A Comfy Spot for Recognition—or The Structure of BsoBI complexed With DNA—What Can We Learn About Function Via Structure Determination and How Can This Be Applied to Bone or Muscle Biology?—Abstract Only. For presentation at an Invited Talk at Johnson Space Center, Houston, TX, March 26, 2004.

VAN DYKE, M.K.

MARTIN, J.J.

VAN DYKE, M.K.

HUNT, C.D.

VAUGHAN, W.W.

ANDERSON, B.J.

VAUGHN, J.A.

CURTIS, L.

GILCHRIST, B.E.

University of Michigan

BILEN, S.

 Pennsylvania State University

LORENZINI, E.

VINE, F.J.

MANKOWSKI, J.J.

SAEKS, R.E.

CHOW, A.S.

HILL, D.N.

Accurate Automation

Accurate Automation

Accurate Automation

Accurate Automation

Georgia Institute of Technology

VOLZ, M.P.

VOLZ, M.P.

WALKER, J.S.

University of Illinois

USRA/SD46/Schott Glas

COBB, S.D.

51
RUDOLF, F. R. SD46

WACHTER, S. SD50
KOUNIPTOUL, C. SD50
PATEL, S.K. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
EICHLER, D. SD50
LYUBARSKY, Y. SD50
BOUCHET, P. SD50

WANG, T.-S. TD64

WANG, T.-S. TD64

WATSON, M.D. ED12
ASHLEY, P.R. U.S. Army AMRDEC
ABUSHAGUR, M. Rochester Institute of Tech.

WATSON, M.D. ED12
MINOW, J. ED12
ALTSTATT, R. Jacobs Sverdrup
WERTZ, G.E. ED12
SEMMEIL, C.L. Qualis Corporation
EDWARDS, D.L. ED12
ASHLEY, P.R. U.S. Army Aviation

WATSON, M.D. ED12
ALDCROFT, T.L. SAO
BAUTZ, M. MIT
CAMERON, R.A. SAO
DEWEY, D. MIT
DRAKE, J.J. SAO
GRANT, C.E. MIT
MURRAY, S.S. SAO

WEISSKOPF, M.C. SD50
ALDCROFT, T.L. SD50
CAMERON, R.A. SD50
GANDHI, P. SD50
FOELLMI, C. SD50
ELSNER, R.F. SD50
PATEL, S.K. SD50
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
ALDCROFT, T.L. Smithsonian Astrophysics
CAMERON, R.A. Smithsonian Astrophysics
GANDHI, P. European Southern Observatory
FOELLMI, C. European Southern Observatory
ELSNER, R.F. Smithsonian Astrophysics
PATEL, S.K. USRA
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
ELSNER, R.F. SD50
RAMSEY, B.D. SD50
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
WU, K. University College London
TENNANT, A.F. SD50
SWARTZ, D.A. USRA/SD50
GHOSH, K.K. USRA/SD50

WELLS, B.E. UAH
WEIR, J. ED10
TREVINO, L.C. ED10
PATRICK, C. ED10
STEINCAMP, J. ED10

WEST, E.A. SD50
PORTER, J.G. SD50

Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the

WESTRA, D.G. ED25
HEINRICH, J.C. University of Arizona
POIRIER, D.R. University of Arizona

WHORTON, M.S. TD54

WILSON, C.A. SD50
COE, M.J. Southampton
WEISSKOPF, M.C. SD50
GREINER, J.C. MPE
REIG, P. University of Crete

WILSON, C.A. SD50
FINGER, M.H. SD50
WEISSKOPF, M.C. SD50
REIG, P. University of Crete

FISHMAN, G.J. SD50

Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the

WOODCOCK, G.
BYERS, D.
ALEXANDER, L.A.
KREBSBACH, A.

WRIGHT, K.H.
GARBE, G.

XIONG-SKIBA, P.
HULGUIN, R.
ENGEHLAUPPT, D.
RAMSEY, B.D.

YAMAUCHI, Y.
MOORE, R.L.
SUSS, S.T.
WANG, H.

The Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For publication in Nuclear Instruments and Methods, 2004.

SAKURAI, T.

ZATESPIN, V.I.
ADAMS, J.H.
AHN, H.S.
BASHINDZHAGYAN, G.L.
BATKOV, K.E.
CHANG, J.
CHRISTL, M.J.
FAZELY, A.R.
GANEL, O.

ET AL.

ZENG, W.
HORWITZ, J.L.
CRAVEN, P.D.
RICH, F.J.
MOORE, T.E.

Air Force Research Laboratory
Goddard Space Flight Center

ZIMMERMAN, F.R.

ED33
INDEX

TECHNICAL MEMORANDUM

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAILEY, J.W.</td>
<td>1</td>
</tr>
<tr>
<td>BROWN, T.M.</td>
<td>3</td>
</tr>
<tr>
<td>CAMPBELL, J.W.</td>
<td>2, 3</td>
</tr>
<tr>
<td>CARRUTH, M.R.</td>
<td>2, 3</td>
</tr>
<tr>
<td>CATO, S.N.</td>
<td>2</td>
</tr>
<tr>
<td>CURRENRI, P.A.</td>
<td>1</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>3</td>
</tr>
<tr>
<td>FAZAH, M.</td>
<td>1</td>
</tr>
<tr>
<td>FENCUM, A.</td>
<td>3</td>
</tr>
<tr>
<td>FLACHBART, R.H.</td>
<td>1</td>
</tr>
<tr>
<td>FOWLER, B.A.</td>
<td>1</td>
</tr>
<tr>
<td>FREESTONE, T.M.</td>
<td>2</td>
</tr>
<tr>
<td>GAMWELL, W.R.</td>
<td>3</td>
</tr>
<tr>
<td>HAINES, S.L.</td>
<td>3</td>
</tr>
<tr>
<td>HASTINGS, L.J.</td>
<td>1, 3</td>
</tr>
<tr>
<td>HEDAYAT, A.</td>
<td>1, 3</td>
</tr>
<tr>
<td>HOUTS, M.G.</td>
<td>1</td>
</tr>
<tr>
<td>HOWARD, R.T.</td>
<td>3</td>
</tr>
<tr>
<td>HUFF, T.L.</td>
<td>1</td>
</tr>
<tr>
<td>HUSTON, D.</td>
<td>3</td>
</tr>
<tr>
<td>ILA, D.</td>
<td>3</td>
</tr>
<tr>
<td>JEDLOVEC, G.J.</td>
<td>3</td>
</tr>
<tr>
<td>JOHNSTON, N.A.S.</td>
<td>3</td>
</tr>
<tr>
<td>KAPERNICK, R.J.</td>
<td>2</td>
</tr>
<tr>
<td>LAK, T.</td>
<td>1</td>
</tr>
<tr>
<td>MALONE, T.W.</td>
<td>2</td>
</tr>
<tr>
<td>MARTIN, J.J.</td>
<td>1</td>
</tr>
<tr>
<td>MAXWELL, G.</td>
<td>3</td>
</tr>
<tr>
<td>MUNTELE, C.</td>
<td>3</td>
</tr>
<tr>
<td>MUNTELE, I.</td>
<td>3</td>
</tr>
<tr>
<td>MURPHY, K.L.</td>
<td>1</td>
</tr>
<tr>
<td>MURPHY, N.C.</td>
<td>3</td>
</tr>
<tr>
<td>NABORS, S.</td>
<td>3</td>
</tr>
<tr>
<td>NGUYEN, H.</td>
<td>1</td>
</tr>
<tr>
<td>ROBINSON, M.B.</td>
<td>1</td>
</tr>
<tr>
<td>RUSSELL, C.K.</td>
<td>2</td>
</tr>
<tr>
<td>SMALLEY, L.</td>
<td>3</td>
</tr>
<tr>
<td>STANLEY, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>STEEVE, B.E.</td>
<td>2</td>
</tr>
<tr>
<td>SUGGS, R.J.</td>
<td>3</td>
</tr>
<tr>
<td>SUMMERS, F.G.</td>
<td>4</td>
</tr>
<tr>
<td>VAN DYKE, M.K.</td>
<td>1</td>
</tr>
<tr>
<td>WATSON, D.W.</td>
<td>3</td>
</tr>
<tr>
<td>ZIMMERMAN, R.</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL PUBLICATION

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMA, R.B.</td>
<td>5</td>
</tr>
<tr>
<td>ADAMS, R.B.</td>
<td>5</td>
</tr>
<tr>
<td>ALEXANDER, R.A.</td>
<td>5</td>
</tr>
<tr>
<td>ANDERSON, B.J.</td>
<td>6</td>
</tr>
<tr>
<td>BONEMETTI, J.</td>
<td>5</td>
</tr>
<tr>
<td>CAMPBELL, A.</td>
<td>7</td>
</tr>
<tr>
<td>CHAPMAN, J.M.</td>
<td>5</td>
</tr>
<tr>
<td>DELAMERE, P.</td>
<td>6</td>
</tr>
<tr>
<td>FINCHER, S.S.</td>
<td>5</td>
</tr>
<tr>
<td>HATHAWAY, D.H.</td>
<td>5, 6</td>
</tr>
<tr>
<td>HOPKINS, R.C.</td>
<td>5</td>
</tr>
<tr>
<td>KABIN, K.</td>
<td>6</td>
</tr>
<tr>
<td>KALKSTEIN, M.</td>
<td>5</td>
</tr>
<tr>
<td>KHAZANOV, G.V.</td>
<td>6</td>
</tr>
<tr>
<td>KRIEG, J.</td>
<td>7</td>
</tr>
<tr>
<td>LINDE, T.J.</td>
<td>6</td>
</tr>
<tr>
<td>LITCHFORD, R.J.</td>
<td>5, 6</td>
</tr>
<tr>
<td>MARSHALL, P.</td>
<td>7</td>
</tr>
</tbody>
</table>
MCCaleb, R.C. ... 6
MesSenger, S.R. .. 7
Mortin, T.L. .. 7
Patton, B.W. ... 5
PhilPs, A.D. .. 5
Polsgrove, T.T. .. 5
Reeves, M. ... 7
Roberts, F.E. ... 5
Schmeichel, W. ... 7
Statham, G. .. 5
Thio, Y.C.F. .. 5
Titus, J. ... 7
Turlinger, T. .. 7
Walters, R.J. ... 7
White, P.S. .. 5
WiIson, R.M. .. 5, 6
Freeman, L.M. .. 9
Karr, G. ... 9
Mandell, M.J. ... 9
McNulty, P.J. .. 9
Nash-stevenson, S.K. .. 9
Thomsen, M.F. .. 9

CONFERENCE PUBLICATIONS

Christensen, C.B. .. 8
Cook, M.B. .. 8
Cross Stanley, D. .. 8
George, P. .. 8
Howell, J.T. .. 8
Mankins, J.C. .. 8
Marzwell, N. ... 8
Minor, J.L. .. 8
Mullins, C.A. ... 8
O’Neil, D.A. ... 8

CONTRACTOR REPORTS

Bland, J. .. 9
Brautigam, D.H. .. 9
Davis, V.A. .. 9
Frederickson, A.R. .. 9

MSFC abstracts, articles, papers, and presentations cleared for dissemination

AbbAS, M.M. .. 11, 23, 40
AbUshAGur, M. .. 23, 52
Achterberg, R.K. .. 11, 23, 40
Adamek, D.H. .. 28, 46
Adams, C.W. ... 11
Adams, J.H. ... 11, 17, 40, 47, 54
Adams, M. ... 11
Ade, P. ... 23
Adkins, W. ... 18, 52
AdriAn, M.L. ... 11, 24
Affleck, D.L. ... 33
Aggarwal, P.K. ... 12
Ahn, H.S. .. 11, 17, 40, 47, 54
Albardo, T. ... 28
Albyn, K. ... 11, 14, 15
Aldcroft, T.L. .. 52, 53
Alexander, L.A. ... 31, 54
Alhorn, D.C. ... 12
Allen, P.A. .. 12
Alred, J. .. 11
Alstatt, R.L. ... 37
Altino, K.M. .. 12
Altstatt, R. .. 52
Anderson, B.J. .. 51
Anilkumar, A.V. .. 12, 26
Antipin, M.Y. .. 38
APPLE, J. ... 26
ARAKERE, N.K. 12
ARMSTRONG, J. 16
ARZOUUMANIAN, Z. 13
ASHCROFT, P. 25
ASHLEY, P.R. 32, 52
ASTAFIEVA, M.M. 12
AVANOV, L.A. 12
BACHMANN, K. 16
BAGDIGIAN, B. 17
BAGGETT, R.M. 31
BAILEY, J.C. 14, 15, 25, 36
BALASUBRAMANIAN, S. 18, 22
BALLARD, R. 12
BAN, H. ... 12, 34, 35
BANCROFT, S. 50
BARBER, W.C. 41
BARCZY, P. 49
BARNES, R.J. 23
BARUCCI, A. 23
BASHINDZHAGYAN, G.L. 11, 17, 40, 47, 54
BASSLER, J.A. 19
BATKOV, K.E. 11, 17, 40, 47, 54
BAUTZ, M. 52
BEARD III, J.W. 16
BEAUMONT, B. 25
BECKER, W. 13
BEDARD, J. 17
BEECHER, E.A. 32
BEISSER, K.B. 23
BEJ, A. .. 41
BELCHER, J.A. 13
BELLAMY, H. 35
BEMPORAD, A. 42, 49
BENEFIELD, M.PJ. 13
BENFORD, A. 13
BENFORD, D.J. 48
BENGSTON, R. 18
BERNHARDSDOTTER, E.C.M.J. 13
BESHEARS, R. 45
BEST, S. .. 39
BEZARD, B. 23
BHARDWAJ, A. 13, 21
BHOWMICK, J. 12
BIAZAR, A. 39
BILEN, S. 51
BISHOP-BEHEL, K. 31
BJORAKER, G. 11
BJORAKER, G.L. 23
BLACKWELL, W.C. 14
BLAKESLEE, R.J. 14, 15, 17, 25, 29, 36
BLANDFORD, R. 34
BLEVINS, J.A. 14
BLUME, J.L. 14
BOCCIO, D. 16
BOCCIPPIO, D.J. 14
BOEDER, P. 14
BONAMETTE, M. 14, 38
BONOMETTI, J.A. 31
BOOK, M.L. 29
BOOTHE, R. 16
BORGSTAHLL, G. 35
BORS, K. 20, 43
BOUCHET, P. 52
BOWDLE, D.A. 39
BRADFORD, R.N. 14, 15
BRADSHAW, R.C. 30
BRADSHAW, T. 31, 34
BRAGG-SITTON, S.M. 15
BRANDT, P.C. 35
BRANDUARDI-RAYMONT, G. 13, 15
BRASUNAS, J.C. 23
BREIZMAN, B. 18
BRIDGE, K. 28
BRIGGS, M.S. .. 41
BRISCOE, J.M. .. 15, 19
BRODERICK, D.J. .. 15
BROOKMAN, S. ... 27
BROW, R.K. ... 43
BROWN, A.M. ... 15
BROWN, K.K. ... 41
BRUBAKER, N. ... 15
BRYAN, T.C. .. 29
BUECHLER, D.E. .. 14, 15, 25
BURKS, J. ... 31, 34
BURNS, H. ... 15
BURNS, L. ... 16
BURRIS, J. .. 39
BUTLER, C. ... 16
BYBERG, A. ... 48
BYERS, D. ... 54
CAI, D.S. ... 39
CAMERON, R.A. ... 14, 52, 53
CAMILO, F. ... 13
CAMPBELL, B.A. .. 24
CAMPBELL, J. .. 16
CAMPBELL, J.W. ... 16
CANABAL, F. .. 50
CANFIELD, S. .. 16
CANNING, F.X. ... 16
CARDELINO, B.H. .. 38
CARDELINO, C.A. .. 16
CARDELINO, H. ... 16
CARLSTROM, J.E. .. 14
CARPENTER, P.K. ... 16, 24
CARRASQUILLO, R.L. 17
CARRIER, M. .. 17
CARRINGTON, C.K. 17
CARTER, L. ... 17
CARTER, R. ... 45
CASAS, J. .. 38
CASIANO, M.J. ... 17
CATALINA, A.V. .. 17
CECIL, D.J. .. 14, 17, 29
CHANDLER, M.O. .. 12, 19
CHANG, H. ... 17, 47
CHANG, J. .. 11, 17, 40, 47, 54
CHANG, S.-W. ... 13, 18
CHANG-DIAZ, F. ... 18
CHAIKIN, G. .. 18
CHEN, F. ... 18, 52
CHENOWETH, J. .. 50
CHERNOV, A.A. ... 18, 29
CHIANESE, S. .. 14
CHOU, S.-H. ... 18
CHUDHARY, D.P. .. 18, 27
CHU, Y.S. .. 29
CHRISTENSEN, D.L. 23
CHRISTIAN, H. .. 25
CHRISTIAN, H.J. ... 15, 19
CHRISTL, M.J. ... 11, 17, 19, 41, 47, 54
CLAYTON, L. .. 19
CLAYTON, S.E. ... 28
CLARK, D.W. .. 44
CLINTON, JR., R.G. 19
CLOUD, D. .. 17
COBB, S.D. ... 40, 51
COE, M.J. ... 53
COFFMAN, M.E. .. 50
COHEN, C. .. 37
COHEN, T. ... 28
COLA, ANNA .. 38
COLE, J. ... 16
COMARAZAMY, D.E. 25
DEACON, A.M. .. 47
CONNAUGHTON, V .. 41
CONOVER, H. .. 25
CONRATH, B.J. ... 11, 23, 40
CONWAY, D. .. 25
COOK, B. .. 45
COOK, M.B. .. 19
COOK, S.A. .. 19
COOKE, W.J. ... 19, 37, 50
COOPER, A.E. .. 41
COOPER, J.F. ... 22
CORDER, E.L. .. 15, 19
COSTEN, J. ... 29, 46
COX, M.D. ... 36
CRAFT, M.A. ... 29
CRAIG, W.W. .. 41
CRAVEN, P.D. ... 11, 19, 47, 54
CRAVENS, T .. 21
CRAVENS, T.E. .. 13
CROW, R.W. .. 32
CRUZ, A. ... 20, 43
CRUZEN, C. .. 20
CUNTZ, M. ... 20
CURREI, P.A. .. 20
CURTIS, L. ... 51
CURTIS, S.S. .. 44
DARDEN, C. ... 15, 25, 34
DARROUZET, F. ... 20
DAVIDSON, G. .. 28
DAVIDSON, J.L. ... 39
DAVIS, E. ... 30
DAVIS, J.M. .. 53
DAVIS, R.N. .. 20
DAVIS, S.E. ... 20
DAVIS, V.A. .. 38
DAY, D.E. ... 24, 43
DAY, G. ... 17, 28
DEACON, A.M. ... 47
DECKER, R. ... 16
DECKER, R.K. .. 20
DECREAU, E. ... 20
DEMBEK, S. .. 34
DENTON, M.H. .. 35
DESH, M.D. ... 36
DETKOVA, E.N. ... 20
DEVERAPALLI, C. ... 24
DEWEY, D. ... 52
DE YOREO, J.J. ... 18
DE KEYSER, J. .. 20
DIETZ, N. ... 16
DOBSON, C. ... 20
DOMINIAK, P.M. ... 19, 20, 21
DORNEY, D.J. .. 21
DRAKE, J.J. .. 49, 52
DUDLEY, M. ... 49
DUKE, G.C. .. 12
DUMAS II, J.D. ... 27
DUMBACHER, D.L. ... 21
DUVALL, A.L. .. 31, 32
DYER, S. ... 20
EDWARDS, D.L. ... 11, 16, 21, 28, 33, 52
EICHLER, D. ... 52
ELAM, S.K. ... 23
ELANDER, V. ... 21
ELLIOIT, H.A. .. 42
ELLIS, D.L. ... 45
ELSNER, R.F. ... 13, 15, 21, 22, 43, 49, 53
EMERSON, C.W. ... 22
EMOTO, K. ... 12
EMRICH, W.J. .. 22
ENG, R. .. 22, 27
ENGBERG, R.C. ... 22
ENGEL, C.D. ... 20
ENGEL, H.P. .. 24
ENGELHAUPT, D. ... 22, 43, 54
ENGLISH, J.M. .. 23
ESKRIDGE, R. .. 33, 36
ESTES, H. ... 22
ETHRIDGE, E.C. .. 50
EVANS, S.W. .. 22, 48
EWING, A. .. 16
FALCONER, D.A. .. 11, 18, 22, 38
FARR, R.A. .. 23
FARRELL, W.M. ... 36
FARROW, J.L. .. 23
FAZELY, A.R. ... 11, 18, 41, 47, 54
FEINBERG, L.D. .. 48
FERGUSON, C.K. ... 23
FERGUSON, D. ... 46
FIETKIEWICZ, K. ... 40
FIMOGNARI, P. ... 33, 36
FINCHUM, C. .. 16
FINCKENOR, M. ... 14, 16, 33
FINGER, M.H. ... 24, 53
FISHMAN, G.J. ... 23, 39, 53
FLANDRO, G.A. ... 23
FLASAR, F.M. .. 11, 23
FOELLMI, C. .. 53
FOK, M.-C. .. 32
FORBES, J.C. .. 23
FORD, P. ... 21
FORK, R. ... 29
FORSBACKA, M. .. 15
FORSYTHE, E.L. ... 23, 25
FOUCHET, T. .. 40
FOX, N.J. ... 23
FULLER, K.A. .. 23, 39, 47
FUSS, T. ... 24
GALLOWGAR, D.L. 11, 18, 19, 20, 24, 32, 35, 39, 47
GAMAYUNOV, K.V. ... 32
GANDHI, P. .. 53
GANEL, O. ... 11, 18, 41, 47, 54
GANGOPADHYAY, A.K. .. 30, 34
GARBE, G. .. 16, 24, 54
GARCIA, R. .. 24, 50
GARDNER, B. ... 38
GARRIOTT, O.K. .. 13
GARY, G.A. .. 22, 24, 34, 53
GATLIN, P.N. .. 15, 24
GATTIS, C.B. .. 29
GAVIRA, J.A. .. 42
GAVIRA-GALLARDO, J.A. 46
GEPPEKT, U. .. 33
GERMANY, G. .. 24, 36, 48
GEVEDEN, R.D. .. 24, 45
GHOSH, K.K. .. 49, 53
GIERASCH, P.J. ... 23
GIERLOTKA, S. ... 40
GILCHRIST, B.E. .. 51
GILL, L. ... 28
GILLANI, N. .. 39
GILLIES, D.C. .. 24
GLADSTONE, G.R. .. 13, 15, 21
GODFROY, T.J. .. 15
GOEBEL, D. ... 51
GOGUS, E. ... 24
GOLDBERG, R. ... 23
GOLDBERG, R.A. ... 36
GOLDMAN, A. .. 25
GONZALEZ, J.E. ... 25
GOODMAN, D.D. ... 25
GOODMAN, H.M. ... 25, 32
GOODMAN, S.J. ... 12, 14, 15, 24, 25
GORTI, S. .. 23, 25
GOSTOWSKI, R. ... 14, 25, 26
GOUY, R. ... 45
GOWDA, S. ... 44
GRADY, C.A. .. 49
GRANOT, J. .. 43
MANKOWSKI, J.J. ... 51
MARCU, B. ... 21
MARKS, F. ... 29
MARKUSIC, T.E. ... 36
MARKWARDT, C.B. ... 25
MARSHALL, H.L. .. 52
MARSHALL, S. ... 44
MARTIN, D. .. 41
MARTIN, A. .. 33, 36
MARTIN, J.J. ... 36, 37, 51
MARTIN, M.A. ... 37, 39
MARZWELL, N.I. ... 19
MASETTI, N. .. 33
MASK, P. ... 43
MASON, R. ... 17
MASSON, A. .. 20
MATSON, D.M. ... 30
MAXWELL, T. ... 30
MAY, G. ... 37
MAYNE, A.W. ... 23
MAZURUK, K. ... 37
MAZZALI, P.A. .. 43
MCCALL, S.D. ... 16
MCCARTY, W. ... 18
MCCAUL, E. .. 25
MCCAUL, JR., E.W. ... 14, 15, 37
MCCLYMER, J.P. ... 46
MCCOLLUM, M. ... 37
MCDANIELS, D.M. .. 45
MCGHEE, D.S. ... 15
MCNAMARA, H. .. 37
MCNEAL, JR., C.I. .. 37
MCNIDER, R.T. ... 39
MECIKALSKI, J.R. .. 18
MEEGAN, C.A. ... 37, 41
MEHROTRA, A. ... 14
MEINHOLD, A. ... 37
MELCHER, C. ... 16
MENDE, S. .. 18
MENDE, S.B. ... 48
METZGER, A.E. ... 13
MEYER, D. .. 51
MEYER, P.J. ... 27
MIKATARIAN, R. .. 14
MIKELLIDES, I.G. ... 46
MILLER, J. .. 19
MILLER, M.D. .. 47
MILLER, T. .. 28
MINAMITANI, E.F. ... 37
MINOR, J. ... 32
MINOW, J.I. ... 14, 37, 38, 52
MITCHELL, B. ... 37
MITCHELL, D.W. ... 37
MOHAROS, J. .. 23
MOLVIK, G. ... 50
MONACO, L. .. 37
MONTGOMERY, S.E. ... 31
MONTGOMERY IV, E.E. .. 24, 38
MOORE, C.E. .. 16, 38
MOORE, R.L. ... 18, 22, 24, 38, 49, 54
MOORE, T.E. .. 19, 23, 54
MORRIS, C.E.K. ... 19
MORRIS, C.I. .. 38
MOSER, D. .. 19
MOSES, K. ... 36
MOTAKEF, S. .. 40, 42
MULLOTH, L.M. ... 33
MULQUEEN, J.A. .. 27
MURPHY, L. ... 44
MURRAY, S.S. .. 52
NALL, M.E. ... 38
NANDY, D. .. 27
NEERGAARD, L.F. ... 37, 38
NEHLS, M.K. .. 21
SAHA, S. ... 47
SAKURAI, T. .. 54
SALAS, A.O. .. 44
SALVAIL, P. .. 37
SANDERS, G.B. .. 19
SANDERS, T.M. .. 23
SANTHANAM, N. ... 39
SANTOLIK, O. .. 20
SARGENT, S. ... 23
SARI, R. .. 26
SATURNO, W. ... 46
SCHAFER, C. ... 45
SCHLAGHECK, R.A. .. 19, 45
SCHMID, H.M. .. 26
SCHMIDT, W.K.H. ... 17
SCHNEIDER, J.A. .. 45, 46
SCHNEIDER, L. .. 39
SCHNEIDER, T.A. ... 46, 51
SCHRAMM, F. ... 46
SCHWADRON, N. ... 42
SCHWEIZER, M. .. 51
SCRIPA, R.N. ... 12, 35, 42
SEGRE, P.N. ... 46
SEMMEL, C.L. ... 21, 28, 52
SEMMES, E.B. ... 19
SEN, S. ... 17, 26
SEO, E.S. .. 11
SEVER, T.L. ... 30, 46
SEXTON, J. ... 46
SEYMOUR, D.C. ... 37
SHADOAN, M. .. 40
SHAH, S.R. ... 40, 46
SHAW, J. .. 43
SHEETS, P. ... 46
SHIBATA, K. ... 39
SHIVERS, H. ... 32
SIBILLE, L. ... 20, 46
SIDMAN, E.D. ... 41
SIGWARTH, J.B. ... 23
SIMON-MILLER, A.A. .. 23
SIMS, J.D. ... 23
SIMS, W.H. ... 46, 47
SINGH, N. ... 19, 32, 47
SINGHAL, S.N. .. 47
SKELEY, S.E. .. 47
SMALLEY, L. ... 16
SMIRNOV, V.N. ... 12
SMITH, A. .. 26
SMITH, D.D. .. 17, 23, 47
SMITH, G.A. .. 50
SMITH, S. .. 37
SMITH, W.S. .. 48
SMITHERMAN, JR., D.V. .. 47
SMITHERS, M. .. 26
SNELL, E.H. ... 31, 35, 46, 47
SNOW, H. .. 51
SNYDER, D. .. 46
SOARES, A.S. .. 35
SOKOLSKAYA, N.V. ... 47
SOL, H. ... 39
SORENSEN, K. ... 47
SORIA, R. .. 13, 15
SPANN, J.F. ... 11, 18, 23, 24, 32, 36, 48
SPEAR, S.K. .. 50
SPEEGL, C.O. ... 43
SPIVEY, R. .. 26
STAGG, E. .. 45
STAHL, H.P. ... 48
STAHL, P. .. 22, 27
STALLWORTH, R. ... 22, 48
STANOJEV, B.J. ... 48
STATON, E.J. .. 40
STECKLUM, B. .. 33
STEELE, G. ... 46
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEVE, B.E.</td>
<td>48</td>
</tr>
<tr>
<td>STEFANESCU, D.M.</td>
<td>17</td>
</tr>
<tr>
<td>STEINBERG, J.T.</td>
<td>54</td>
</tr>
<tr>
<td>STEINCAMP, J.</td>
<td>50, 53</td>
</tr>
<tr>
<td>STEINCAMP, J.W.</td>
<td>50</td>
</tr>
<tr>
<td>STELMACKH, S.</td>
<td>40</td>
</tr>
<tr>
<td>STELLINGWERF, R.F.</td>
<td>22, 48</td>
</tr>
<tr>
<td>STERLING, A.C.</td>
<td>18, 38, 49</td>
</tr>
<tr>
<td>STEWART, E.T.</td>
<td>50</td>
</tr>
<tr>
<td>STORRIE-LOMBARDI, M.C.</td>
<td>49</td>
</tr>
<tr>
<td>STOTT, J.E.</td>
<td>45</td>
</tr>
<tr>
<td>STROM, R.</td>
<td>45</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>12, 35, 49</td>
</tr>
<tr>
<td>SUEMATSU, Y.</td>
<td>18</td>
</tr>
<tr>
<td>SUESS, S.T.</td>
<td>20, 41, 42, 49, 54</td>
</tr>
<tr>
<td>SUGGS, R.J.</td>
<td>31, 49</td>
</tr>
<tr>
<td>SUGGS, R.M.</td>
<td>19, 37, 49, 50</td>
</tr>
<tr>
<td>SULLIVAN, D.</td>
<td>43</td>
</tr>
<tr>
<td>SWANK, J.H.</td>
<td>25</td>
</tr>
<tr>
<td>SWANSON, G.R.</td>
<td>12</td>
</tr>
<tr>
<td>SWARTZ, D.A.</td>
<td>13, 22, 49, 53</td>
</tr>
<tr>
<td>SWEET, R.M.</td>
<td>35</td>
</tr>
<tr>
<td>SWIDERSKA-SRODA, A.</td>
<td>40</td>
</tr>
<tr>
<td>SWIFT, W.R.</td>
<td>50</td>
</tr>
<tr>
<td>SWINGLE, M.R.</td>
<td>50</td>
</tr>
<tr>
<td>SZOFRAN, F.R.</td>
<td>40, 42, 52</td>
</tr>
<tr>
<td>SZOKE, J.</td>
<td>49</td>
</tr>
<tr>
<td>TANG, J.</td>
<td>41</td>
</tr>
<tr>
<td>TANKOSIC, D.</td>
<td>11</td>
</tr>
<tr>
<td>TATARA, J.D.</td>
<td>17, 50</td>
</tr>
<tr>
<td>TAYLOR, C.</td>
<td>41</td>
</tr>
<tr>
<td>TAYLOR, J.</td>
<td>50</td>
</tr>
<tr>
<td>TAYLOR, T.L.</td>
<td>50</td>
</tr>
<tr>
<td>TEMPEL, W.</td>
<td>42</td>
</tr>
<tr>
<td>TEMPLETON, G.</td>
<td>27</td>
</tr>
<tr>
<td>TENNANT, A.F.</td>
<td>13, 34, 49, 52, 53</td>
</tr>
<tr>
<td>TEXTER, S.</td>
<td>48</td>
</tr>
<tr>
<td>THIGPEN, W.W.</td>
<td>15</td>
</tr>
<tr>
<td>THOMAS, B.R.</td>
<td>29</td>
</tr>
<tr>
<td>THOMPSON, M.S.</td>
<td>28</td>
</tr>
<tr>
<td>THORNTON, G.</td>
<td>50</td>
</tr>
<tr>
<td>TILGHMAN, N.</td>
<td>27</td>
</tr>
<tr>
<td>TIMOFEEEVA, T.V.</td>
<td>38</td>
</tr>
<tr>
<td>TINKER, M.L.</td>
<td>13, 50</td>
</tr>
<tr>
<td>TIPPETT, D.D.</td>
<td>32</td>
</tr>
<tr>
<td>TODD, D.</td>
<td>40</td>
</tr>
<tr>
<td>TORRES, I.</td>
<td>41</td>
</tr>
<tr>
<td>TREVINO, L.C.</td>
<td>20, 53</td>
</tr>
<tr>
<td>TRICHILO, M.</td>
<td>42</td>
</tr>
<tr>
<td>TROTIGNON, J.G.</td>
<td>20</td>
</tr>
<tr>
<td>TUCKER, D.S.</td>
<td>50</td>
</tr>
<tr>
<td>TUCKER, K.</td>
<td>50</td>
</tr>
<tr>
<td>TURNER, M.B.</td>
<td>50</td>
</tr>
<tr>
<td>TURNER, S.</td>
<td>51</td>
</tr>
<tr>
<td>TURPIN, J.B.</td>
<td>51</td>
</tr>
<tr>
<td>TYLER, T.</td>
<td>23</td>
</tr>
<tr>
<td>TYSON, R.W.</td>
<td>19</td>
</tr>
<tr>
<td>UDDIN, W.</td>
<td>18</td>
</tr>
<tr>
<td>VALENTINE, P.G.</td>
<td>51</td>
</tr>
<tr>
<td>VAN DEN HEUVEL, E.P.J.</td>
<td>45</td>
</tr>
<tr>
<td>VAN DER HORSHT, A.J.</td>
<td>45</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>25</td>
</tr>
<tr>
<td>VAN DER WOERD, M.J.</td>
<td>31, 47, 51</td>
</tr>
<tr>
<td>VAN DYKE, M.K.</td>
<td>51</td>
</tr>
<tr>
<td>VAN PELT, M.</td>
<td>51</td>
</tr>
<tr>
<td>VAN SANT, J.T.</td>
<td>24</td>
</tr>
<tr>
<td>VAUGHAN, W.W.</td>
<td>31, 51</td>
</tr>
<tr>
<td>VAUGHN, J.A.</td>
<td>51</td>
</tr>
<tr>
<td>VEITH, E.M.</td>
<td>42</td>
</tr>
<tr>
<td>VEKILOV, P.G.</td>
<td>18</td>
</tr>
<tr>
<td>VETTAIKKORUMANIKKAIKUN, A.K.</td>
<td>36</td>
</tr>
<tr>
<td>VICKERS-RICH, P.</td>
<td>12</td>
</tr>
<tr>
<td>VINE, F.J.</td>
<td>51</td>
</tr>
<tr>
<td>VIRANI, S.N.</td>
<td>14</td>
</tr>
</tbody>
</table>
This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2004. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.
The NASA STI Program Office…in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at 301–621–0134

- Telephone the NASA Access Help Desk at 301–621–0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390