The NASA STI Program Office…in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390
FY 2004 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
FOREWORD

In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 2004 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>NASA CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>9</td>
</tr>
<tr>
<td>MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION</td>
<td>11</td>
</tr>
<tr>
<td>INDEX</td>
<td>55</td>
</tr>
</tbody>
</table>

During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18-m³ multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH₂) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH₂ saturation pressure from 133 to 70 kPa in 188 min.

Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3–300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashion with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished via cooperative efforts with Department of Energy labs, industry, universities, and other NASA Centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 2002. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.

The purpose of this research effort was to (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties.
Often, a single method or technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. This is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated. In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

TM—2004–213170 May 2004

A heat pipe–cooled reactor coupled to a Brayton cycle is currently under consideration for nuclear electric propulsion or as a planetary surface power source. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This Technical Memorandum (TM) discusses the fluid, thermal, and structural analyses that were performed in support of the design of the heat exchanger to be tested in the Safe, Affordable Fission Engine experimental program at Marshall Space Flight Center. A companion paper, “Mechanical Design and Fabrication of a SAFE–100 Heat Exchanger for use in NASA’s Advanced Propulsion Thermal-Hydraulic Simulator,” presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be used for higher power and temperature applications. This TM also discusses this aspect of the design and presents designs for specific applications under consideration.

TM—2004–213172 May 2004
Evaluation of Training Samples Manually Welded With the Universal Handtool in a Space Simulation Chamber.

The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated at 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples.

This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.

TM—2004–213174 May 2004

A laser space calibration experiment is considered using the 12-J, 15-Hz high-performance CO₂ laser surveillance sensor (HI-CLASS) system on the 3.67-m aperture advanced electro-optics system (AEOS). The objectives are to provide accurate range and signature measurements of orbiting calibration spheres, demonstrate high-resolution tracking capability of small objects, and precision drag determination for low-Earth orbit (LEO). Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbation analyses, and comparing radar and optical signatures. A global positioning system (GPS), laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in LEO, the microsatellite will pass over AEOS on the average of two times per 24-hr period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS AEOS will detect the microsatellite as it rises above the horizon, using Space Command-generated acquisition vectors. GPS data will be transmitted to the ground providing independent on-orbit, submeter accuracy location information for the microsatellite.
A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or “modified Lockheed equation.” Results from the two models were very comparable and were within 5–8 percent of the measured data at the 300 K boundary condition.

Transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insulation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.
and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

TM—2004–213394 September 2004

This Technical Memorandum (TM) lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2003. Entries in the main part of the TM are categorized according to NASA Reports (arranged by report number), Open Literature and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this TM should be directed to Dr. A.F. Whitaker (SD01; 544–2481) or to one of the authors.
During fiscal year 2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. This study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers, including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. This Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

TP—2003–212927

November 2003

A simple method for monitoring the Nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be ≈124.5, occurring near July 2002 ±5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23—120.8 in April 2000.

TP—2003–212929

November 2003

A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formulation steps leading to nucleation. The development mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films.

An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provided a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. These surfaces were measured as an independent measure of the instantaneous nucleation environment. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C$_2$H$_6$ as the fuel gas phase precursor with addition of carbon monoxide gas or addition of liquid toluene.
The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm’s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm’s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.

On the basis of the maximum amplitude-early rise correlation, cycle 23 could have been predicted to be about the size of the mean cycle as early as 12 mo following cycle minimum. Indeed, estimates for the size of cycle 23 throughout its rise consistently suggested a maximum amplitude that would not differ appreciably from the mean cycle, contrary to predictions based on precursor information. Because cycle 23’s average slope during the rising portion of the solar cycle measured 2.4, computed as the difference between the conventional maximum (120.8) and minimum (8) amplitudes divided by the ascent duration in months (47), statistically speaking, it should be a cycle of shorter period. Hence, conventional sunspot minimum for cycle 24 should occur before December 2006, probably near July 2006 (±4 mo). However, if cycle 23 proves to be a statistical outlier, then conventional sunspot minimum for cycle 24 would be delayed until after July 2007, probably near December 2007 (±4 mo). In anticipation of cycle 24, a chart and table are provided for easy monitoring of the nearness and size of its maximum amplitude once onset has occurred (with respect to the mean cycle and using the updated maximum amplitude-early rise relationship).

From early in the Shuttle program, the National Aeronautics and Space Administration has modeled hydrogen chloride (HCl) release by burning solid propellant in the solid rocket boosters. In 1998, the United States Air Force 45th Space Wing...
instituted more stringent launch commit criteria (LCC) for the Titan and Delta vehicles and proposed that the same LCC be applied to the Shuttle to enhance safety of onsite visitors and offsite public. Two types of health and safety standards were applicable: (1) Expected casualties and risk and (2) air quality emergency response.

This study addresses the issues using the U.S. Environmental Protection Agency-recommended model, CALPUFF. Results were compared to those produced by the USAF model, REEDM, developed for projecting air quality from nominal launches. Model performance was also evaluated against results of a Kennedy Space Center-sponsored study at the Los Alamos National Laboratory (LANL) using a computer-intensive, wildfire model.

CALPUFF and the LANL model are capable of multipuff modeling of multiple sources. REEDM is a single-source, single-puff model. This study revealed significant deficiencies in REEDM when applied to the catastrophic failure problem. CALPUFF results indicate that, if a Shuttle abort were to occur over land, serious levels of HCl exposure could occur out to distances of at least 10 km, sufficient range to include major onsite visitor viewing areas. A preliminary survey of mitigation alternatives indicates cost-effective measures could be implemented that are sufficiently protective. Recent safety initiatives in response to the Columbia Accident Investigation Board report are not reflected here.

TP—2004–213338

The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

TP—2004–213339

This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates \(<0.1 \text{rd(S)}/\text{s}\) compared to similar transistors irradiated at dose rates \(>1 \text{rd(S)}/\text{s}\). This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining U.S. leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environment Technology Conference provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.

The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20–24, 2003. Hosted by NASA’s Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers in the areas of Plasma Propulsion and Tethers, Ground Testing Techniques, Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment, Materials Characterizations, Models and Computer Simulation, Environment Specifications, Current Collection and Plasma Probes in Space Plasmas, and On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.

NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and “plug and play” capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.
An improved specification of the plasma environment has been developed for use in modeling spacecraft charging. It was developed by statistically analyzing a large part of the LANL Magnetospheric Plasma Analyzer (MPA) data set for ion and electron spectral signature correlation with spacecraft charging, including anisotropies. The objective is to identify a relatively simple characterization of the full particle distribution that yield an accurate prediction of the observed charging under a wide variety of conditions.

Fortran statements were developed that are required for the NUMIT runs to work with this kind of data from space. In addition to developing the Fortran for NUMIT, simple correlations between the IDM pulsing history and the space radiation were observed because we now have a better characterization of the space radiation.

The study showed that: (1) the new methods for measurement of charge storage and conduction in insulators provide the correct values to use for prediction of charging and pulsing in space; (2) the methods in NUMIT that worked well for time durations less than hours now work well for durations of months; (3) an average spectrum such as AE8 is probably not a good guide for predicting pulsing in space— one must take time dependence into account in order to understand insulator pulsing; and (4) the old method for predicting pulse rates in space that was based on the CRRES data could be improved to include dependencies on material parameters.

For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA’s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA’s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Abstract</th>
</tr>
</thead>
</table>

ALHORN, D.C. ED17

ALLEN, P.A. ED22
AGGARWAL, P.K. ED22
SWANSON, G.R. ED22

ALTINO, K.M. UAH
KNUPP, K.R. UAH
GOODMAN, S.J. SD60
Correlation of Lightning Flash Rates With a Microburst Event—Abstract Only. For presentation at the American Meteorological Society (AMS) 22nd Conference on Severe Local Storms, Hyannis, MA, October 5–8, 2004.

ANILKUMAR, A.V. Vanderbilt University
GRUGEL, R.N. SD46
BHOWMICK, J. Vanderbilt University
WANG, T. Vanderbilt University

ARAKERE, N.K. University of Florida
KNUDSEN, E.C. University of Florida
SWANSON, G.R. ED22
DUKE, G.C. Sverdrup Technology
HAM-BATTISTA, G. ERC, Inc.

BECKER, W. Max Planck Institute
WEISSKOPF, M.C. SD50
ARZOUMANIAN, Z. USRA
LORIMER, D. University of Manchester
CAMILO, F. Columbia University
ELSNER, R.F. SD50
KANBACH, G. Max Planck Institute
REIMER, O. Ruhr-Universität
SWARTZ, D.A. USRA
ET AL.

BECKER, W. Max Planck Institute
WEISSKOPF, M.C. SD50
TENNANT, A.F. SD50
JESSNER, A. Max Planck Institute
ZHANG, S.N. SD50/U AH

BENEFIELD, M.P.J. TD05
BELCHER, J.A. TD05

BENFORD, A. University of Texas Pan Am
TINKER, M.L. ED21

BENFORD, A. University of Texas Pan Am
TINKER, M.L. ED20

BERNHARDSDOTTER, E.C.M.J. SD46
PUSEY, M.L. SD46

BERNHARDSDOTTER, E.C.M.J. SD46
PUSEY, M.L. SD46

BERNHARDSDOTTER, E.C.M.J. UAH
PUSEY, M.L. SD46
NG, J.D. UAH
GARRIOTT, O.K. UAH
Alpha-Amylase From the Hyperthermophilic Archaeon Thermococcus Thiodreucens—Abstract Only. For presentation at the American Society for Gravitation and Space Biology, Huntsville, AL, November 12–16, 2003.

BHANDWAJ, A. Vikram Sarabhai Space Center
BRANDUARDI-RAYMONT, G. U. College London
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
RAMSAY, G. Mullard Space Science Laboratory
RODRIGUEZ, P.R. XMM-Newton SOC
SORIA, R. University College London
WAITE, JR., J.H. University of Michigan
CRAVENS, T.E. University of Kansas

BHANDWAJ, A. SD50
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
WAITE, JR., J.H. University of Michigan
CRAVENS, T.E. University of Kansas
OSTGAARD, N. University of Bergen
CHANG, S.-W. UAH/SD50
METZGER, A.E. Jet Propulsion Laboratory
MAJEED, T. University of Michigan
BLACKWELL, W.C. Jacobs Sverdrup
MINOW, J.I. Jacobs Sverdrup
O’DELL, S.L.
CAMERON, R.A. Harvard-Smithsonian
VIRANI, S.N. Harvard-Smithsonian

BLAKESLEE, R.J. SD60
BAILEY, J.C. SD60
BUECHLER, D.E. SD60
GOODMAN, S.J. SD60
MCCAUL, JR., E.W. SD60
HALL, J. SD60

BLEVINS, J.A. TD40
GOSTOWSKI, R. TD40
CHIANESE, S. Penn State University

BLUME, J.L. ED43

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60
CECIL, D.J. SD60
PETERSEN, W.A. SD60

BOEDER, P. Boeing
MIKATARIAN, R. Boeing
KOONTZ, S. Johnson Space Center
ALBYN, K. ED31
FINCKENOR, M. ED31

BONAMENTE, M. UAH/SD50
JOY, M.K. SD50
CARLSTROM, J.E. Enrico Fermi Institute
LAROQUE, S. University of Chicago

BONAMENTE, M. SD50
LIEU, R. SD50
KAASTRA, J. SD50

BRADFORD, R.N. FD40
LISOTTA, A.J. Ames Research Center

BRADFORD, R.N. FD40
MEHRTRA, A. Ames Research Center
LISOTTA, A.J. Ames Research Center

BRADFORD, R.N. FD40
THIGPEN, W.W. Ames Research Center

BRADFORD, R.N. FD40
THIGPEN, W.W. Ames Research Center
LISOTTA, A.J. Ames Research Center
REDMAN, S. UAH

BRAGG-SITTON, S.M. TD40
FORSBACKA, M. NASA Headquarters

BRAGG-SITTON, S.M. University of Michigan
KAPERNICK, R.J. Los Alamos National Laboratory
GODFROY, T.J. TD40

BRAGG-SITTON, S.M. TD40
REID, R.S. TD40

BRANDUARDI-RAYMONT, G. Mullard Space Sci. Lab
ELSNER, R.F. SD50
GLADSTONE, G.R. Southwest Research Institute
RAMSAY, G. Mullard Space Science Laboratory
RODRIGUEZ, P.R. XMM-Newton SOC
SORIA, R. Mullard Space Science Laboratory
WAITE, JR., J.H. University of Michigan

BROWN, A.M. ED19
MCGHEE, D.S. ED21

BUECHLER, D.E. UAH
GOODMAN, S.J. SD60

BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
LA CASSE, K. SD60
BLAKESLEE, R.J. SD60
DARDEN, C. SD60

BURNS, H. ED31
ALBYN, K. ED31
EDWARDS, D.L. ED31
BOOTHE, R. ED31
FINCHUM, C. ED31
FINCKENOR, M. ED31

BURNS, L. Raytheon
DECKER, R. ED44

CAMPBELL, J.W. FD02
PHIPPS, C. Photonics Associates
SMALLEY, L. UAH
REILLY, J. Northeast Science & Technology
BOCCIO, D. SUNY

CANNING, F.X. ISR
WINET, E. ISR
ICE, B. ISR
MELCHER, C. ISR
PESAVENTO, P. ISR
HOLMES, A. ISR
BUTLER, C. ISR
COLE, J. TD40
CAMPBELL, J. TD40

CARDELINO, H. Spellman College
CARDELINO, C.A. Georgia Institute of Technology
MOORE, C.E. SD46
DIETZ, N. Georgia State University
MCCALL, S.D. Spellman College
BACHMANN, K. North Carolina State University

CANNING, F.X. ISR
WINET, E. ISR
ICE, B. ISR
MELCHER, C. ISR
PESAVENTO, P. ISR
HOLMES, A. ISR
BUTLER, C. ISR
COLE, J. TD40
CAMPBELL, J. TD40

CARRASQUILLO, R.L. FD21
BAGDIGIAN, B. FD21
PERRY, J.L. FD21
LEWIS, J.

CARRASQUILLO, R.L. FD21
CLOUD, D. Hamilton Sundstrand
BEDARD, J. Hamilton Sundstrand

CARRIER, M. Florida State University
ZOU, X. Florida State University
LAPENTA, W.M. SD60
JEDLOVEC, G.J. SD60

Assessing the Usefulness of AIRS Radiance Observations in a 4D-Var Assimilation Scheme Using the Penn State/NCAR Mesoscale Model Version 5 (MM5) and a Stand Alone Radiative Transfer Algorithm (SARTA)—Abstract Only. For presentation at the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, September 20–24, 2004.

CARRINGTON, C.K. FD02
DAY, G. Boeing Phantom Works

CARRINGTON, C.K. FD02
HOWELL, J.T. FD02
DAY, G. Boeing Phantom Works

CARTER, L. FD21
TATARA, J.D. FD21
MASON, R. FD21
O’CONNOR, E. FD21
BEDARD, J. FD21

CASIANO, M.J. TD63
ZOLADZ, T.F. TD63

CATALINA, A.V. BAE/SD46
STEFANESCU, D.M. University of Alabama
SEN, S. SD46

CECIL, D.J. UAH
LAFONTAINE, F.J. Raytheon ITSS
HOOD, R.E. SD60
BLAKESLEE, R.J. SD60
MACH, D.M. UAH
HEYSFIELD, G. Goddard Space Flight Center

CHANG, H. UAH
SMITH, D.D. SD46

CHANG, J. Purple Mountain Observatory

CHICHESTER, W.K.H. Max Planck Institute
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
CHRISTL, M.J. SD50
FAZELY, A.R. Southern University
GANEL, O. University of Maryland
ET AL.

CHANG, S.-W. SD50
GALLAGHER, D.L. SD50
SPANN, J.F. SD50
MENDE, S. SD50
GREENWALD, R. SD50
NEWELL, P.T. SD50

CHAUVERS, G. TD40
CHANG-DIAZ, F. Johnson Space Center

CHAUVERS, G. TD40
CHANG-DIAZ, F. Johnson Space Center
BREIZMAN, B. University of Texas
BENGSTON, R. University of Texas

CHEN, F. SD60
KISSEL, D.E. SD60
WEST, L.T. SD60
RICKMAN, D. SD60
LUVALL, J.C. SD60
ADKINS, W. SD60

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46
VEKILOV, P.G. SD46

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46
VEKILOV, P.G. SD46
DE YOREO, J.J. SD46

CHOU, S.-H. SD60
LAPENTA, W.M. SD60
JEDLOVEC, G.J. SD60
MCCARTY, W. UAH
MECIKALSKI, J.R. UAH

CHOWDHURY, D.P. SD50

CHOWDHURY, D.P. SD50
BALASUBRAMANIAM, K.S. National Solar Observatory
SUEMATSU, Y. National Astronomical Observatory

CHOWDHURY, D.P. SD50
MOORE, R.L. SD50

CHOWDHURY, D.P. SD50
MOORE, R.L. SD50
FALCONER, D.A. SD50
POJOGA, S. Prairie View A&M University
KRUCKER, S. University of California
UDDIN, W. Aryabhata Research Institute

CHOWDHURY, D.P. SD50
STERLING, A.C. SD50
MOORE, R.L. SD50
YURCHYSHYN, V. Big Bear Solar Observatory
CHRISTIAN, H.J. SD60

CHRISTIAN, H.J. SD60

CHRISTL, M.J. SD50

CISSOM, R.D. FD32
WATSON, K. AREs Corporation

CISZAK, E.M. SD46
DOMINIAK, P.M. SD46

CLAYTON, L. ED25

CLINTON, JR., R.G. SD40

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD41
COOK, M.B. SD30
WARGO, M.J. NASA Headquarters
MARZWELL, N.I. Jet Propulsion Laboratory

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD40
SCHLAGHECK, R.A. SD40
BASSLER, J.A. SD40
COOK, M.B. SD40
WARGO, M.J. NASA Headquarters
SANDERS, G.B. Johnson Space Center
MARZWELL, N.I. Jet Propulsion Laboratory

COFFEY, V.N. SD50
CHANDLER, M.O. SD50
SINGH, N. UAH
MILLER, J. UAH
MOORE, T.E. Goddard Space Flight Center

COOK, S.A. NP01
MORRIS, C.E.K. NP01
TYSON, R.W. NP01

COOKE, W.J. Morgan Research Corporation
MOSER, D. Morgan Research Corporation
SUGGS, R.M. ED44

CORDER, E.L. ED12
BRISCOE, J.M. ED12

CORDER, E.L. ED12
BRISCOE, J.M. ED12

CRAVEN, P.D. SD50
MOORE, T.E. SD50
GALLAGHER, D.L. SD50
Thermal N+ in the Inner Magnetosphere—Abstract Only. For presentation at the American Geophysical Union 2004

CRUZ, A. SD46
BORS, K. SD46
JANSEN, H. SD46
RICHMOND, R.C. SD46

CRUZEN, C. FD32
DYER, S. FD33

CUNTZ, M. University at Texas/Arlington
SUSS, S.T. SD50

CUNTZ, M. SD50
SUSS, S.T. SD50

CURRERI, P.A. SD46
SIBILLE, L. BAE Systems

DARROUZET, F. Belgian Institute
LEMAIRE, J.F. Belgian Institute
DECREAUX, E. Universite d’Oreleans
DE KEYSER, J. Belgian Institute
MASSON, A. Research and Scientific
GALLAGHER, D.L. SD50
SANTOLIK, O. MMF, Prague
TROTIGNON, J.G. Universite d’Oreleans
RAUCH, J.L. Universite d’Oreleans
ET AL.

DAVIS, R.N. University of Alabama
POLITES, M.E. University of Maryland
TREVINO, L.C. ED10

DAVIS, S.E. ED36
ENGEL, C.D. ED36
RICHARDSON, E.R. ED36

DECKER, R.K. ED44
LEACH, R. ED44

DECKER, R.K. ED44
LEACH, R. Morgan Research Corporation/ED44

DETKOVA, E.N. Institute of Microbiology
PIKUTA, E.V. SD50
HOOVER, R.B. SD50

DOBSON, C. TD40
HRBUD, I. Purdue University

ELSNER, R.F. SD50
RAMSEY, B.D. SD50
WAITE, JR., J.H. University of Michigan
REHAK, P. BNL
JOHNSON, R.E. University of Virginia
COOPER, J.F. Raytheon
SWARTZ, D.A. USRA

ELSNER, R.F. SD50
RAMSEY, B.D. SD50
WAITE, JR., J.H. University of Michigan
REHAK, P. Brookhaven National Laboratory
JOHNSON, R.E. University of Virginia
COOPER, J.F. Raytheon
SWARTZ, D.A. USRA/SD50

EMBERSON, C.W. Western Michigan University
LAM, S.-N. Louisiana State University
QUATTROCHI, D.A. SD60

EMRICH, W.J. TD40
HAWK, C.W. UAH

ENG, R. SD72
STAHL, P. SD72
HOGUE, W. SD72
HADAWAY, J. UAH

Poco Graphite Inc. SuperSi 0.25m Mirror Cryogenic Test Result—Abstract Only. For presentation at the Mirror Technology Days, Huntsville, AL, August 17–19, 2004.

ENGBERG, R.C. ED27
OUI, T.K. UAH

ENGELHAUPT, D. UAH
RAMSEY, B.D. SD50

ESTES, H. ED17

EVANS, S.W. ED44

EVANS, S.W. ED44
STALLWORTH, R. ED23
STELLINGWERF, R.F. Stellingwerf Consulting

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. UAH/SD50
MOORE, R.L. SD50
GARY, G.A. SD50
BALASUBRAMANIAN, S. UAH/SD50

Forecasting Coronal Mass Ejections From Magnetograms—Abstract Only. For presentation at the Living With a Star Workshop, Boulder, CO, March 23–26, 2004;

FARR, R.A. TD72
ELAM, S.K. TD61
HICKS, E.D. Jacobs Sverdrup
SANDERS, T.M. TD72
LONDON III, J.R. TD70
MAYNE, A.W. TRW (Retired)
CHRISTENSEN, D.L. Lockheed Martin

FERGUSON, C.K. SD22
ABUSHAGUR, M. SD22
ENGLISH, J.M. SD22
NORDIN, G.P. SD22

Design and Analysis of a MEMS Micro-Translation Stage With Indefinite Travel—Abstract Only. For presentation at the Nanospace 2003, Galveston, TX, February 2004.

FISHERMAN, G. J. SD50

The Mystery of Gamma-Ray Bursts—Abstract Only. For presentation at the Rice University Space Exploration Series, Houston, TX, March 22, 2004.

FLANDRO, G.A. University of Tennessee
MAJDALANI, J. University of Tennessee

FLASAR, F.M. Goddard Space Flight Center
KUNDE, V.G. University of Maryland
ABBAS, M.M. SD50
ACHTERBERG, R.K. Science Systems & Applications
ADE, P. University of Cardiff
BARUCCI, A. Observatoire de Paris
BEZARD, B. Observatoire de Paris
BJORAKER, G.L. Goddard Space Flight Center
BRASUNAS, J.C. Goddard Space Flight Center
ET AL.

FLASAR, F.M. Goddard Space Flight Center
KUNDE, V.G. University of Maryland
ACHTERBERG, R.K. Science Systems & Applications
CONRATH, B.J. Cornell University
SIMON-MILLER, A.A. Goddard Space Flight Center
NIXON, C.A. University of Maryland
GIERASCH, P.J. Cornell University
ROMANI, P.N. Goddard Space Flight Center
ABBAS, M.M. SD50
ET AL.

FISHERMAN, G. J. SD50

FOX, N.J. SD50
GOLDBERG, R. SD50
BARNES, R.J. SD50
SIGWARTH, J.B. SD50
BEISSER, K.B. SD50
MOORE, T.E. SD50
HOFFMAN, R.A. SD50
RUSSELL, C.T. SD50
SPANN, J.F. SD50
ET AL.

FULLER, K.A. UAH
SMITH, D.D. SD46

FUSS, T. University of Missouri-Rolla
RAY, C.S. SD46
LESHER, C.E. University of California-Davis
DAY, D.E. University of Missouri-Rolla

Crystallization of an Li$_2$O-SiO$_2$ Glass Under High Hydrostatic Pressures—Abstract Only. For presentation at the 106th Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 18–21, 2004.

GALLAGHER, D.L. SD50

GALLAGHER, D.L. SD50

GALLAGHER, D.L. SD50

GALLAGHER, D.L. SD50
ADRIAN, M.L. SD50
LIEMOHN, M.W. SD50

GALLAGHER, D.L. SD50
KHAZANOVA, G.V. SD50

GARBE, G. TD05
MONTGOMERY IV, E.E. TD05
HEATON, A.F. TD05
VAN SANT, J.T. GSFC
CAMPBELL, B.A. GSFC

WILLIAMS, R. TD64

Overview of MSFC’s Applied Fluid Dynamics Analysis Group Activities—Presentation. For presentation at the MSFC Spring Fluid Workshop, MSFC, AL, April 13, 2004.

GARY, G.A. SD50

MOORE, R.L. SD50

GATLIN, P.N. SD60
GOODMAN, S.J. SD60

GERMANY, G. UAH
SPANN, J.F. SD50
DEVERAPALLI, C. UAH
HUNG, C.-C. Southern Polytechnic State University

GEVEDEN, R.D. DD01

GILLIES, D.C. SD40

GOGUS, E. SD50
FINGER, M.H. SD50

PATEL, S.K. SD50
RUPEN, M. SD50
SWANK, J.H. SD50
MARKWARDT, C.B. SD50
VANDERKLIS, M. SD50

GOLDMAN, A. SD46
KELTON, K.F. SD46
ROGERS, J.R. SD46

GONZALEZ, J.E. Santa Clara University
LUVALL, J. SD60
RICKMAN, D. SD60
COMARAZAMY, D.E. SD60
PICON, A. SD60

GOODMAN, D.D. TD62

GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H. SD60
KOSHAK, W. SD60
BAILEY, J.C. Global Hydrology & Climate Center
HALL, J. Global Hydrology & Climate Center
MCCAUL, E. Global Hydrology & Climate Center
BUCHLER, D.E. Global Hydrology & Climate Center
DARDEN, C. NSSTC
ET AL.

GORTI, S. SD46
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H. SD60
KOSHAK, W. SD60
BAILEY, J.C. Global Hydrology & Climate Center
HALL, J. Global Hydrology & Climate Center
MCCAUL, E. Global Hydrology & Climate Center
BUCHLER, D.E. Global Hydrology & Climate Center
DARDEN, C. NSSTC
ET AL.

GOLDMAN, A. SD46
KELTON, K.F. SD46
ROGERS, J.R. SD46

GONZALEZ, J.E. Santa Clara University
LUVALL, J. SD60
RICKMAN, D. SD60
COMARAZAMY, D.E. SD60
PICON, A. SD60

GOODMAN, D.D. TD62

GOODMAN, H.M. SD60
REGNER, K. UAH
CONOVER, H. UAH
ASHCROFT, P. Remote Sensing Systems
WENTZ, F. Remote Sensing Systems
CONWAY, D. UAH
LOBL, E. UAH
BEAUMONT, B. UAH
HAWKINS, L. UAH
JONES, S. UAH

GOODMAN, S.J. SD60

The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.—Abstract Only. For presenta-

GORTI, S. SD46
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GOSTOWSKI, R. TD40

Isothermal Calorimetric Observations of the Effect of Welding on Compatibility of Stainless Steels With High-Test

GOSTOWSKI, R. TD40

GREGG, M.W. ED22

GREGG, M.W. ED22

GREGORY, D.A. UAH
HERRNS, K.A. SD70

GREINER, J.C. Max Planck Institute
KLOSE, S. Thuringer Landesstern.
REINSCH, K. Universits-Sternwarte
SCHMID, H.M. Institut fur Astronomie
SARI, R. California Institute of Technology
HARTMANN, D.H. Clemson University
KOUVELIOTOU, C. SD50
RAU, A. Max Planck Institute
PALAZZI, E. Istituto di Astrofisica
ET AL.

GRUGEL, R.N. SD46

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. SD46

GRUGEL, R.N. SD46
LUZ, P. SD46
SMITH, A. SD46
SPIVEY, R. SD46
SEN, S. SD46
ANILKUMAR, A.V. SD46

GUBAREV, M. SD50
O’DELL, S.L. SD50
KESTER, T. SD50
LEHNER, D. SD50
JONES, W. SD50
SMITHERS, M. SD50

GUBAREV, M. SD50
RAMSEY, B.D. SD50
APPLE, J. SD50

GUBAREV, M. SD50

HEATON, A.F. TD54

HEFNER, K. FD03

HENDERSON, S.J. U.S. Military Academy
HAMILTON, G.S. ED42

HENLEY, M.W. Boeing/Phantom Works
HOWELL, J.T. FD02

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HERREN, K.A. SD71
LIN, J. UAH
COHEN, T. UAH
PAKHOMOV, A.V. UAH
THOMPSON, M.S. Information Systems, Inc.

HOLLADAY, J.B. FD24
DAY, G. Boeing
GILL, L. Carleton Technologies

HOLLERMAN, W. University of Louisiana
ALBARDO, T. University of Louisiana
LENTZ, M. University of Louisiana
EDWARDS, D.L. ED31
HUBBS, W.S. ED31
SEMMEL, C.L. Qualis Corporation

HOLT, J.M. ED25
CLANTON, S.E. Jacobs Sverdrup

HOOD, R.E. SD60
BLAKESLEE, R.J. SD60
CECIL, D.J. UAH
LAFONTAINE, F.J. Raytheon ITSS
HEYSFIELD, G. Goddard Space Flight Center
MARKS, F. NOAA Hurricane Research Division

HOOD, R.E. SD60
KAKAR, R. NASA Headquarters

Early Results of the NASA Convection and Moisture Experiment (CAMEX)—Abstract Only. For presentation at the 58th Interdepartmental Hurricane Conference, Charleston, SC, February 29–March 5, 2004.

HOOVER, R.B. SD50
PIKUTA, E.V. SD50
WICKRAMASINGHE, N.C. Cardiff Center
WALLIS, M.K. Cardiff Center

HOOVER, R.B. SD50
ROZANOV, A.Y. Paleontological Institute

HU, Z.W. SD46
HOLMES, A. SD46
THOMAS, B.R. SD46
CHERNOV, A.A. SD46
CHU, Y.S. Argonne National Laboratory
LAI, B. Argonne National Laboratory

X-Ray Microscopic Characterization of Protein Crystals—Abstract Only. For presentation at the 10th International

HULCHER, A.B. ED34

HULCHER, A.B. ED34

HUTCHENS, C. FD21
GRAVES, R. Allied

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
GANGOPADHYAY, A.K. Washington University
KELTON, K.F. Washington University

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
KELTON, K.F. Washington University
GANGOPADHYAY, A.K. Washington University

IRWIN, D.E. SD60

IRWIN, D.E. SD60
SEVER, T.L. SD60
GRAVES, S. UAH
HARDIN, D. UAH

JAAP, J. FD42
DAVIS, E. FD42

JAAP, J. FD42
MAXWELL, T. FD42

JACOBSON, D. XP01

JACOBSON, D. XP01

JEDLOVEC, G.J. SD60
Use of MODIS/AIRS Direct Broadcast Data for Short Term Weather Forecasting—Abstract Only. For presentation at the

JEDLOVEC, G.J. SD60
HAINES, S. UAH
SUGGS, R.J. SD60
BRADSHAW, T. NWS Forecast Office
BURKS, J. NWS Forecast Office

JOHNSON, D.L. ED44
VAUGHAN, W.W. UAH
KELLER, V.W. ED44

JOHNSON, D.L. ED44
VAUGHAN, W.W. UAH
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Location</th>
<th>Title</th>
<th>Location/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAKAR, R.</td>
<td>NASA Headquarters</td>
<td>KHAZANOV, G.V.</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, H.M.</td>
<td>SD60</td>
<td>GALLAGHER, D.L.</td>
<td></td>
</tr>
<tr>
<td>HOOD, R.E.</td>
<td>SD60</td>
<td>SPANN, J.F.</td>
<td></td>
</tr>
<tr>
<td>GUILLORY, A.R.</td>
<td>SD60</td>
<td>SINGH, N.</td>
<td></td>
</tr>
<tr>
<td>KAUFFMAN, B.</td>
<td>ED03</td>
<td>KHAZANOV, G.V.</td>
<td></td>
</tr>
<tr>
<td>HARDAGE, D.</td>
<td>ED03</td>
<td>LIEMOHN, M.W.</td>
<td></td>
</tr>
<tr>
<td>MINOR, J.</td>
<td>ED03</td>
<td>FOK, M.-C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEWMAN, T.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIDLEY, A.J.</td>
<td></td>
</tr>
<tr>
<td>KEYS, A.S.</td>
<td>SD50</td>
<td>KHAZANOV, G.V.</td>
<td></td>
</tr>
<tr>
<td>CROW, R.W.</td>
<td>Sensing Strategies, Inc.</td>
<td>SINGH, N.</td>
<td></td>
</tr>
<tr>
<td>ASHLEY, P.R.</td>
<td>U.S. Army Aviation</td>
<td>GAMAYUNOV, K.V.</td>
<td></td>
</tr>
<tr>
<td>NELSON, JR., T.R.</td>
<td>Air Force Laboratory, SNDD</td>
<td>KRIVORUTSKY, E.N.</td>
<td></td>
</tr>
<tr>
<td>PARKER, J.H.</td>
<td>Air Force Laboratory, SNJT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEECHER, E.A.</td>
<td>Air Force Laboratory, SNJT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHAZANOV, G.V.</td>
<td>SD50</td>
<td>KHAZANOV, G.V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SINGH, N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAMAYUNOV, K.V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KRIVORUTSKY, E.N.</td>
<td></td>
</tr>
<tr>
<td>KIESSLING, E.</td>
<td>ED01</td>
<td>KIESSLING, E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIPPETT, D.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHIVERS, H.</td>
<td></td>
</tr>
<tr>
<td>KIESSLING, E.</td>
<td>ED01</td>
<td>KLEIMAN, J.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUDIMENKO, Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISKANDEROVA, Z.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GRIGOREVSKI, A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity Testing Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity Testing Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity Testing Lab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Joint Stock Co.</td>
<td></td>
</tr>
</tbody>
</table>
EDWARDS, D.L.
FINCKENOR, M.

KLOSE, S.
GREINER, J.
RAU, A.
HENDEN, A.A.
HARTMANN, D.H.
ZEH, A.
MASETTI, N.
GUENTHER, E.
KOUVELIOTOU, C.
ET AL.

KLOSE, S.
GREINER, J.C.
RAU, A.
HENDEN, A.A.
HARTMANN, D.H.
ZEH, A.
RIES, C.
MASETTI, N.
KOUVELIOTOU, C.
ET AL.

KLOSE, S.
HENDEN, A.A.
GEPPERT, U.
HARTMANN, D.H.
KOUVELIOTOU, C.
LUGINBUHL, C.B.
STECKLUM, B.
VRBA, F.J.

KNOX, J.C.

KOUVELIOTOU, C.

GRACE Collaboration in the Swift Era—Abstract Only.

KOUVELIOTOU, C.
WOOSLEY, S.E.
PATEL, S.K.
LEVAN, A.
BLANDFORD, R.
RAMIREZ-RUIZ, E.
WIJERS, R.A.M.J.
WEISSKOPF, M.C.
TENNANT, A.F.
ET AL.

KULPA, V.

LAPENTA, W.M.
BRADSHAW, T.
BURKS, J.
DARDEN, C.
DEMBEK, S.

Diabatic Initialization of Mesoscale Models in the Southeastern United States: Can 0 to 12h Warm Season QPFs be Improved?—Abstract Only. For presentation at the 20th Conference on Weather Analysis and Forecasting, Seattle, WA, January 11–15, 2004.

LEAHY, F.B.

LEE, G.W.

GANGOPADHYAY, A.K.
KELTON, K.F.
HYERS, R.W.
RATHZ, T.J.
ROGERS, J.R.

LEE, G.W.

GANGOPADHYAY, A.K.
KELTON, K.F.
HYERS, R.W.
RATHZ, T.J.
ROGERS, J.R.

LEE, J.A.

LEE, J.A.

LEE, J.K.
NEWMAN, T.S.
GARY, G.A.

LI, C.
BAN, H.

Density, Electrical Conductivity, and Viscosity of Hg0.8Cd0.2Te Melt—Abstract Only. For presentation at the 14th International Conference on Crystal Growth, Grenoble, France, August 10–13, 2004, and publication in the Journal of Crystal Growth.

Thermophysical Properties and Structural Transition of Hg0.8Cd0.2Te Melt—Abstract Only. For publication in the Journal of Non-Crystalline Solids, 2004.

Magnetosphere-Ionosphere Coupling and Associated Ring Current Energization Processes—Abstract Only. For publication in the American Geophysical Union Monograph on Astrophysical Particle Acceleration in Geospace and Beyond, 2004.

MACH, D.M. UAH
BLAKESLEE, R.J. SD60
BAILEY, J.C. Raytheon ITSS
FARRELL, W.M. Goddard Space Flight Center
GOLDBERG, R.A. Goddard Space Flight Center
DESCH, M.D. Goddard Space Flight Center
HOUSER, J.G. Goddard Space Flight Center

Lightning Optical Pulse Statistics From Storm Overflights During the Altus Cumulus Electrification Study—Abstract Only. For publication in the Special Issue of Atmospheric Research, 2004.

MACLEOD, T.C. SD22
HO, F.D. UAH

MADDIX, W. UAH/CSPAR
SPANN, J.F. SD50
GERMANY, G. UAH/CSPAR

MAJUMDAR, A. ED25

MAKAL, A. SD46
HONG, Y.-S. SD46
POTTER, R. SD46
VETTAIKKORUMAKANKAUV, A.K. SUNY
KOROTCHKINA, L.G. SUNY
PATEL, M.S. SUNY
CISZAK, E.M. SD46

MALONE, R.W. QD01
MOSES, K. Futron Corporation

MANGUS, D. TD54
HEATON, A.F. TD54

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40
JONES, J.E. TD40
COX, M.D. TD40

MARTIN, A. TD40
ESKRIDGE, R. TD40
FIMOGNARI, P. UAH
KOELFGEN, S.J. UAH
LEE, M. TD40

MARTIN, A. TD40
ESKRIDGE, R. TD40
FIMOGNARI, P. UAH
KOELFGEN, S.J. UAH
LEE, M. TD40

MARTIN, J.J. TD40
REID, R.S. TD40

MARTIN, J.J. TD40
SALVAIL, P. Morgan Research Corporation
Sodium Heat Pipe Module Processing for the SAFE-100
Reactor Concept—Final Paper. For presentation at the
STAIF 2004 Conference, Albuquerque, NM, February

MARTIN, M.A. TD53
NGUYEN, H.H. TD53
GREENE, W.D. TD53
SEYMOUR, D.C. TD53/ERC, Inc.
Transient Mathematical Modeling for Liquid Rocket Engine
Systems: Methods, Capabilities, and Experience—Final
Paper. For presentation at the 5th International Symposium
on Liquid Space Propulsion, Chattanooga, TN, October

MAY, G. Institute for Technology Development
MITCHELL, B. SD10
Imaging Beyond What Man Can See—Abstract Only. For
presentation at the Monitoring Science and Technology

MAZURUK, K. UAH
VOLZ, M.P. SD46
Lorentz Body Force Induced by Traveling Magnetic
Fields—Abstract Only. For publication in the Journal Mag-

MCACAUL, JR., E.W. SD60
COHEN, C. USRA/SD60
KIRKPATRICK, C. UAH
The Sensitivity of Simulated Storm Structure and Intensity
to the Temperature at the Lifted Condensation Level—
Abstract Only. For publication in the Monthly Weather

MCCOLLUM, M. ED44
Space Environmental Effects and Spacecraft EMC—Presenta-
tion. For presentation at the 2004 IEEE EMS Symposium,

MCNAMARA, H. ED44
JONES, J. University of Western Ontario
KAUFFMAN, B. ED44
SUGGS, R.M. ED44
COOKE, W.J. Morgan Research Corporation/ED44
SMITH, S. Morgan Research Corporation/ED44
Meteoroid Engineering Model (MEM): A Meteoroid Model
for the Inner Solar System—Abstract Only. For presentation
at the Meteoroids Conference 2004, London, Ontario, Canada,

MCNEAL, JR., C.I. TD07
Bantam: A Cautionary Tale—Presentation. For presentation
at the Space 2004 Conference and Exposition, San Diego,

MCNEAL, JR., C.I. TD07
A Decade of X-Vehicles: Lessons Learned—Presentation.
For presentation at Space 2004 Conference and Exposition,

MEEGAN, C.A. SD50
The GLAST Burst Monitor—Abstract Only. For present-
ation at the American Physical Society, Denver, CO,

MEINHOLD, A. MP71
Shuttle Environmental Assurance (SEA) Initiative—Pre-
sentation. For presentation at the U.S. Army Materials
Command Environmental Office, Madison, AL, June 2–3,
2004.

MINAMITANI, E.F. BAE Systems
PUSEY, M.L. SD46
Flourescent Approaches to High Throughput Crystallalogy—
Abstract Only. For presentation at the 10th Interna-
tional Conference on the Crystallization of Biological

MINAMITANI, E.F. BAE Systems
PUSEY, M.L. SD46
Solution-Phase Processes of Macromolecular Crystalliza-
tion—Abstract Only. For presentation at the 10th Interna-
tional Conference on the Crystallization of Biological

MINOW, J.I. ED44
ALSTATT, R.L. Jacobs Sverdrup/ED44
NEERGAARD, L.F. Jacobs Sverdrup/ED44
Interplanetary Radiation and Internal Charging Environment
Models for Solar Sails—Abstract Only. For presentation
at the Solar Sail Technology and Applications Conference,

MITCHELL, D.W. XP01
X-37 Flight Demonstrator—X-40A Flight Test Approach—
Presentation. For presentation at the Space Technology
and Applications International Forum, Albuquerque, NM,

MONACO, L. SD46
Lab on a Chip Application Development for Exploration—
Abstract Only. For presentation at the Mars Astrobiol-
ogy Science and Technology Workshop, Washington, DC,
MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

MOORE, R.L. SD50
FALCONER, D.A. UAH
PORTER, J.G. SD50
HATHAWAY, D.H. SD50
YAMAUCHI, Y. SD50

MOORE, R.L. SD50
FALCONER, D.A. SD50
STERLING, A.C. SD50

MOORE, R.L. SD50
STERLING, A.C. SD50

MOORE, R.L. SD50
YAMAUCHI, Y. NJIT

MORRIS, C.I. TD40

NALL, M.E. SD10

NALL, M.E. SD10

NEERGAARD, L.F. Jacobs Sverdrup/ED44
DAVIS, V.A. SAIC
GARDNER, B. SAIC
MANDELL, M. SAIC
MINOW, J.I. ED44

NESTEROV, V.V. New Mexico Highlands University
ANTIPIN, M.Y. New Mexico Highlands University
NESTEROV, V.N. New Mexico Highlands University
MOORE, C.E. SD46
CARDELINO, B.H. Spellman College
TIMOFEEVA, T.V. New Mexico Highlands University

NETTLES, A.T. ED34
Non-Thermal Hard X-Ray Emission in Galaxy Clusters
Observed With the BeppoSAX PDS—Abstract Only. For

NEWCHURCH, M.J. UAH
FULLER, K.A. UAH
BOWDLE, D.A. UAH
JOHNSON, S. SD60
KNUPP, K.R. UAH
GILLANI, N. UAH
BIAZAR, A. UAH
MCNIDER, R.T. UAH
BURRIS, J. Goddard Space Flight Center
ET AL.
Vertical Profiling of Air Pollution at RAPCD—Abstract
Only. For presentation at the SPIE Optical Science
and Technology 49th Annual Meeting, Denver, CO,

NEWMAN, T.S. UAH
SANTHANAM, N. UAH
ZHANG, H. UAH
GALLAGHER, D.L. SD50
GALLAGHER, D.L. Oak Ridge National Laboratory
Limited Angle Reconstruction Method for Reconstruct-
ing Terrestrial Plasmaspheric Densities From EUV
Images—Abstract Only. For presentation at The Applied
Information Systems Research Program, Pittsburg, PA,

NEWTON, R.L. ED10
DAVIDSON, J.L. Vanderbilt University
ICE, G.E. Oak Ridge National Laboratory
LIU, W. Oak Ridge National Laboratory
Synchrotron X-Ray Microdiffraction Analysis of Proton
Irradiated Polycrystalline Diamond Films—Final Paper. For

NGUYEN, H.H. TD53
MARTIN, M.A. TD53
An Interpolation Method for Obtaining Thermodynamic
Properties Near Saturated Liquid and Saturated Vapor
Lines—Final Paper. For presentation at the 52nd JANNAF
Meeting/1st Liquid Propulsion Subcommittee Meeting, Las

NICHOLS, K.F. FD41
SCHNEIDER, L. COLSA Corporation
BEST, S. FD41
Making Wireless Networks Secure for NASA Mission
Critical Applications Using Virtual Private Network (VPN)
Technology—Final Paper and Presentation. For presenta-
tion at the SpaceOps 2004, Montreal, Quebec, Canada,

NIX, M. TD53
STATON, E.J. Jacobs Sverdrup

NIXON, C.A. University of Maryland
CONRATH, B.J. Cornell University
IRWIN, P.G.J. University of Oxford
FOUCHET, T. University of Oxford/Meudon
PARRISH, P.D. University of Oxford
ABBAS, M.M. SD50
LECLAIR, A. SD50
ROMANI, P.N. Goddard Space Flight Center
Meridional Variations of C_2H_4 and C_2H_6 in Jupiter’s Atmosphere From Cassini CIRS Infrared Spectra—Abstract Only. For publication in Icarus, 2004.

NUNES, JR., A.C. ED33

OELGOETZ, P. Boeing
JOHNSON, R. Boeing
TODD, D. Boeing
RUSSELL, S. ED32
WALKER, W. ED32

O’NEILL, D.A. FD02
MANKINS, J.C. NASA Headquarters

OVERBEY, B.G. Raytheon
ROBERTS, B.C. ED44

PALOSZ, B. SD46
GIERLOTKA, S. SD46

SWIDERSKA-SRODA, A. SD46
FIETKIEWICZ, K. SD46
KALISZ, G. SD46
GRZANKA, E. SD46
STEŁ’MAKH, S. SD46
PALOSZ, B. BAE Systems

PALOSZ, B. SD46
VOLZ, M.P. SD46
COBB, S.D. SD46
MOTAKEF, S. Cape Simulations, Inc.
SZOFRAN, F.R. SD46

O’NEILL, D.A. FD02
MANKINS, J.C. NASA Headquarters

PALOSZ, B. SD46
GIERLOTKA, S. SD46

PANOV, A.D. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University

PANOV, A.D. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University

PANOV, A.D. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University

PALOSZ, B. BAE Systems

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S.R. ED33
SHADOAN, M. TD07
CHRISTL, M.J. SD50
FAZELY, A.R. Southern University
GANEL, O. University of Maryland ET AL.

PARKINSON, D.A. TD51
BROWN, K.K. TD51

PATRICK, M.C. ED12
COOPER, A.E. ED12
POWERS, W.T. ED12

PECK, J. ED21
TORRES, I. ED21

PERRIN, D.J. SD50
SIDMAN, E.D. SD50
MEEGAN, C.A. SD50
BRIGGS, M.S. SD50
CONNAUGHTON, V. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50

PIKUTA, E.V. SD50
MARSIC, D. UAH
BEI, A. UAB
TANG, J. American Type Culture Collection
KRADER, P. American Type Culture Collection
HOOVER, R.B. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50

POLETTO, G. INAF
SUESS, S.T. SD50

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence for Hot Plasma After CME Events From Remote and In Situ</td>
<td>POPP, C.G., ROBINSON, P.J., VEITH, E.M.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Observations—Abstract Only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignition Characterization Tests of the LOX/Ethanol Propellant</td>
<td>POTTER, R., HONG, Y.-S., CISZAK, E.M.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>MAGLEV Active Mission Preparation: TCS Unique Testing for Risk</td>
<td>PRESSON, K., TRICHILO, M.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Analysis of Radial Segregation in Directionally Solidified Hg0.89Mn0.11Te—Abstract Only. For publication in the Journal of Crystal Growth, 2003.</td>
<td>PRICE, M.W., SCRIPA, R.N., SZOFRAN, F.R., MOTAKEF, S., HANSON, B.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Growing Larger Crystals for Neutron Diffraction—Abstract Only.</td>
<td>PUSEY, M.L.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>For presentation at the 5th International Symposium on Organized Research Combination System (ORCS), Tokai, Ibaraki, Japan, November 19–21, 2003.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life in the Fast Lane for Protein Crystallization and X-Ray</td>
<td>ROGERS, J.R.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Magnetic Control of Solutal Buoyancy-Driven Convection. Part I:</td>
<td>RAMACHANDRAN, N., LESTLE, F.W.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Theory and Experiments—Abstract Only. For publication in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Control of Convection During Protein Crystallization—</td>
<td>RAMACHANDRAN, N., LESTLE, F.W.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Abstract Only. For presentation at the International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Magnetic Fields to Control Convection During Protein</td>
<td>RAMACHANDRAN, N., LESTLE, F.W.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>Crystallization—Analysis and Validation Studies—Abstract Only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing Glassy Magnets From Simulated Composition of Martian Soil</td>
<td>RAMACHANDRAN, N., RAY, C.S.</td>
<td>University of Alabama</td>
</tr>
<tr>
<td>For Exploration Applications—Abstract Only. For presentation at and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>publication in Proceedings of the Material Research Society</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAMIREZ-RUIZ, E. Institute for Advanced Study
GRANOT, J. KIPAC/Stanford University
KOUVELIOTOU, C. SD50
WOOSLEY, S.E. University of California
PATEL, S.K. USRA/SD50
MAZZALI, P.A. INAF

REID, R.S. TD40

RAMSEY, B.D. SD50

REIS, S.T. University of Missouri-Rolla
KIM, C.W. University of Missouri-Rolla
BROW, R.K. University of Missouri-Rolla
RAY, C.S. SD46

RAMSEY, B.D. SD50
ELSNER, R.F. SD50
ENGENEIHaupt, D. UAH
GUBAREV, M. USRA
KOLODZIEJZAK, J.J. SD31
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon/ITSS
WEISSKOPF, M.C. SD50

REIS, S.T. University of Missouri-Rolla
BROW, R.K. University of Missouri-Rolla

RICHMOND, R.C. SD46

RICHMOND, R.C. SD46
CRUZ, A. SD46
BORS, K. SD46

RANASINGHE, K.S. University of Missouri-Rolla
RAY, C.S. SD46
DAY, D.E. University of Missouri-Rolla
ROGERS, J.R. SD46
HYERS, R.W. University of Massachusetts
RATHZ, T.J. UAH

RICKMAN, D. SD60

RANASINGHE, K.S. University of Missouri-Rolla
WEI, P.F. Massachusetts Institute
KELTON, K.F. Washington University
RAY, C.S. SD46
DAY, D.E. University of Missouri-Rolla

SULLIVAN, D. SD60
LUVALL, J. SD60
MASK, P. SD60
SHAW, J. SD60
KISSEL, D.E. SD60

Precision Agriculture: Changing the Face of Farming—
Abstract Only. For publication in Geotimes, November 2003.

RITCHIE, S.M.C. University of Alabama
LUO, Q. University of Alabama
CURTIS, S.S. University of Alabama
HOLLADAY, J.B. FD24
CLARK, D.W. FD24

New Hydrophilic, Composite Membranes for Air Removal
From Water Coolant Systems—Final Paper. For presentation
at the 34th International Conference on Environmental

ROBERTS, B.C. ED44

Range Commanders Council Meteorology Group 88th
Meeting—NASA Marshall Space Flight Center Task
Report—2004—Final Paper. For presentation at the Range
Commanders Council Meteorology Group 88th Meeting,

ROBERTS, B.C. ED44

KNUPP, K.R. UAH

Strong Updraft Feature Associated With Hurricane Earl
During Landfall—Final Paper. For presentation at the
26th Conference on Hurricanes and Tropical Meteorology,

ROBERTSON, B. ED13
WILKERSON, D. ED13

Multi-Level Simulation of a Real Time Vibration Monitor-
ing System Component—Abstract Only. For presentation
at the 7th Mil/Aerospace Applications of Programmable Logic
Devices International Conference (MAPLD), Washington,

ROBERTSON, F.R. SD60
LU, H.-L. USRA

How Consistent are Recent Variations in the Tropical
Energy and Water Cycle Resolved by Satellite Measure-
ments?—Abstract Only. For presentation at and publication
in Proceedings of the IGWCO/GEWEX/UNESCO
Workshop on Trends in Global Water Cycle Variables, Paris,

ROBERTSON, F.R. SD60
LU, H.-L. SD60

How Well are Recent Climate Variability Signals Resolved
by Satellite Radiative Flux Estimates?—Abstract Only. For
presentation at and publication in Proceedings of the 13th
AMS Conference on Satellite Meteorology and Oceanog-
STOTT, J.E. Hernandez Engineering
LO, Y. Hernandez Engineering

ROGERS, J.R. SD46
COOK, B. SD46

ROL, E. SD50
VAN DER HORST, A.J. SD50
WIJERS, R.A.M.J. SD50
STROM, R. SD50
KAPER, L. SD50
KOVELIOTOU, C. SD50
VAN DEN HEUVEL, E.P.J. SD50

ROL, E. University of Amsterdam
WIJERS, R.A.M.J. University of Amsterdam
KOVELIOTOU, C. University of Amsterdam
KAPER, L. University of Amsterdam
VAN DEN HEUVEL, E.P.J. University of Amsterdam

ROYCHOUDHURY, S. Precision Combustion
WALSH, D. Precision Combustion
PERRY, J.L. FD21

ROZANOV, A.Y. Paleontological Institute
HOOVER, R.B. SD50

RUF, J.H. TD64
MCDANIELS, D.M. TD63
Experimental Results for an Annular Aerospike With Differential Throttling—Presentation. For presentation at the 5th International Symposium on Liquid Space Propulsion, Chattanooga, TN, October 27, 2003.

RUSSELL, C.K. ED33
CARTER, R. ED33
ELLIS, D.L. Glenn Research Center
GOUDY, R. Spin Tech

SACKHEIM, R.L. DA01

SACKHEIM, R.L. DA01
GEVEDEN, R.D. DA01
KING, D.A. DA01

SACKHEIM, R.L. TD04
LONDON III, J.R. TD04
WEEKS, D.J. TD04

SCHLAGHECK, R.A. SD40
STAGG, E. Teledyne Brown Engineering

SCHNEIDER, J.A. Mississippi State University
BESHEARS, R. ED32
NUNES, JR., A.C. ED33
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding—Abstract Only. For presentation at the TMS (The Minerals, Metals, and

SCHNEIDER, J.A. Mississippi State University
NUNES, JR., A.C. ED33

SCHNEIDER, J.A. Mississippi State University
NUNES, JR., A.C. ED33

SCHNEIDER, J.A. Mississippi State University
NUNES, JR., A.C. ED33
STEEL, G. Morgan Research Corporation

SCHNEIDER, T.A. ED31
MIKELLIDES, I.G. SAIC
JONGEWARD, G.A. SAIC
PETerson, T. Glenn Research Center
Kerslake, T.W. Glenn Research Center
SNYDER, D. Glenn Research Center
FERGUSON, D. Glenn Research Center

SCHRAMM, F. CD30

SEGRe, P.N. SD46

SEGRe, P.N. SD46
MCCLYMER, J.P. University of Maine

SEGUll, E.H. SD46
ADAMEK, D.H. SD46

SEGUll, T.L. SD60
SATARNO, W. SD60
IRWIN, D.E. SD60

SExTON, J. XP01

SEGUll, S.R. ED33
JERMAN, G. ED33

SEGUll, S.R. ED33
JERMAN, G. ED33
COSTON, J. ED33
Unlocking the Mystery of Columbia’s Tragic Accident Through Materials Characterization—Presentation. For presentation at the Mississippi State University Materials Working Group Seminar, Starkville, MS, October 15, 2003.

SHEETS, P. University of Colorado
SEGUll, T. SD60

SIBILLE, L. BAE Systems/SD46
GAVIRA-GALLARDO, J.A. SD46
HOURLIER-BAHLOUL, D. SD46

SIMS, W.H. TD40
SIMS, W.H. TD40
PEARSON, J.B. TD40

SINGH, N. UAH
KHAZANOV, G.V. SD50

SINGHAL, S.N. ED30

SKELLEY, S.E. TD63

SMITH, D.D. SD46

SMITH, D.D. SD46

SMITH, D.D. SD46

SMITH, D.D. SD46
CHANG, H. UAH

SMITH, D.D. SD46
CHANG, H. UAH
FULLER, K.A. UAH

SMITHERMAN, JR., D.V. FD02

SNELL, E.H. SD46
VAN DER WOERD, M.J. SD46
MILLER, M.D. SD46
DEACON, A.M. SD46

SOKOLSKAYA, N.V. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State U.
BATKOV, K.E. Moscow State University
CHRISTL, M.J. Max Planck Institute
FAZELY, A.R. Southern University
GANEL, O. University of Maryland
ET AL.

SORENSEN, K. TD05
SPANN, J.F. SD50

SPANN, J.F. SD50
GERMANY, G. UAH/CSPAR
MADDOX, W. UAH/CSPAR

SPANN, J.F. SD50
KHAZANOV, G.V. SD50
MENDE, S.B. UCB

STAHL, H.P. SD70

STAHL, H.P. SD70
FEINBERG, L.D. SD70
RUSSELL, J.K. SD70
TEXTER, S. Northrop Grumman

STAHL, H.P. SD70
LEISAWITZ, D.T. SD70
BENFORD, D.J. SD70

STAHL, H.P. SD70
ROWELL, G.H. Tennessee State University
STERLING, A.C. SD50

STERLING, A.C. SD50

STERLING, A.C. SD50

STERLING, A.C. SD50
MOORE, R.L. SD50

STORRIE-LOMBARDI, M.C. Kinoh Institute
HOOVER, R.B. SD50

SU, C.-H. SD46
LEHOCZKY, S.L. SD46
LI, C. UAB
KNUTESON, D. BAE Systems
RAGHOTHAMACHAR, B. SUNY
DUDLEY, M. SUNY
SZOKE, J. Admatis Ltd.
BARCZY, P. University of Miskolc
Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizer (UMC)—Abstract Only. For presentation at the 4th International Conference on Solidification and Gravity, Miskolc, Hungary, September 6–10, 2004.

SUSS, S.T. SD50

SUSS, S.T. SD50
BEMPORAD, A. SD50
POLETTO, G. SD50

SUSS, S.T. SD50
NERNEY, S. Ohio University

SUSS, S.T. SD50
POLETTO, G. SD50

SUGGS, R.J. SD60
JEDLOVEC, G.J. SD60
HAINES, S.L. UAH

SUGGS, R.M. ED44
How to Do Science in an Engineering Organization—Abstract Only. For presentation at the New Mexico State University, Las Cruces, NM, October 3, 2003.

SWARTZ, D.A. SD50
GHOSH, K.K. SD50
TENNANT, A.F. SD50
WU, K. SD50

SWARTZ, D.A. SD50
GHOSH, K.K. SD50
WASSELL, E. SD50
MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION
/Publicly available. Dates are conference dates./

SUGGS, R.M. ED44 TINKER, M.L. ED20
COOKE, W.J. Morgan Research Corporation/ED44 STEINCAMP, J.W. ED20
 STEWART, E.T. ED20
 PATTON, B.W. ED20
 PANNELL, W.P. ED20
 NEWBY, R.L. ED20
 COFFMAN, M.E. ED20
 QUALLS, A.L. Oak Ridge National Laboratory
 BANCROFT, S. Arnold Engineering
 MOLVIK, G. Arnold Engineering

SWINGLE, M.R. University of South Alabama TUCKER, D.S. SD71
CISZAK, E.M. UAH/SD46 ETHRIDGE, E.C. SD71
HONKANEN, E. University of South Alabama SMITH, G.A. UAH
 COFFMAN, M.E. ED20
 QUALLS, A.L. Oak Ridge National Laboratory

TATARA, J.D Qualis Corporation TUCKER, D.S. SD71
PERRY, J.L. FD21 SMITH, G.A. UAH

TAYLOR, J. Austin Peay State University TUCKER, D.S. SD71
RAKOCZY, J. SD71 SMITH, G.A. UAH
STEINCAMP, J. SD71 The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses—Abstract Only. For publication in the Progress in Materials Science (Book Chapter), 2004.

TAYLOR, T.L. XP01 TUCKER, K. TD64
 WEST, J. TD64
 WILLIAMS, R. TD64
 LIN, J. TD64
 ROCKER, M. TD64
 CANABAL, F. TD64
 ROBLES, B. TD64
 GARCIA, R. TD64

THORNTON, G. SD70 CHENOWETH, J. CRAFT Tech

TINKER, M.L. ED20 TURNER, M.B. University of Alabama/SD46
STEINCAMP, J.W. ED20 HOLBREY, J.D. University of Alabama
STEWART, E.T. ED20 SPEAR, S.K. University of Alabama
PATTON, B.W. ED20 PUSEY, M.L. SD46
PANNELL, W.P. ED20 ROGERS, R.D. University of Alabama/SD46
NEWBY, R.L. ED20
COFFMAN, M.E. ED20
KOS, L.D. ED20

TURNER, S. XP01

TURPIN, J.B. TD53

VALENTINE, P.G. MEYER, D. SNOW, H. ED34

VAN DER WOERD, M.J. SD46
DNA in a Tunnel: A Comfy Spot for Recognition—or The Structure of BsoBI complexed With DNA—What Can We Learn About Function Via Structure Determination and How Can This Be Applied to Bone or Muscle Biology?—Abstract Only. For presentation at an Invited Talk at Johnson Space Center, Houston, TX, March 26, 2004.

VAN DYKE, M.K. TD40

VAN DYKE, M.K. MARTIN, J.J. TD40

VAN PELT, M. HUNT, C.D. ESA-ESTEC TD31

VAUGHAN, W.W. ANDERSON, B.J. ED44

VAUGHN, J.A. CURTIS, L. GILCHRIST, B.E. BILEN, S. LORENZINI, E. ED31
University of Michigan Pennsylvania State University Smithsonian Astrophysics

VOLZ, M.P. SD46
SZOFRAN, F.R. SD46

WEAVER, A.R. SD60
KISSEL, D.E. SD60
CHEN, F. SD60
WEST, L.T. SD60
ADKINS, W. SD60
RICKMAN, D. SD60
LUVALL, I.C. SD60

WACHTER, S. SD50
KOUVELIOTOU, C. SD50
PATEL, S.K. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
EICHLER, D. SD50
LYUBARSKY, Y. SD50
BOUCHET, P. SD50

WACHTER, S. SD50
KOUVELIOTOU, C. SD50
PATEL, S.K. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
EICHLER, D. SD50
LYUBARSKY, Y. SD50
BOUCHET, P. SD50

WANG, T.-S. TD64

WANG, T.-S. TD64

WATSON, M.D. ED12
ASHLEY, P.R. U.S. Army AMRDEC
ABUSHAGUR, M. Rochester Institute of Tech.

WEISSKOPF, M.C. SD50
Chandra Observations of Microquasars—Abstract Only. For presentation at the Fifth Microquasar Workshop, Beijing, China, June 7–13, 2004.

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50
WEISSKOPF, M.C. SD50
ALDCROFT, T.L. SD50
CAMERON, R.A. SD50
GANDHI, P. SD50
FOELLMI, C. SD50
ELSNER, R.F. SD50
PATEL, S.K. SD50
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
ALDCROFT, T.L. Smithsonian Astrophysics
CAMERON, R.A. Smithsonian Astrophysics
GANDHI, P. European Southern Observatory
FOELLMI, C. European Southern Observatory
ELSNER, R.F. Smithsonian Astrophysics
PATEL, S.K. USRA
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
ELSNER, R.F. SD50
RAMSEY, B.D. SD50
O’DELL, S.L. SD50

WEISSKOPF, M.C. SD50
WU, K. Southampton
TENNANT, A.F. SD50
SWARTZ, D.A. USRA/SD50
GHOSH, K.K. USRA/SD50

WELLS, B.E. UAH
WEIR, J. ED10
TREVINO, L.C. ED10
PATRICK, C. ED10
STEINCAP, J. ED10

WEST, E.A. SD50
PORTER, J.G. SD50

WINGARD, C.D. ED34

Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the

1

53

WOODCOCK, G. Gray Research
BYERS, D. SAIC
ALEXANDER, L.A. TD05
KREBSBACH, A. TD05

WRIGHT, K.H. UAH
GARBE, G. TD05

XIONG-SKIBA, P. Austin Peay State University
HULGUIN, R. Austin Peay State University
ENGELHAUPT, D. UAH
RAMSEY, B.D. SD50

YAMAUCHI, Y. SD50/NRC
MOORE, R.L. SD50
SUESS, S.T. SD50
WANG, H. NJIT/BBSO
SAKURAI, T. National Astronomical Observatory

YAMAUCHI, Y. SD50
SUESS, S.T. SD50

STEINBERG, J.T. SD50
SAKURAI, T. SD50

ZATESPIN, V.I. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State U.
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZELY, A.R. Southern University
GANEL, O. University of Maryland ET AL.

The Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For publication in Nuclear Instruments and Methods, 2004.

ZENG, W. UAH
HORWITZ, J.L. UAH
CRAVEN, P.D. SD50
RICH, F.J. Air Force Research Laboratory
MOORE, T.E. Goddard Space Flight Center

ZIMMERMAN, F.R. ED33

INDEX

TECHNICAL MEMORANDUM

NABORS, S. ... 3
NGUYEN, H. ... 1
ROBINSON, M.B. ... 1
RUSSELL, C.K. ... 2
SMALLEY, L. .. 3
STANLEY, D.C. ... 1
STEEVE, B.E. .. 2
SUGGS, R.J. .. 3
SUMMERS, F.G. ... 4
VAN DYKE, M.K. ... 1
WATSON, D.W. .. 3
ZIMMERMAN, R. ... 3

TECHNICAL PUBLICATION

ADAMA, R.B. .. 5
ADAMS, R.B. .. 5
ALEXANDER, R.A. .. 5
ANDERSON, B.J. .. 6
BONEMETTI, J. .. 5
CAMPBELL, A. .. 7
CHAPMAN, J.M. .. 5
DELAMERE, P. .. 6
FINCHER, S.S. ... 5
HATHAWAY, D.H. ... 5, 6
HOPKINS, R.C. ... 5
KABIN, K. ... 6
KALKSTEIN, M. ... 5
KHAZANOV, G.V. ... 6
KRIEG, J. ... 7
LINDE, T.J. ... 6
LITCHFORD, R.J. .. 5, 6
MARSHALL, P. .. 7
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWK, C.W.</td>
<td>22, 33</td>
</tr>
<tr>
<td>HARTMANN, D.H.</td>
<td>26, 33, 37</td>
</tr>
<tr>
<td>HARDIN, D.</td>
<td>21</td>
</tr>
<tr>
<td>HARDEE, P.</td>
<td>29, 39</td>
</tr>
<tr>
<td>HARDAGE, D.</td>
<td>26, 33, 53</td>
</tr>
<tr>
<td>HANSON, B.</td>
<td>42</td>
</tr>
<tr>
<td>HAM-BATTISTA, G.</td>
<td>11, 27, 28</td>
</tr>
<tr>
<td>HAMILTON, G.S.</td>
<td>12</td>
</tr>
<tr>
<td>HANSON, J.M.</td>
<td>27</td>
</tr>
<tr>
<td>HARDAGE, D.</td>
<td>32</td>
</tr>
<tr>
<td>HARDEE, P.</td>
<td>39</td>
</tr>
<tr>
<td>HARDIN, D.</td>
<td>30</td>
</tr>
<tr>
<td>HARTMANN, D.H.</td>
<td>26, 33</td>
</tr>
<tr>
<td>HASAGAWA, B.H.</td>
<td>41</td>
</tr>
<tr>
<td>HATHAWAY, D.H.</td>
<td>27, 38</td>
</tr>
<tr>
<td>HAWK, C.W.</td>
<td>22, 33</td>
</tr>
<tr>
<td>HEATON, A.F.</td>
<td>24, 28, 36</td>
</tr>
<tr>
<td>HEDEDAL, C.</td>
<td>39</td>
</tr>
<tr>
<td>HEFNER, K.</td>
<td>28</td>
</tr>
<tr>
<td>HEINRICH, J.C.</td>
<td>53</td>
</tr>
<tr>
<td>HENDEN, A.A.</td>
<td>33</td>
</tr>
<tr>
<td>HENDERSON, M.G.</td>
<td>35</td>
</tr>
<tr>
<td>HENDERSON, S.J.</td>
<td>28</td>
</tr>
<tr>
<td>HENLEY, M.W.</td>
<td>28</td>
</tr>
<tr>
<td>HERRENS, K.A.</td>
<td>26, 28</td>
</tr>
<tr>
<td>HERRMANN, M.</td>
<td>31</td>
</tr>
<tr>
<td>HEYSFIELD, G.</td>
<td>17, 29</td>
</tr>
<tr>
<td>HICKS, E.D.</td>
<td>23</td>
</tr>
<tr>
<td>HILL, D.N.</td>
<td>51</td>
</tr>
<tr>
<td>HO, F.D.</td>
<td>36</td>
</tr>
<tr>
<td>HOFFMAN, R.A.</td>
<td>23</td>
</tr>
<tr>
<td>HOGUE, W.</td>
<td>22, 27</td>
</tr>
<tr>
<td>HOLBREY, J.D.</td>
<td>50</td>
</tr>
<tr>
<td>HOLLADAY, J.B.</td>
<td>28, 44</td>
</tr>
<tr>
<td>HOLLERMAN, W.</td>
<td>21, 28</td>
</tr>
<tr>
<td>HOLMES, A.</td>
<td>16, 29</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>28, 34</td>
</tr>
<tr>
<td>HONG, Y.-S.</td>
<td>28, 36, 42</td>
</tr>
<tr>
<td>HONKANEN, E.</td>
<td>50</td>
</tr>
<tr>
<td>HOOVER, R.B.</td>
<td>12, 20, 29, 41, 45, 49</td>
</tr>
<tr>
<td>HOPPE, D.T.</td>
<td>21</td>
</tr>
<tr>
<td>HORWITZ, J.L.</td>
<td>54</td>
</tr>
<tr>
<td>HOURLIER-BAHLOUL, D.</td>
<td>46</td>
</tr>
<tr>
<td>HOUSER, J.G.</td>
<td>36</td>
</tr>
<tr>
<td>HOUSTON, J.</td>
<td>29</td>
</tr>
<tr>
<td>HOUS, M.</td>
<td>48</td>
</tr>
<tr>
<td>HOVATER, M.</td>
<td>21, 48</td>
</tr>
<tr>
<td>HOWARD, R.T.</td>
<td>15, 29, 44</td>
</tr>
<tr>
<td>HOWELL, J.T.</td>
<td>17, 28, 29</td>
</tr>
<tr>
<td>HOWSMA, T.G.</td>
<td>29</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>RICHMOND, R.C.</td>
<td>20, 43</td>
</tr>
<tr>
<td>RICKMAN, D.</td>
<td>18, 25, 43, 52</td>
</tr>
<tr>
<td>RIDLEY, A.J.</td>
<td>32, 35</td>
</tr>
<tr>
<td>RIES, C.</td>
<td>33</td>
</tr>
<tr>
<td>RITCHIE, S.M.C.</td>
<td>44</td>
</tr>
<tr>
<td>ROADS, J.</td>
<td>44</td>
</tr>
<tr>
<td>ROBERTS, B.C.</td>
<td>40, 44</td>
</tr>
<tr>
<td>ROBERTSON, B.</td>
<td>44</td>
</tr>
<tr>
<td>ROBERTSON, F.R.</td>
<td>44</td>
</tr>
<tr>
<td>ROBERTSON, T.</td>
<td>44</td>
</tr>
<tr>
<td>ROBINSON, J.H.</td>
<td>48</td>
</tr>
<tr>
<td>ROBINSON, P.J.</td>
<td>42</td>
</tr>
<tr>
<td>ROBINSON, R.K.</td>
<td>44</td>
</tr>
<tr>
<td>ROBLES, B.</td>
<td>50</td>
</tr>
<tr>
<td>ROCKER, M.</td>
<td>50</td>
</tr>
<tr>
<td>RODGERS, S.</td>
<td>44</td>
</tr>
<tr>
<td>RODRIGUEZ, P.R.</td>
<td>13, 15, 44</td>
</tr>
<tr>
<td>ROE, F.D.</td>
<td>44</td>
</tr>
<tr>
<td>ROELOF, E.C.</td>
<td>35</td>
</tr>
<tr>
<td>ROGERS, E.</td>
<td>44</td>
</tr>
<tr>
<td>ROGERS, J.H.</td>
<td>44</td>
</tr>
<tr>
<td>ROGERS, J.R.</td>
<td>25, 30, 34, 42, 43, 45</td>
</tr>
<tr>
<td>ROGERS, R.D.</td>
<td>50</td>
</tr>
<tr>
<td>ROL, E.</td>
<td>45</td>
</tr>
<tr>
<td>ROMANI, P.N.</td>
<td>23, 40</td>
</tr>
<tr>
<td>ROWELL, G.H.</td>
<td>48</td>
</tr>
<tr>
<td>ROYCHOWDHURY, S.</td>
<td>45</td>
</tr>
<tr>
<td>ROZANOVA, A.Y.</td>
<td>12, 29, 45</td>
</tr>
<tr>
<td>RUF, J.H.</td>
<td>45</td>
</tr>
<tr>
<td>RUPEN, M.</td>
<td>25</td>
</tr>
<tr>
<td>RUSSELL, C.K.</td>
<td>45</td>
</tr>
<tr>
<td>RUSSELL, C.T.</td>
<td>23</td>
</tr>
<tr>
<td>RUSSELL, J.K.</td>
<td>48</td>
</tr>
<tr>
<td>RUSSELL, S.</td>
<td>40</td>
</tr>
<tr>
<td>SACKHEIM, R.L.</td>
<td>45, 52</td>
</tr>
<tr>
<td>SAEKS, R.E.</td>
<td>51</td>
</tr>
<tr>
<td>SAFIE, F.M.</td>
<td>44</td>
</tr>
<tr>
<td>PRESSON, K.</td>
<td>42</td>
</tr>
<tr>
<td>PRICE, M.W.</td>
<td>42</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td>13, 23, 25, 37, 42, 50</td>
</tr>
<tr>
<td>QUALLS, A.L.</td>
<td>50</td>
</tr>
<tr>
<td>QUATTROCHI, D.A.</td>
<td>22, 42</td>
</tr>
<tr>
<td>QUINN, J.E.</td>
<td>42</td>
</tr>
<tr>
<td>RAGHOOTHAMACHAR, B.</td>
<td>49</td>
</tr>
<tr>
<td>RAKOCZY, J.</td>
<td>50</td>
</tr>
<tr>
<td>RAMACHANDRAN, N.</td>
<td>42</td>
</tr>
<tr>
<td>RAMIREZ-RUIZ, E.</td>
<td>34, 43</td>
</tr>
<tr>
<td>RAMSAY, G.</td>
<td>13, 15</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>22, 26, 41, 43, 53, 54</td>
</tr>
<tr>
<td>RANASINGHE, K.S.</td>
<td>43</td>
</tr>
<tr>
<td>RASHKOVICH, L.N.</td>
<td>18</td>
</tr>
<tr>
<td>RATHZ, T.J.</td>
<td>30, 34, 43</td>
</tr>
<tr>
<td>RAU, A.</td>
<td>26, 33</td>
</tr>
<tr>
<td>RAUCH, J.L.</td>
<td>20</td>
</tr>
<tr>
<td>RAY, C.S.</td>
<td>24, 42, 43</td>
</tr>
<tr>
<td>REAGAN, S.E.</td>
<td>28</td>
</tr>
<tr>
<td>REDMAN, S.</td>
<td>15</td>
</tr>
<tr>
<td>REESE, G.</td>
<td>48</td>
</tr>
<tr>
<td>REEVES, D.R.</td>
<td>34</td>
</tr>
<tr>
<td>REGNER, K.</td>
<td>25</td>
</tr>
<tr>
<td>REHAK, P.</td>
<td>22</td>
</tr>
<tr>
<td>REICHEMANN, E.J.</td>
<td>27</td>
</tr>
<tr>
<td>REID, R.S.</td>
<td>15, 36, 43</td>
</tr>
<tr>
<td>REIG, P.</td>
<td>53</td>
</tr>
<tr>
<td>REILLY, J.</td>
<td>16</td>
</tr>
<tr>
<td>REIMER, O.</td>
<td>13</td>
</tr>
<tr>
<td>REINSCH, K.</td>
<td>26</td>
</tr>
<tr>
<td>REIS, S.T.</td>
<td>43</td>
</tr>
<tr>
<td>RICH, F.J.</td>
<td>54</td>
</tr>
<tr>
<td>RICHARDSON, G.</td>
<td>39</td>
</tr>
<tr>
<td>RICHARDSON, E.R.</td>
<td>20</td>
</tr>
<tr>
<td>RICHARDSON, G.</td>
<td>39</td>
</tr>
<tr>
<td>RICHARDSON, L.</td>
<td>30</td>
</tr>
<tr>
<td>RICHARDSON, S.</td>
<td>48</td>
</tr>
<tr>
<td>SAFIE, F.M.</td>
<td>44</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>STEEVE, B.E.</td>
<td>48</td>
</tr>
<tr>
<td>STEFANESCU, D.M.</td>
<td>17</td>
</tr>
<tr>
<td>STEINBERG, J.T.</td>
<td>54</td>
</tr>
<tr>
<td>STEINCAMP, J.</td>
<td>50, 53</td>
</tr>
<tr>
<td>STEINCAMP, J.W.</td>
<td>50</td>
</tr>
<tr>
<td>STELMAKH, S.</td>
<td>40</td>
</tr>
<tr>
<td>STELLINGWERF, R.F.</td>
<td>22, 48</td>
</tr>
<tr>
<td>STERLING, A.C.</td>
<td>18, 38, 49</td>
</tr>
<tr>
<td>STEWART, E.T.</td>
<td>50</td>
</tr>
<tr>
<td>STORRIE-LOMBARDI, M.C.</td>
<td>49</td>
</tr>
<tr>
<td>STOTT, J.E.</td>
<td>45</td>
</tr>
<tr>
<td>STROM, R.</td>
<td>45</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>12, 35, 49</td>
</tr>
<tr>
<td>SUEMATSU, Y.</td>
<td>18</td>
</tr>
<tr>
<td>SUuess, S.T.</td>
<td>20, 41, 42, 49, 54</td>
</tr>
<tr>
<td>SUGGS, R.J.</td>
<td>31, 49</td>
</tr>
<tr>
<td>SUGGS, R.M.</td>
<td>19, 37, 49, 50</td>
</tr>
<tr>
<td>SULLIVAN, D.</td>
<td>43</td>
</tr>
<tr>
<td>SWANK, J.H.</td>
<td>25</td>
</tr>
<tr>
<td>SWANSON, G.R.</td>
<td>12</td>
</tr>
<tr>
<td>SWARTZ, D.A.</td>
<td>13, 22, 49, 53</td>
</tr>
<tr>
<td>SWEET, R.M.</td>
<td>35</td>
</tr>
<tr>
<td>SWIDERSKA-SRODA, A.</td>
<td>40</td>
</tr>
<tr>
<td>SWIFT, W.R.</td>
<td>50</td>
</tr>
<tr>
<td>SWINGLE, M.R.</td>
<td>50</td>
</tr>
<tr>
<td>SzoFRAN, F.R.</td>
<td>40, 42, 52</td>
</tr>
<tr>
<td>SzoKE, J.</td>
<td>49</td>
</tr>
<tr>
<td>TANG, J.</td>
<td>41</td>
</tr>
<tr>
<td>TANKOSIC, D.</td>
<td>11</td>
</tr>
<tr>
<td>TATARA, J.D.</td>
<td>17, 50</td>
</tr>
<tr>
<td>TAYLOR, C.</td>
<td>41</td>
</tr>
<tr>
<td>TAYLOR, J.</td>
<td>50</td>
</tr>
<tr>
<td>TAYLOR, T.L.</td>
<td>50</td>
</tr>
<tr>
<td>TEMPEL, W.</td>
<td>42</td>
</tr>
<tr>
<td>TEMPLETON, G.</td>
<td>27</td>
</tr>
<tr>
<td>TENNANT, A.F.</td>
<td>13, 34, 49, 52, 53</td>
</tr>
<tr>
<td>TE Dexter, S.</td>
<td>48</td>
</tr>
<tr>
<td>THIGPEN, W.W.</td>
<td>15</td>
</tr>
<tr>
<td>THOMAS, B.R.</td>
<td>29</td>
</tr>
<tr>
<td>THOMPSON, M.S.</td>
<td>28</td>
</tr>
<tr>
<td>THORNTON, G.</td>
<td>50</td>
</tr>
<tr>
<td>TILGHMAN, N.</td>
<td>27</td>
</tr>
<tr>
<td>TIMOFEEVA, T.V.</td>
<td>38</td>
</tr>
<tr>
<td>TINKER, M.L.</td>
<td>13, 50</td>
</tr>
<tr>
<td>TIPPETT, D.D.</td>
<td>32</td>
</tr>
<tr>
<td>TODD, D.</td>
<td>40</td>
</tr>
<tr>
<td>TORRES, I.</td>
<td>41</td>
</tr>
<tr>
<td>TREVINO, L.C.</td>
<td>20, 53</td>
</tr>
<tr>
<td>TRICHILO, M.</td>
<td>42</td>
</tr>
<tr>
<td>TROTIGNON, J.G.</td>
<td>20</td>
</tr>
<tr>
<td>TUCKER, D.S.</td>
<td>50</td>
</tr>
<tr>
<td>TUCKER, K.</td>
<td>50</td>
</tr>
<tr>
<td>TURNER, M.B.</td>
<td>50</td>
</tr>
<tr>
<td>TURNER, S.</td>
<td>51</td>
</tr>
<tr>
<td>TURPIN, J.B.</td>
<td>51</td>
</tr>
<tr>
<td>TYLER, T.</td>
<td>23</td>
</tr>
<tr>
<td>TYSON, R.W.</td>
<td>19</td>
</tr>
<tr>
<td>UDDIN, W.</td>
<td>18</td>
</tr>
<tr>
<td>VALENTINE, P.G.</td>
<td>51</td>
</tr>
<tr>
<td>VAN DEN HEUVEL, E.P.J.</td>
<td>45</td>
</tr>
<tr>
<td>VAN DER HORST, A.J.</td>
<td>45</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>25</td>
</tr>
<tr>
<td>VAN DER WOERD, M.J.</td>
<td>31, 47, 51</td>
</tr>
<tr>
<td>VAN DyKE, M.K.</td>
<td>51</td>
</tr>
<tr>
<td>VAN PELT, M.</td>
<td>51</td>
</tr>
<tr>
<td>VAN SANT, J.T.</td>
<td>24</td>
</tr>
<tr>
<td>VAUGHAN, W.W.</td>
<td>31, 51</td>
</tr>
<tr>
<td>VAUGHN, J.A.</td>
<td>51</td>
</tr>
<tr>
<td>VEITH, E.M.</td>
<td>42</td>
</tr>
<tr>
<td>VEKILOV, P.G.</td>
<td>18</td>
</tr>
<tr>
<td>VETTAIKKORUMAKANKAUV, A.K.</td>
<td>36</td>
</tr>
<tr>
<td>VICKERS-RICH, P.</td>
<td>12</td>
</tr>
<tr>
<td>VINE, F.J.</td>
<td>51</td>
</tr>
<tr>
<td>VIRANI, S.N.</td>
<td>14</td>
</tr>
</tbody>
</table>
VOLZ, M.P. ..37, 40, 51
VRBA, F.J. ..33
WACHTER, S.52
WAITE, JR., J.H.13, 15, 21, 22
WALKER, J.S.51
WALKER, S.H.52
WALKER, W.40
WALLIS, M.K.29
WALSH, D.45
WANG, B.-C.42
WANG, H.54
WANG, T. ..12
WANG, T.-S.52
WARGO, M.J.19
WASSELL, E.49
WATSON, K.19
WATSON, M.D.52
WEAVER, A.R.52
WEEKS, D.J.45, 52
WEI, P.F. ...43
WEINGARTNER, J.C.11
WEIR, J. ..53
WEISSKOPF, M.C.13, 34, 43, 52, 53
WELLS, B.E.53
WENTZ, F.25
WERTZ, G.E.21, 52
WEST, E.A.11, 53
WEST, J. ..50
WEST, L.T.18, 52
WESTRA, D.G.53
WHORTON, M.S.53
WICKRAMASINGHE, N.C.29
WIJERS, R.A.M.J.34, 45
WILDE, A. ..12
WILKERSON, D.44
WILLIAMS, R.23, 24, 50
WILSON, A.53
WILSON, C.A.53
WILSON, C.D.12
WILSON, R.M.27
WINET, E.16
WINGARD, C.D.53
WITHEROW, W.K.11
WOODCOCK, G.54
WOODS, P.M.24, 52
WOOSLEY, S.E.34, 43
WRIGHT, K.H.54
WU, K. ...49, 53
XENOFOS, G.D.23
XIONG-SKIBA, P.54
YAMAUCHI, Y.38, 54
YAMAUCHO, Y.38
YAN, X.Y. ..39
YOUNG, R.B.28
YURCHYSHYN, V.18
ZATESPIN, V.I.54
ZEH, A. ..33
ZENG, W.54
ZHANG, H.39
ZHANG, S.N.13
ZHU, S. ..35
ZIMMERMAN, F.R.54
ZOLADZ, T.F.17
ZOOK, K. ...44
ZOU, X. ..17
ZURBUCHEN, T.42
Technical Memorandum

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE
May 2006

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE
FY 2004 Scientific and Technical Reports, Articles, Papers, and Presentations

5. FUNDING NUMBERS

6. AUTHORS
B.A. Fowler, Compiler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

8. PERFORMING ORGANIZATION REPORT NUMBER
M–1162

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546–0001

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
NASA/TM—2006–214379

11. SUPPLEMENTARY NOTES
Prepared by the Marshall IT Services Office, Office of Chief Information Officer

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category 99
Availability: NASA CASI 301–621–0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2004. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.

14. SUBJECT TERMS
Scientific and Technical Reports, Articles, Papers, Presentations

15. NUMBER OF PAGES
76

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited

NSN 7540-01-280-5500
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390