National Aeronautics and
Space Administration

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
35812

May 2006

FY 2004 Scientific and Technical Reports,
Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320 301–621–0390
FY 2004 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

May 2006
FOREWORD

In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 2004 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>NASA CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>9</td>
</tr>
<tr>
<td>MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION</td>
<td>11</td>
</tr>
<tr>
<td>INDEX</td>
<td>55</td>
</tr>
</tbody>
</table>

During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18-m³ multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH₂) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than those measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH₂ saturation pressure from 133 to 70 kPa in 188 min.

Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3–300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashion with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished via cooperative efforts with Department of Energy labs, industry, universities, and other NASA Centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

Documentation of the internal science research at the Biological and Physical Space Research Laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. The report documents flight and ground experiments in microgravity materials science and biotechnology science and space radiation. All of the work described includes significant scientific contributions by internal scientists (usually as principal or co-investigator on the research grant). Much of the research is in collaboration with external scientists. All the funding was provided as the result of competitive proposals evaluated by internal or external peer review processes. The external flight and ground research that our laboratory supports for the NASA program will be reviewed in a separate report.

This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 2002. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.
Often, a single method or technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. This is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated. In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated at 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples.

This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.

The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated at 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples.

This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.

A heat pipe-cooled reactor coupled to a Brayton cycle is currently under consideration for nuclear electric propulsion or as a planetary surface power source. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This Technical Memorandum (TM) discusses the fluid, thermal, and structural analyses that were performed in support of the design of the heat exchanger to be tested in the Safe, Affordable Fission Engine experimental program at Marshall Space Flight Center. A companion paper, “Mechanical Design and Fabrication of a SAFE–100 Heat Exchanger for use in NASA’s Advanced Propulsion Thermal-Hydraulic Simulator,” presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be used for higher power and temperature applications. This TM also discusses this aspect of the design and presents designs for specific applications under consideration.

A laser space calibration experiment is considered using the 12-J, 15-Hz high-performance CO₂ laser surveillance sensor (HI-CLASS) system on the 3.67-m aperture advanced electro-optics system (AEOS). The objectives are to provide accurate range and signature measurements of orbiting calibration spheres, demonstrate high-resolution tracking capability of small objects, and precision drag determination for low-Earth orbit (LEO). Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbation analyses, and comparing radar and optical signatures. A global positioning system (GPS), laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in LEO, the microsatellite will pass over AEOS on the average of two times per 24-hr period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS AEOS will detect the microsatellite as it rises above the horizon, using Space Command-generated acquisition vectors. GPS data will be transmitted to the ground providing independent on-orbit, submeter accuracy location information for the microsatellite.

A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this report is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or “modified Lockheed equation.” Results from the two models were very comparable and were within 5–8 percent of the measured data at the 300 K boundary condition.

The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17–4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing’s nut factor, the fastener preload had a factor of safety of <1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested
and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

TM—2004–213394
September 2004

This Technical Memorandum (TM) lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2003. Entries in the main part of the TM are categorized according to NASA Reports (arranged by report number), Open Literature and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this TM should be directed to Dr. A.F. Whitaker (SD01; 544–2481) or to one of the authors.
A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formulation steps leading to nucleation. The development mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films.

An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provided a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. These surfaces were measured as an independent measure of the instantaneous nucleation environment. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C_6H_6 as the fuel gas phase precursor with addition of carbon monoxide gas or addition of liquid toluene.

A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be ≈124.5, occurring near July 2002 ±5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23—120.8 in April 2000.
given of a Marshall Space Flight Center-led study intended to develop and assess various candidate systems for protection of the Earth against NE Os. Details of analytical tools, trajectory tools, and a tool that was created to model both the undeflected inbound path of an NEO as well as the modified, postdeflection path are given. A representative selection of these possible options was modeled and evaluated. It is hoped that this study will raise the level of attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

TP—2004–213143 April 2004
Plasma Sail Concept Fundamentals. G.V. Khazanov, P. Delamere,*, K. Kabin,** and T.J. Linde***. Space Science Department, Science Directorate, *University of Colorado, **University of Alberta, and ***The University of Chicago.

The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Wingele et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50–80 km/s after an acceleration period of ≈3 mo. Such velocities will enable travel out of the solar system in a period of ≈7 yr—almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Wingele et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably (≈10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm’s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm’s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.

TP—2004–213281 June 2004

On the basis of the maximum amplitude-early rise correlation, cycle 23 could have been predicted to be about the size of the mean cycle as early as 12 mo following cycle minimum. Indeed, estimates for the size of cycle 23 throughout its rise consistently suggested a maximum amplitude that would not differ appreciably from the mean cycle, contrary to predictions based on precursor information. Because cycle 23’s average slope during the rising portion of the solar cycle measured 2.4, computed as the difference between the conventional maximum (120.8) and minimum (8) amplitudes divided by the ascent duration in months (47), statistically speaking, it should be a cycle of shorter period. Hence, conventional sunspot minimum for cycle 24 should occur before December 2006, probably near July 2006 (±4 mo). However, if cycle 23 proves to be a statistical outlier, then conventional sunspot minimum for cycle 24 would be delayed until after July 2007, probably near December 2007 (±4 mo). In anticipation of cycle 24, a chart and table are provided for easy monitoring of the nearness and size of its maximum amplitude once onset has occurred (with respect to the mean cycle and using the updated maximum amplitude-early rise relationship).

TP—2004–213284 June 2004

From early in the Shuttle program, the National Aeronautics and Space Administration has modeled hydrogen chloride (HCl) release by burning solid propellant in the solid rocket boosters. In 1998, the United States Air Force 45th Space Wing
instituted more stringent launch commit criteria (LCC) for the Titan and Delta vehicles and proposed that the same LCC be applied to the Shuttle to enhance safety of onsite visitors and offsite public. Two types of health and safety standards were applicable: (1) Expected casualties and risk and (2) air quality emergency response.

This study addresses the issues using the U.S. Environmental Protection Agency-recommended model, CALPUFF. Results were compared to those produced by the USAF model, REEDM, developed for projecting air quality from nominal launches. Model performance was also evaluated against results of a Kennedy Space Center-sponsored study at the Los Alamos National Laboratory (LANL) using a computer-intensive, wildfire model.

CALPUFF and the LANL model are capable of multipuff modeling of multiple sources. REEDM is a single-source, single-puff model. This study revealed significant deficiencies in REEDM when applied to the catastrophic failure problem. CALPUFF results indicate that, if a Shuttle abort were to occur over land, serious levels of HCl exposure could occur out to distances of at least 10 km, sufficient range to include major onsite visitor viewing areas. A preliminary survey of mitigation alternatives indicates cost-effective measures could be implemented that are sufficiently protective. Recent safety initiatives in response to the Columbia Accident Investigation Board report are not reflected here.

TP—2004–213339 August 2004

This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates <0.1 rd(Si)/s compared to similar transistors irradiated at dose rates >1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining U.S. leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.
An improved specification of the plasma environment has been developed for use in modeling spacecraft charging. It was developed by statistically analyzing a large part of the LANL Magnetospheric Plasma Analyzer (MPA) data set for ion and electron spectral signature correlation with spacecraft charging, including anisotropies. The objective is to identify a relatively simple characterization of the full particle distribution that yield an accurate prediction of the observed charging under a wide variety of conditions.

Fortran statements were developed that are required for the NUMIT runs to work with this kind of data from space. In addition to developing the Fortran for NUMIT, simple correlations between the IDM pulsing history and the space radiation were observed because we now have a better characterization of the space radiation.

The study showed that: (1) the new methods for measurement of charge storage and conduction in insulators provide the correct values to use for prediction of charging and pulsing in space; (2) the methods in NUMIT that worked well for time durations less than hours now work well for durations of months; (3) an average spectrum such as AE8 is probably not a good guide for predicting pulsing in space—one must take time dependence into account in order to understand insulator pulsing; and (4) the old method for predicting pulse rates in space that was based on the CRRES data could be improved to include dependencies on material parameters.
ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
GALLAGHER, D.L. SD50

ADAMS, J.H. SD50

ADAMS, M. SD50
FALCONER, D.A. SD50

LEE, J.K. SD50
JONES, C. SD50

WEST, E.A. SD50

GALLAGHER, D.L. SD50
CRAY, D.A. SD50
LECLAIR, A. UAH

ET AL.

ALBYN, K. ED31
EDWARDS, D.L. ED31

LECLAIR, A. UAH
OWEN, T. University of Hawaii
CONRATH, B.J. Cornell University
FLASAR, F.M. Goddard Space Flight Center
KUNDE, V.G. University of Maryland
NIXON, C.A. University of Maryland
BJORAKER, G. Goddard Space Flight Center

ET AL.

Ahn, H.S. University of Maryland
Seo, S.E. University of Maryland
Adams, J.H. SD50

ALHORN, D.C. ED17

ALLEN, P.A. ED22
AGGARWAL, P.K. ED22
SWANSON, G.R. ED22

ALLEN, P.A. ED22
WILSON, C.D. Tennessee Technological University

ALTINO, K.M. UAH
KNUPP, K.R. UAH
GOODMAN, S.J. SD60
Correlation of Lightning Flash Rates With a Microburst Event—Abstract Only. For presentation at the American Meteorological Society (AMS) 22nd Conference on Severe Local Storms, Hyannis, MA, October 5–8, 2004.

ANILKUMAR, A.V. Vanderbilt University
GRUGEL, R.N. SD46
BHOWMICK, J. Vanderbilt University
WANG, T. Vanderbilt University

ARAKERE, N.K. University of Florida
KNUDSEN, E.C. University of Florida
SWANSON, G.R. ED22
DUKE, G.C. Sverdrup Technology
HAM-BATTISTA, G. ERC, Inc.

ASTAFIEVA, M.M. Paleontological Institute
ROZANOV, A.Y. Paleontological Institute
HOEVER, R.B. SD50

ASTAFIEVA, M.M. Paleontological Institute
ROZANOV, A.Y. Paleontological Institute
WILDE, A. Monash University/Clayton

AVANOV, L.A. SD50
SMIRNOV, V.N. SD50
CHANDLER, M.O. SD50

BALLARD, R. TD51

BAN, H. UAB
LI, C. UAB
LIN, B. UAB
EMOTO, K. UAB
SCRIPA, R.N. UAB
SU, C.-H. SD46
LEHOCZKY, S.L. SD46

BAN, H. UAB
LI, C. UAB
LIN, B. UAB
EMOTO, K. UAB
SCRIPA, R.N. UAB
SU, C.-H. SD46
LEHOCZKY, S.L. SD46

BECKER, W. Max Planck Institute WEISSKOPF, M.C. SD50 ARZOUUMANIAN, Z. USRA LORIMER, D. University of Manchester CAMILO, F. Columbia University ELSNER, R.F. SD50 KANBACH, G. Max Planck Institute REIMER, O. Ruhr-Universitat SWARTZ, D.A. USRA ET AL.

BECKER, W. Max Planck Institute WEISSKOPF, M.C. SD50 TENNANT, A.F. SD50 JESSNER, A. Max Planck Institute ZHANG, S.N. SD50/UAH

BENEFIELD, M.P.J. TD05 BELCHER, J.A. TD05

BERNHARDSDOTTER, E.C.M.J. SD46 PUSEY, M.L. SD46 NG, J.D. UAH GARRIOTT, O.K. UAH

BERNHARDSDOTTER, E.C.M.J. UAH

BHANDWAJ, A. Vikram Sarabhai Space Center BRANDUARDI-RAYMONT, G. U. College London ELSNER, R.F. SD50 GLADSTONE, G.R. Southwest Research Institute RAMSAY, G. Mullard Space Science Laboratory RODRIGUEZ, P.R. XMM-Newton SOC SORIA, R. University College London WAITE, JR., J.H. University of Michigan CRAVENS, T.E. University of Kansas

BHANDWAJ, A. SD50 ELSNER, R.F. SD50 GLADSTONE, G.R. Southwest Research Institute WAITE, JR., J.H. University of Michigan CRAVENS, T.E. University of Kansas OSTGAARD, N. University of Bergen CHANG, S.-W. UAH/SD50 METZGER, A.E. Jet Propulsion Laboratory MAJEED, T. University of Michigan

BLAKESLEE, R.J. SD60

BLEVINS, J.A. TD40

BLUME, J.L. ED43

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60

BOEDER, P. Boeing

BOGARD, E. Ames Research Center
BRADFORD, R.N.
THIGPEN, W.W.
Ames Research Center

BRADFORD, R.N.
THIGPEN, W.W.
LISOTTA, A.J.
REDMAN, S.
Ames Research Center
UAH

BRAGG-SITTON, S.M.
FORBES, M.
NASA Headquarters

BRAGG-SITTON, S.M.
University of Michigan
KAPERNICK, R.J.
Los Alamos National Laboratory
GODFROY, T.J.
TD40

BRAGG-SITTON, S.M.
REID, R.S.
TD40

BRANDUARDI-RAYMONT, G.
Mullard Space Sci. Lab
ELSNER, R.F.
SD50
GLADSTONE, G.R.
Southwest Research Institute
RAMSAY, G.
Mullard Space Science Laboratory
RODRIGUEZ, P.R.
XMM-Newton SOC
SORIA, R.
Mullard Space Science Laboratory
WAITE, JR., J.H.
University of Michigan

BRISCOE, J.M.
ED12
BRODERICK, D.J.
Auburn University
HOWARD, R.T.
CORDER, E.L.

BROWN, A.M.
MCGHEE, D.S.

BRUBAKER, N.
JEDLOVEC, G.J.
SD60

BUECHLER, D.E.
GOODMAN, S.J.
LA CASSE, K.
BLAKESLEE, R.J.
DARDEN, C.

BUECHLER, D.E.
GOODMAN, S.J.
LA CASSE, K.
BLAKESLEE, R.J.
BAILEY, J.C.
GATLIN, P.N.

BUECHLER, D.E.
MCCAUL, JR., E.W.
GOODMAN, S.J.
BLAKESLEE, R.J.
BAILEY, J.C.
GATLIN, P.N.

FINCHUM, C. ED31 CANNING, F.X. ISR

FINCKENOR, M. ED31 WINET, E. ISR

Asymmetrical Capacitors for Propulsion—Presentation.

BURNS, L. Raytheon ICE, B. ISR

DECKER, R. ED44 MELCHER, C. ISR

KELLER, V.W. ED44 PESAVENTO, P. ISR

CARDELINO, H. Spellman College COLE, J. TD40

CARDELINO, C.A. Georgia Institute of Technology CAMPBELL, J. TD40

BOCCIO, D. SUNY COLE, J. TD40

CAMPBELL, J.W. FD02 CANFIELD, S. Tennessee Technological University

PHIPPS, C. Photonics Associates BEARD III, J.W. Tennessee Technological University

SMALLEY, L. UAH PEDDIESON, J. Tennessee Technological University

REILLY, J. Northeast Science & Technology EWING, A. Ewing Research

BACHMANN, K. North Carolina State University ARMSTRONG, J. SD46

CARPENTER, P.K. SD46 ARMSTRONG, J. SD46

CARDELINO, H. Spellman College MOORE, C.E. SD46

CARDELINO, C.A. Georgia Institute of Technology DIETZ, N. Georgia State University

MCCALL, S.D. Spellman College BACHMANN, K. North Carolina State University

CARPENTER, P.K. SD46 ARMSTRONG, J. SD46

CARPENTER, P.K. SD46 ARMSTRONG, J. NIST

Improvements in Electron-Probe Microanalysis: Applications to Terrestrial, Extraterrestrial, and Space-Grown...

CARRASQUILLO, R.L., BAGDIGIAN, B., PERRY, J.L., LEWIS, J.

CARRASQUILLO, R.L., CLOUD, D., BEDARD, J.

CARRIER, M., ZOU, X., LAPOENTA, W.M., JEDLOVEC, G.J.
Assessing the Usefulness of AIRS Radiance Observations in a 4D-Var Assimilation Scheme Using the Penn State/NCAR Mesoscale Model Version 5 (MM5) and a Stand Alone Radiative Transfer Algorithm (SARTA)—Abstract Only. For presentation at the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, September 20–24, 2004.

CARRINGTON, C.K., DAY, G.

CARRINGTON, C.K., HOWELL, J.T., DAY, G.

CARTER, L., TATARA, J.D., MASON, R.

CARRASQUILLO, R.L., BAGDIGIAN, B., PERRY, J.L., LEWIS, J.

CARRASQUILLO, R.L., CLOUD, D., BEDARD, J.

CARRIER, M., ZOU, X., LAPOENTA, W.M., JEDLOVEC, G.J.
Assessing the Usefulness of AIRS Radiance Observations in a 4D-Var Assimilation Scheme Using the Penn State/NCAR Mesoscale Model Version 5 (MM5) and a Stand Alone Radiative Transfer Algorithm (SARTA)—Abstract Only. For presentation at the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, September 20–24, 2004.

CARRINGTON, C.K., DAY, G.

CARRINGTON, C.K., HOWELL, J.T., DAY, G.
FAZELY, A.R. Southern University
GANEL, O. University of Maryland
ET AL.

CHANG, S.-W. SD50
GALLAGHER, D.L. SD50
SPANN, J.F. SD50
MENDE, S. SD50
GREENWALD, R. SD50
NEWELL, P.T. SD50

CHAUVER, G. TD40
CHANG-DIAZ, F. Johnson Space Center

CHAUVER, G. TD40
CHANG-DIAZ, F. Johnson Space Center
BREIZMAN, B. University of Texas
BENGSTSON, R. University of Texas

CHENG, F. SD60
KISSEL, D.E. SD60
WEST, L.T. SD60
RICKMAN, D. SD60
LUVALL, J.C. SD60
ADKINS, W. SD60

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46
VEKLOV, P.G. SD46

CHERNOV, A.A. SD46
RASHKOVICH, L.N. SD46
VEKLOV, P.G. SD46
DE YOREO, J.J. SD46

CHOU, S.-H. SD60
LAPENETA, W.M. SD60
JEDLOVEC, G.J. SD60
MCCARTY, W. UAH
MECKIKALSKI, J.R. UAH

CHAUDHARY, D.P. SD50

CHAUDHARY, D.P. SD50
BALASUBRAMANIAM, K.S. National Solar Observatory
SUEMATSU, Y. National Astronomical Observatory

CHAUDHARY, D.P. SD50
MOORE, R.L. SD50

CHAUDHARY, D.P. SD50
MOORE, R.L. SD50
FALCONER, D.A. SD50
POJOGA, S. Prairie View A&M University
HUANG, T.S. Prairie View A&M University
KRUCKER, S. University of California
UDDIN, W. Aryabhatta Research Institute

CHAUDHARY, D.P. SD50
STERLING, A.C. SD50
MOORE, R.L. SD50
YURCHYSHYN, V. Big Bear Solar Observatory
CHRISTIAN, H.J. SD60

CHRISTIAN, H.J. SD60

CHRISTL, M.J. SD50

CISSOM, R.D. FD32
WATSON, K. ARES Corporation

CISZAK, E.M. SD46
DOMINIAK, P.M. SD46

CLAYTON, L. ED25

CLINTON, JR., R.G. SD40

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD41
COOK, M.B. SD30
WARGO, M.J. NASA Headquarters
MARZWELL, N.I. Jet Propulsion Laboratory

CLINTON, JR., R.G. SD40
SEMMES, E.B. SD40
SCHLAGHECK, R.A. SD40
BASSLER, J.A. SD40
COOK, M.B. SD40
WARGO, M.J. NASA Headquarters
SANDERS, G.B. Johnson Space Center
MARZWELL, N.I. Jet Propulsion Laboratory

COFFEE, V.N. SD50
CHANDLER, M.O. SD50
SINGH, N. UAH
MILLER, J. UAH
MOORE, T.E. Goddard Space Flight Center

COOK, S.A. NP01
MORRIS, C.E.K. NP01
TYSON, R.W. NP01

COOKE, W.J. Morgan Research Corporation
MOBIE, D. Morgan Research Corporation
SUGGS, R.M. ED44

CORDER, E.L. ED12
BRISCOE, J.M. ED12

CRAVEN, P.D. SD50
MOORE, T.E. SD50
GALLAGHER, D.L. SD50
Thermal N+ in the Inner Magnetosphere—Abstract Only. For presentation at the American Geophysical Union 2004

CRUZ, A. SD46
BORS, K. SD46
JANSEN, H. SD46
RICHMOND, R.C. SD46

CRUZEN, C. FD32
DYER, S. FD33

CUNTZ, M. University at Texas/Arlington
SUSS, S.T. SD50

CUNTZ, M. SD50
SUSS, S.T. SD50

CURRELL, P.A. SD46
SIBILLE, L. BAE Systems

DARROUZET, F. Belgian Institute
LEMAIRE, J.F. Belgian Institute
DECRAEUF, E. Universite d’ Orleans
DE KEYSER, J. Belgian Institute
MASSON, A. Research and Scientific
GALLAGHER, D.L. SD50
SANTOLIK, O. MMF, Prague
TROTIGNON, J.G. Universite d’ Orleans
RAUCH, J.L. Universite d’ Orleans
ET AL.

DAVIS, R.N. University of Alabama
POLITES, M.E. University of Maryland
TREVINO, L.C. ED10

DAVIS, S.E. ED36
ENGEL, C.D. ED36
RICHARDSON, E.R. ED36

DECKER, R.K. ED44
LEACH, R. ED44

DECKER, R.K. ED44
LEACH, R. Morgan Research Corporation/ED44

DETKOVA, E.N. Institute of Microbiology
PIKUTA, E.V. SD50
HOOVER, R.B. SD50

DOBSON, C. TD40
HRBUJD, I. Purdue University

DOMINIAK, P.M. SD46
CISZAK, E.M. SD46

DOMINIAK, P.M. SD46
CISZAK, E.M. SD46

DORNEY, D.J. TD64
MARCU, B. Boeing/Rocketdyne

DUMBACHER, D.L. XP01

EDWARDS, D.L. ED31
HOLLERMAN, W. University of Louisiana
HUBBS, W.S. ED31
GRAY, P.A. CRC/ED31
WERTZ, G.E. ED31
HOPPE, D.T. ED31
NEHLS, M.K. ED31

SEMMEI, C.L. Qualis Corporation/ED31

EDWARDS, D.L. ED31
HOVATER, M. ED31
HUBBS, W.S. ED31
WERTZ, G.E. ED31
HOLLERMAN, W. University of Louisiana
GRAY, P.A. Qualis Corporation

EDWARDS, D.L. ED31
NEHLS, M.K. ED31
SEMMEI, C.L. Qualis Corporation/ED31
HOVATER, M. ED31
GRAY, P.A. ICRC/ED31
HUBBS, W.S. ED31
WERTZ, G.E. ED31

EDWARDS, D.L. ED31
SEMMEI, C.L. Qualis Corporation
HOVATER, M. ED31
NEHLS, M.K. ED31
GRAY, P.A. ICRC/ED31
HUBBS, W.S. ED31
WERTZ, G.E. ED31

EDWARDS, D.L. ED31
SEMMEI, C.L. Qualis Corporation
HOVATER, M. ED31
NEHLS, M.K. ED31
GRAY, P.A. ICRC/ED31
HUBBS, W.S. ED31
WERTZ, G.E. ED31

EDWARDS, D.L. ED31
SEMMEI, C.L. Qualis Corporation
HOVATER, M. ED31
NEHLS, M.K. ED31
GRAY, P.A. ICRC/ED31
HUBBS, W.S. ED31
WERTZ, G.E. ED31

ELANDER, V. UNLV
KOSHAK, W. SD60
PHANORD, D. UNLV

ELSNER, R.F. SD50
BHARDWAJ, A. NRC
WAITE, JR., J.H. University of Michigan
LUGAZ, N. University of Michigan
MAJEED, T.E. University of Michigan
CRAVENS, T. University of Kansas
GLADSTONE, G.R. Southwest Research Institute
FORD, P. MIT
GRODENT, D. Universite de Liege
ET AL.

ELSNER, R.F. SD50
RAMSEY, B.D. SD50
WAITE, JR., J.H. University of Michigan
REHAK, P. BNL
JOHNSON, R.E. University of Virginia
COOPER, J.F. Raytheon
SWARTZ, D.A. USRA

ELSNER, R.F. SD50
RAMSEY, B.D. SD50
WAITE, JR., J.H. University of Michigan
REHAK, P. Brookhaven National Laboratory
JOHNSON, R.E. University of Virginia
COOPER, J.F. Raytheon
SWARTZ, D.A. USRA/SD50

EMERSON, C.W. Western Michigan University
LAM, S.-N. Louisiana State University
QUATTROCHI, D.A. SD60

EMRICH, W.J. TD40
HAWK, C.W. UAH

ENG, R. SD72
STAHL, P. SD72
HOGUE, W. SD72
HADAWAY, J. UAH

Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result—Abstract Only. For presentation at the Mirror Technology Days, Huntsville, AL, August 17–19, 2004.

ENGBERG, R.C. ED27
OOI, T.K. UAH

ENGELHAUPT, D. UAH
RAMSEY, B.D. SD50

ESTES, H. ED17

EVANS, S.W. ED44

EVANS, S.W. ED44
STALLWORTH, R. ED23
STELLINGWERF, R.F. Stellingwerf Consulting

ESTES, H. ED17

EVANS, S.W. ED44

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. UAH/SD50
MOORE, R.L. SD50
GARY, G.A. SD50
BALASUBRAMANIAN, S. UAH/SD50

Forecasting Coronal Mass Ejections From Magnetograms—Abstract Only. For presentation at the Living With a Star Workshop, Boulder, CO, March 23–26, 2004;

FARR, R.A.
ELAM, S.K.
HICKS, E.D.
SANDERS, T.M.
LONDON III, J.R.
MAYNE, A.W.
CHRISTENSEN, D.L.
FARR, F.M.
KUNDE, V.G.
ACHTERBERG, R.K.
CONRATH, B.J.
SIMON-MILLER, A.A.
NIXON, C.A.
GIERASCH, P.J.
ROMANI, P.N.
ABNAS, M.M.
ET AL.
FLASAR, F.M.
Goddard Space Flight Center
KUNDE, V.G.
University of Maryland
ACHTERBERG, R.K.
Science Systems & Applications
CONRATH, B.J.
Cornell University
SIMON-MILLER, A.A.
Goddard Space Flight Center
NIXON, C.A.
University of Maryland
GIERASCH, P.J.
Cornell University
ROMANI, P.N.
Goddard Space Flight Center
ABNAS, M.M.
SD50
ET AL.

FERGUSON, C.K.
ABUSHAGUR, M.
ENGLISH, J.M.
NORDIN, G.P.
Ferguson, C.K.
SD22
ABUSHAGUR, M.
SD22
ENGLISH, J.M.
SD22
NORDIN, G.P.
SD22
Design and Analysis of a MEMS Micro-Translation Stage With Indefinite Travel—Abstract Only. For presentation at the Nanospace 2003, Galveston, TX, February 2004.

FISHMAN, G.J.
FISHMAN, G.J.
SD50
The Mystery of Gamma-Ray Bursts—Abstract Only. For presentation at the Rice University Space Exploration Series, Houston, TX, March 22, 2004.

FLANDRO, G.A.
FLANDRO, G.A.
University of Tennessee
MAJDALANI, J.
MDALANI, J.
University of Tennessee
SIMS, J.D.
SIMS, J.D.
TD07

FLASAR, F.M.
KUNDE, V.G.
ACHTERBERG, R.K.
Ade, P.
BARUCCI, A.
BEZARD, B.
BJORAKER, G.L.
BRASUNAS, J.C.
ET AL.
FOX, N.J.
GOLDBERG, R.
BARNES, R.J.
SIGWARTH, J.B.
BEISSER, K.B.
MOORE, T.E.
HOFFMAN, R.A.
RUSSELL, C.T.
SPANN, J.F.
ET AL.
FLASAR, F.M.
KUNDE, V.G.
ACHTERBERG, R.K.
Ade, P.
BARUCCI, A.
BEZARD, B.
BJORAKER, G.L.
BRASUNAS, J.C.
ET AL.
FOX, N.J.
GOLDBERG, R.
BARNES, R.J.
SIGWARTH, J.B.
BEISSER, K.B.
MOORE, T.E.
HOFFMAN, R.A.
RUSSELL, C.T.
SPANN, J.F.
ET AL.

FLASAR, F.M.
KUNDE, V.G.
ACHTERBERG, R.K.
Ade, P.
BARUCCI, A.
BEZARD, B.
BJORAKER, G.L.
BRASUNAS, J.C.
ET AL.
FULLER, K.A.
SMITH, D.D.
fuller, K.A.
UHR
SMITH, D.D.
SD46
Fuss, T. University of Missouri-Rolla
Ray, C.S. SD46
Leshier, C.E. University of California-Davis
Day, D.E. University of Missouri-Rolla

Crystallization of an Li₂O·SiO₂ Glass Under High Hydrostatic Pressures—Abstract Only. For presentation at the 106th Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 18–21, 2004.

Gallagher, D.L. SD50

Gallagher, D.L. SD50

Gallagher, D.L. SD50

Gallagher, D.L. SD50

Adrian, M.L. SD50
Liemohn, M.W. SD50

Gallagher, D.L. SD50

Khazanov, G.V. SD50

Garcia, R. TD64

Williams, R. TD64

Overview of MSFC’s Applied Fluid Dynamics Analysis Group Activities—Presentation. For presentation at the MSFC Spring Fluid Workshop, MSFC, AL, April 13, 2004.

Gary, G.A. SD50

Moore, R.L. SD50

Gatlin, P.N. SD60

Goodman, S.J. SD60

Germany, G. UAH
Spann, J.F. SD50
Deverapalli, C. UAH
Hung, C.-C. Southern Polytechnic State University

Geveden, R.D. DD01

Gillies, D.C. SD40

Gogus, E. SD50

Finger, M.H. SD50

Kouveliotou, C. SD50

Wood, P.M. SD50

PATEL, S.K. SD50
RUPEN, M. SD50
SWANK, J.H. SD50
MARKWARDT, C.B. SD50
VANDERKLIS, M. SD50

GOLDMAN, A. SD46
KELTON, K.F. SD46
ROGERS, J.R. SD46

GONZALEZ, J.E. Santa Clara University
LUVALL, J. SD60
RICKMAN, D. SD60
COMARAZAMY, D.E. SD60
PICON, A. SD60

GOODMAN, D.D. TD62

GOLDMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H. SD60
KOSHAK, W. SD60
BAILEY, J.C. Global Hydrology & Climate Center
HALL, J. Global Hydrology & Climate Center
MCCaul, E. Global Hydrology & Climate Center
DARDEN, C. NSSTC

ET AL.

GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H. SD60
KOSHAK, W. SD60
BAILEY, J.C. Global Hydrology & Climate Center
HALL, J. Global Hydrology & Climate Center
MCCaul, E. Global Hydrology & Climate Center
DARDEN, C. NSSTC

GOODMAN, D.D. TD62

GOODMAN, H.M. SD60
REGNER, K. UAH
CONOVER, H. UAH
ASHCROFT, P. Remote Sensing Systems
WENTZ, F. Remote Sensing Systems
CONWAY, D. UAH
LOBL, E. UAH
BEAUMONT, B. UAH
HAWKINS, L. UAH
JONES, S. UAH

GOODMAN, S.J. SD60

GOODMAN, S.J. SD60
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD60

Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth — Abstract Only. For presentation at the 10th International Conference on the Crystallization of Biological Macromolecules (ICCBM10), Beijing, China, June 5–8, 2004.

GORTI, S. SD46
KONNERT, J. Naval Research Laboratory
FORSYTHE, E.L. BAE Systems
PUSEY, M.L. SD46

GOSTOWSKI, R. TD40

GREGG, M.W. ED22

GREGG, M.W. ED22

GREGORY, D.A. UAH
HERREN, K.A. SD70

GREINER, J.C. Max Planck Institute
KLOSE, S. Thuringer Landesstern.
REINSCH, K. Universitas-Sternwarte
SCHMID, H.M. Institut fur Astronomie
SARI, R. California Institute of Technology
HARTMANN, D.H. Clemson University
KOUVEILOTOU, C. SD50
RAU, A. Max Planck Institute
PALAZZI, E. Istituto di Astrofisica ET AL.

GRUGEL, R.N. SD46

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. SD46

GRUGEL, R.N. SD46
LUZ, P. SD46
SMITH, A. SD46
SPIVEY, R. SD46
SEN, S. SD46
ANILKUMAR, A.V. SD46

GUBAREV, M. SD50
O’DELL, S.L. SD50
KESTER, T. SD50
LEHNER, D. SD50
JONES, W. SD50
SMITHERS, M. SD50

GRUGEL, R.N. SD46
Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station—Abstract Only. For presentation at the University of Texas, Austin, TX, October 7, 2003.

GRUGEL, R.N. SD46

GRUGEL, R.N. SD46
GUBAREV, M. SD50
RAMSEY, B.D. SD50
APPLE, J. SD50

GUILLORY, A.R. SD60
HADAWAY, J. UAH
STAHL, P. SD72
ENG, R. SD72
HOGUE, W. SD72

HAINES, S.L. SD60
JEDLOVEC, G.J. SD60
LAFONTAINE, F.J. SD60

HALE, J. TD32

HAMILTON, G.S. ED42
DUMAS II, J.D. University of Tennessee
BROOKMAN, S. University of Maryland
TILGHMAN, N. QTEC

HANSON, J.M. TD54
HALL, C.E. TD54
MULQUEEN, J.A. TD54
JONES, R.E. TD54

HANSON, J.M. TD54
JONES, R.E. Sverdru Technology

HANSON, J.M. TD54
JONES, R.E. TD54

HATHAWAY, D.H. SD50

HATHAWAY, D.H. SD50

HATHAWAY, D.H. SD50
What the Long-Term Sunspot Record Tells Us About Space Climate—Abstract Only. For presentation at the First International Symposium on Space Weather, Oulu, Finland, June 20–23, 2004.

HATHAWAY, D.H. SD50

HATHAWAY, D.H. SD50
How Large-Scale Flows in the Solar Convection Zone May Influence Solar Activity—Abstract Only. For presentation at the NSO Workshop No. 22 Large-Scale Structures and Their Role in Solar Activity, Sunspot, NM, October 18–22, 2004.

HATHAWAY, D.H. SD50
CHOUDHARY, D.P. SD50

HATHAWAY, D.H. SD50
MEYER, P.J. SD50
TEMPLETON, G. SD50

HATHAWAY, D.H. SD50
NANDY, D. Montana State University
WILSON, R.M. SD50
REICHMANN, E.J. SD50

HATHAWAY, D.H. SD50
WILSON, R.M. SD50

HEATON, A.F. TD54

HEFNER, K. FD03
DAVIDSON, G. Northrop Grumman

HENDERSON, S.J. U.S. Military Academy
HAMILTON, G.S. ED42

HENLEY, M.W. Boeing/Phantom Works
HOWELL, J.T. FD02

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HEREFORD, J. Murray State University
GWALTNEY, D. ED17

HERREN, K.A. SD70
COHEN, T. UAH
LIN, J. UAH
PAKHMOMOV, A.V. UAH

HERREN, K.A. SD71
LIN, J. UAH
COHEN, T. UAH
PAKHMOMOV, A.V. UAH
THOMPSON, M.S. Information Systems, Inc.

HOLLADAY, J.B. FD24
DAY, G. Boeing
GILL, L. Carleton Technologies

HOLLADAY, J.B. FD24
REAGAN, S.E. FD24
DAY, G. Boeing

HOLLERMAN, W. University of Louisiana
ALBARDO, T. University of Louisiana
LENTZ, M. University of Louisiana
EDWARDS, D.L. ED31
HUBBS, W.S. ED31
SEMME, C.L. Qualis Corporation

HOLT, J.M. ED25
CLANTON, S.E. Jacobs Sverdrup

HOOD, R.E. SD60
BLAKESLEE, R.J. SD60
CECIL, D.J. UAH
LAFONTAINE, F.J. Raytheon ITSS
HEYSFIELD, G. Goddard Space Flight Center
MARKS, F. NOAA Hurricane Research Division

HOOD, R.E. SD60
KAKAR, R. NASA Headquarters

Early Results of the NASA Convection and Moisture Experiment (CAMEX)—Abstract Only. For presentation at the 58th Interdepartmental Hurricane Conference, Charleston, SC, February 29–March 5, 2004.

HOOVER, R.B. SD50
PIKUTA, E.V. SD50
WICKRAMASINGHE, N.C. Cardiff Center
WALLIS, M.K. Cardiff Center

HOOVER, R.B. SD50
PIKUTA, E.V. SD50
WICKRAMASINGHE, N.C. Cardiff Center
WALLIS, M.K. Cardiff Center

HOOVER, R.B. SD50
ROZANOV, A.Y. Paleontological Institute

HOOVER, R.B. SD50
ROZANOV, A.Y. Paleontological Institute
JERMAN, G. ED21
COSTEN, J. ED21

HOUSTON, J. Jacobs Sverdrup
GATTIS, C.B. ED21

HOWARD, R.T. ED19
JOHNSTON, A.S. ED19
BRYAN, T.C. ED19
BOOK, M.L. ED19

HOWELL, J.T. FD02
O’NEILL, M. Entech, Inc.

HOWELL, J.T. FD02
O’NEILL, M. Entech, Inc.

HOWSMAN, T.G. Dynamic Concepts
O’NEIL, D.A. FD02

CRAFT, M.A. Dynamic Concepts

HU, Z.W. SD46
HOLMES, A. SD46
THOMAS, B.R. SD46
CHERNOV, A.A. SD46
CHU, Y.S. Argonne National Laboratory
LAI, B. Argonne National Laboratory

X-Ray Microscopic Characterization of Protein Crystals—Abstract Only. For presentation at the 10th International

HULCHER, A.B. ED34

HULCHER, A.B. ED34

HUTCHENS, C. FD21
GRAVES, R. Allied

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
GANGOPADHYAY, A.K. Washington University
KELTON, K.F. Washington University

HYERS, R.W. University of Massachusetts
BRADSHAW, R.C. University of Massachusetts
ROGERS, J.R. SD46
RATHZ, T.J. UAH
LEE, G.W. Washington University
KELTON, K.F. Washington University
GANGOPADHYAY, A.K. Washington University

IRWIN, D.E. SD60

IRWIN, D.E. SD60
SEVER, T.L. SD60
GRAVES, S. UAH
HARDIN, D. UAH

JAAP, J. FD42
DAVIS, E. FD42
RICHARDSON, L. FD42

JAAP, J. FD42
MAXWELL, T. FD42

JACOBSON, D. XP01

JACOBSON, D. XP01

JEDLOVEC, G.J. SD60
Use of MODIS/AIRS Direct Broadcast Data for Short Term Weather Forecasting—Abstract Only. For presentation at the

JEDLOVEC, G.J. SD60
HAINES, S. UAH
SUGGS, R.J. SD60
BRADSHAW, T. NWS Forecast Office
BURKS, J. NWS Forecast Office

JOHNSON, D.L. ED44
VAUGHAN, W.W. UAH
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A.L. Computer Sciences Corporation
KELLER, V.W. ED44

JONES, P.R. SD60
JEDLOVEC, G.J. SD60
SUGGS, R.J. SD60

JUDGE, R.A. SD40
SNELL, E.H. BAE Systems/SD40
KEPHART, R. SD40
VAN DER WOERD, M.J. BAE Systems/SD40

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44

JUSTUS, C.G. Morgan Research Corporation/ED44
DUVALL, A.L. Morgan Research Corporation/ED44
KELLER, V.W. ED44
JUSTUS, C.G. Morgan Research Corp./ED44
DUVALL, A.L. Morgan Research Corp./ED44
KELLER, V.W. ED44

KHAZANOV, G.V. SD50

KAKAR, R. NASA Headquarters
GOODMAN, H.M. SD60
HOOD, R.E. SD60
GUILLORY, A.R. SD60

KAUFFMAN, B. ED03
HARDAGE, D. ED03
MINOR, J. ED03

KEYS, A.S. SD50
CROW, R.W. Sensing Strategies, Inc.
ASHLEY, P.R. U.S. Army Aviation
NELSON, JR., T.R. Air Force Laboratory, SNDD
PARKER, J.H. Air Force Laboratory, SNJT
BEECHER, E.A. Air Force Laboratory, SNJT

KHAZANOV, G.V. SD50

KHAZANOV, G.V. SD50

KHAZANOV, G.V. SD50

KHAZANOV, G.V. SD50

EDWARDS, D.L. ED31
FINCKENOR, M. ED31

KLOSE, S. Thuringer Landessternwarte
GREINER, J. Max Planck Institute
RAU, A. Max Planck Institute
HENDEN, A.A. USNO/USRA
HARTMANN, D.H. Clemson University
ZEH, A. Thuringer Landessternwarte
MASETTI, N. Istituto di Astrofisica
GUENTHER, E. Thuringer Landessternwarte
KOUVELIOTOU, C. SD50 ET AL.

KLOSE, S. Thuringer Landessternwarte
GREINER, J.C. Max Planck Institute
RAU, A. Max Planck Institute
HENDEN, A.A. USNO/USRA
HARTMANN, D.H. Clemson University
ZEH, A. Thuringer Landessternwarte
RIES, C. Wendelstein-Observatorium
MASETTI, N. Istituto di Astrofisica
KOUVELIOTOU, C. SD50 ET AL.

KLOSE, S. Thuringer Landessternwarte
HENDEN, A.A. USNO/USRA
GEPPERT, U. Astrophysical Institute
HARTMANN, D.H. Dept./Physics & Astronomy
KOUVELIOTOU, C. SD50
LUGINBUHL, C.B. U.S. Naval Observatory
STECKLUM, B. Thuringer Landessternwarte
VRBA, F.J. U.S. Naval Observatory

KNOX, J.C. FD21

KNOX, J.C. FD21
MULLOTH, L.M. SAIC
AFFLECK, D.L. SAIC

KOBELL, W. SD70

KOELFGEN, S.J. UAH
ESKRIDGE, R. TD40
FIMOGNARI, P. UAH
HAWK, C.W. UAH
LEE, M. TD40
MARTIN, A. TD40

KOLODZIEJCZAK, J.J. SD31

KOROTCHKINA, L.G. State University of NY/Buffalo
CISZAK, E.M. SD46
PATEL, M.S. State University of NY/Buffalo

KOSHAK, W. SD60

KOUVELIOTOU, C. SD50

KOUVELIOTOU, C. SD50
KOUVELIOTOU, C. SD50

KOUVELIOTOU, C. SD50
WOOSLEY, S.E. University of California
PATEL, S.K. SD50
LEVAN, A. University of Leicester
BLANDFORD, R. Kavli Inst. for Particle Astrophysics and Cosmology
RAMIREZ-RUIZ, E. Institute for Advanced Study
WIJERS, R.A.M.J. University of Amsterdam
WEISSKOPF, M.C. SD50
TENNANT, A.F. SD50
ET AL.

KULPA, V. QS10

LAPEXTA, W.M. SD60
BRADSHAW, T. NWS Forecast Office
BURKS, J. NWS Forecast Office
DARDEN, C. NWS Forecast Office
DEMBEK, S. USRA

LEAHY, F.B. ED44

LEE, G.W. Washington University
GANGOPADHYAY, A.K. Washington University
KELTON, K.F. Washington University
HYERS, R.W. University of Massachusetts
RATHZ, T.J. UAH
ROGERS, J.R. SD50

LEE, J.A. ED33

LEE, J.A. ED33

LEE, J.K. UAH
NEWMAN, T.S. UAH
GARY, G.A. SD50

LEIMKUEHLER, T.O. Honeywell, Inc.
LUKENS, C. Honeywell, Inc.
REEVES, D.R. The Boeing Company
HOLT, J.M. ED25

LEIMKUEHLER, T.O. Honeywell, Inc.
LUKENS, C. Honeywell, Inc.
REEVES, D.R. The Boeing Company
HOLT, J.M. ED25
LI, C. UAB/SD46
LEHOCZKY, S.L. SD46
SU, C.-H. SD46
SCRIPA, R.N. UAB

LI, C. UAB
LEHOCZKY, S.L. SD46
SU, C.-H. SD46
SCRIPA, R.N. UAB
BAN, H. UAB
LIN, B. UAB

LI, C. UAB
LEHOCZKY, S.L. SD46
SU, C.-H. SD46
SCRIPA, R.N. UAB

LOVELACE, J. SD46
SOARES, A.S. SD46
BELLAMY, H. SD46
SWEET, R.M. SD46
SNELL, E.H. SD46

LITCHFORD, R.J. TD40

LI, C. SD46
SCIRPA, R.N. SD46
BAN, H. SD46
LIN, B. SD46
SU, C.-H. SD46
LEHOCZKY, S.L. SD46

Thermophysical Properties and Structural Transition of Hg0.8Cd0.2Te Melt—Abstract Only. For publication in the Journal of Non-Crystalline Solids, 2004.

MACLEOD, T.C. SD22
HO, F.D. UAH

MADDOX, W. UAH/CSPAR
SPANN, J.F. SD50
GERMANY, G. UAH/CSPAR

MAJUMDAR, A. ED25

MAKAL, A. SD46
HONG, Y.-S. SD46
POTTER, R. SD46
VETTAIKKORUMAKANKAUV, A.K. SUNY
KOROTCHKINA, L.G. SUNY
PATEL, M.S. SUNY
CISZAK, E.M. SD46

MALONE, R.W. QD01
MOSES, K. Futron Corporation

MANGUS, D. TD54
HEATON, A.F. TD54

MARKUSCIC, T.E. TD40

MARKUSCIC, T.E. TD40
JONES, J.E. TD40
COX, M.D. TD40

MARTIN, A. TD40
ESKRIDGE, R. TD40
FIMOGNARI, P. UAH
KOELFGEN, S.J. UAH
LEE, M. TD40

MARTIN, A. TD40
ESKRIDGE, R. TD40
FIMOGNARI, P. UAH
KOELFGEN, S.J. UAH
LEE, M. TD40

MARTIN, J.J. TD40
REID, R.S. TD40
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Symposium/Conference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALVAIL, P. Morgan Research Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARTIN, M.A. TD53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGUYEN, H.H. TD53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREENE, W.D. TD53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITCHELL, B. SD10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAZURUK, K. UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCCAUL, JR., E.W. SD60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COHEN, C. USRA/SD60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCNAMARA, H. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JONES, J. University of Western Ontario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAUFFMAN, B. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUGGS, R.M. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOKE, W.J. Morgan Research Corporation/ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, S. Morgan Research Corporation/ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEINHOLD, A. MP71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINAMITANI, E.F. BAE Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUSEY, M.L. SD46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINOW, J.I. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALSTATT, R.L. Jacobs Sverdrup/ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEERGAARD, L.F. Jacobs Sverdrup/ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCCOLLUM, M. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCCOLLUM, M. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINOW, J.I. ED44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCCOLLUM, M. ED44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

NALL, M.E. SD10

MONTGOMERY IV, E.E. TD05
JOHNSON, L. TD05

MOORE, R.L. SD50
FALCONER, D.A. UAH
PORTER, J.G. SD50
HATHAWAY, D.H. SD50
YAMAUCHI, Y. SD50

NALL, M.E. SD10
CASAS, J. SD10

MOORE, R.L. SD50
FALCONER, D.A. SD50
STERLING, A.C. SD50

NEERGAARD, L.F. Jacobs Sverdrup/ED44
DAVIS, V.A. SAIC
GARDNER, B. SAIC
MANDELL, M. SAIC
MINOW, J.I. ED44

MOORE, R.L. SD50
STERLING, A.C. SD50

NESTEROV, V.V. New Mexico Highlands University
ANTIPIN, M.Y. New Mexico Highlands University
NESTEROV, V.N. New Mexico Highlands University
MOORE, C.E. SD46
CARDELINO, B.H. Spellman College
TIMOFEEVA, T.V. New Mexico Highlands University

MOORE, R.L. SD50
YAMAUCHI, Y. NJIT

NETTLES, A.T. ED34

MORRIS, C.I. TD40

NEWMAN, T.S. UAH SANTHANAM, N. UAH ZHANG, H. UAH GALLAGHER, D.L. SD50

NEWTON, R.L. ED10 DAVIDSON, J.L. Vanderbilt University ICE, G.E. Oak Ridge National Laboratory LIU, W. Oak Ridge National Laboratory

NGUYEN, H.H. TD53 MARTIN, M.A. TD53

NICHOLS, K.F. FD41 SCHNEIDER, L. COLSA Corporation BEST, S. FD41

NIX, M. TD53
STATON, E.J. Jacobs Sverdrup

NIXON, C.A. University of Maryland
CONRATH, B.J. Cornell University
IRWIN, P.G.J. University of Oxford
FOUCHET, T. University of Oxford/Meudon
PARRISH, P.D. University of Oxford
ABBAS, M.M. SD50
LECLAIR, A. SD50
ROMANI, P.N. Goddard Space Flight Center

NUNES, JR., A.C. ED33

OELGOETZ, P. Boeing
JOHNSON, R. Boeing
TODD, D. Boeing
RUSSELL, S. ED32
WALKER, W. ED32

O’NEILL, D.A. FD02
MANKINS, J.C. NASA Headquarters

OVEREY, B.G. Raytheon
ROBERTS, B.C. ED44

PALOSZ, B. SD46
GIERLOTKA, S. SD46

PALOSZ, B. BAE Systems

NUNES, JR., A.C. ED33

POLETTO, G. SD50
SUESS, S.T. SD50
BEMPORAD, A. SD50
SCHWADRON, N. SD50
ELLIOTT, H.A. SD50
ZURBUCHEN, T. SD50
KO, Y. SD50

POPP, C.G. TD52
ROBINSON, P.J. Aerojet
VEITH, E.M. Aerojet

POTTER, R. SD46
HONG, Y.-S. SD46
CISZAK, E.M. SD46/UAH

PRESSON, K. FD24
TRICHILO, M. ALTEC

PRICE, M.W. Corning Inc.
SCRIPA, R.N. UAB
SZOFTRAN, F.R. SD46
MOTAKEF, S. CAPE Simulations
HANSON, B. Corning Inc.

Analysis of Radial Segregation in Directionally Solidified Hg0.89Mn0.11Te—Abstract Only. For publication in the Journal of Crystal Growth, 2003.

PUSEY, M.L. SD46

LIU, Z.-J. University of Georgia
TEMPEL, W. University of Georgia
PRAISSMAN, J. University of Georgia
LIN, D. University of Georgia
WANG, B.-C. University of Georgia
GAVIRA, J.A. UAH
NG, J.D. UAH

QUATTROCHI, D.A. SD60
LUVALL, J.C. SD60

QUINN, J.E. TD51

RAMACHANDRAN, N. BAE Systems/SD46
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE Systems/SD46
LESLIE, F.W. SD46

Magnetic Control of Convection During Protein Crystallization—Abstract Only. For presentation at the International Conference on Crystal Growth, Grenoble, France, August 9–13, 2004.

RAMACHANDRAN, N. BAE Systems/SD46
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE Systems/SD46
RAY, C.S. SD46
ROGERS, J.R. SD46

RAMSEY, B.D. SD50
The X-Ray Polarimetry Explorer (XPE)—Abstract Only.

RICHMOND, R.C. SD46

RICHMOND, R.C. SD46

RICKMAN, D. SD60
Precision Agriculture: Changing the Face of Farming—Abstract Only. For publication in Geotimes, November 2003.

RITCHIE, S.M.C. University of Alabama
LUO, Q. University of Alabama
CURTIS, S.S. University of Alabama
HOLLADAY, J.B. "FD24"
CLARK, D.W. "FD24"

ROBERTS, B.C. "ED44"

ROBERTS, B.C. "ED44"
KNUPP, K.R. UAH

ROBERTSON, B. "ED13"
WILKERSON, D. "ED13"

ROBERTSON, F.R. "SD60"
LU, H.-L. "USRA"

ROBERTSON, F.R. "SD60"
LU, H.-L. "SD60"

ROBERTSON, F.R. "SD60"
LU, H.-L. "SD60"

ROBERTSON, T. "TD40"
NORDLEY, G.D. Consultant

ROBINSON, R.K. "SD10"

RODRIEGUEZ, P.R. "ED20"

ROE, F.D. "ED19"
HOWARD, R.T. "ED19"
MURPHY, L. "ED19"

ROGERS, E. "QTEC Inc."
HALE, J.P. "VS30"
ZOOK, K. "QTEC Inc."
GOWDA, S. "AMA Inc."

ROGERS, J.H. "QS40"
SAFIE, F.M. "QS40"

Experimental Results for an Annular Aerospike With Differential Throttling—Presentation. For presentation at the 5th International Symposium on Liquid Space Propulsion, Chattanooga, TN, October 27, 2003.

Unlocking the Mystery of Columbia’s Tragic Accident Through Materials Characterization—Presentation. For presentation at the Mississippi State University Materials Working Group Seminar, Starkville, MS, October 15, 2003.

Synthesis of Sol-Gel Precursors for Ceramics From Lunar and Martian Soil Similars—Abstract Only. For presentation at the 55th Pacific Coast Regional and Basic Science Division Fall Meeting, Oakland, CA, October 19–22, 2003.

SIMS, W.H.
PEARSON, J.B.

SINGH, N.
KHAZANOV, G.V.

SINGH, N.
SAHA, S.
CRAVEN, P.D.
GALLAGHER, D.L.
JONES, J.

SINGHAL, S.N.

SKELLEY, S.E.

SMITH, D.D.

SMITH, D.D.

SMITH, D.D.

SMITH, D.D.
CHANG, H.
FULLER, K.A.

SMITHERMAN, JR., D.V.

SNELL, E.H.
VAN DER WOERD, M.J.
MILLER, M.D.
DEACON, A.M.

SOKOLSKAYA, N.V.
ADAMS, J.H.
AHN, H.S.
BASHINDZHAGYAN, G.L.
BATKOV, K.E.
CHANG, J.
CHRISTL, M.J.
FAZELY, A.R.
GANEL, O.
SOKOLSKAYA, N.V.
ADAMS, J.H.
AHN, H.S.
BASHINDZHAGYAN, G.L.
BATKOV, K.E.
CHANG, J.
CHRISTL, M.J.
FAZELY, A.R.
GANEL, O.

SORENSEN, K.
SPANN, J.F.

SPANN, J.F.
GERMANY, G.
MADDOX, W.

SPANN, J.F.
KHAZANOV, G.V.
MENDE, S.B.

STAHL, H.P.

STAHL, H.P.
FEINBERG, L.D.
RUSSELL, J.K.
TEXTER, S.
Northrop Grumman

STAHL, H.P.
LEISAWITZ, D.T.
BENFORD, D.J.

STAHL, H.P.
ROWELL, G.H.
Tennessee State University
STERLING, A.C. SD50

STERLING, A.C. SD50

STERLING, A.C. SD50

STERLING, A.C. SD50
MOORE, R.L. SD50

STORRIE-LOMBARDI, M.C. Kinohi Institute
HOOVER, R.B. SD50

SU, C.-H. SD46
LEHOCZKY, S.L. SD46
LI, C. UAB
KNUTESON, D. BAE Systems
RAGHOTHAMACHAR, B. SUNY
DUDLEY, M. SUNY
SZOKE, J. Admatis Ltd.
BARCZY, P. University of Miskolc
Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizer (UMC)—Abstract Only. For presentation at the 4th International Conference on Solidification and Gravity, Miskolc, Hungary, September 6–10, 2004.

SUESS, S.T. SD50

SUESS, T. S. SD50
BEMPORAD, A. SD50
POLETTO, G. SD50

SUESS, T. S. SD50
NERNEY, S. Ohio University

SUESS, R.J. SD60
JEDLOVEC, G.J. SD60
HAINES, S.L. UAH

SUGGS, R.M. ED44
How to Do Science in an Engineering Organization—Abstract Only. For presentation at the New Mexico State University, Las Cruces, NM, October 3, 2003.

SWARTZ, D.A. SD50
GHOSH, K.K. SD50
TENNANT, A.F. SD50
WU, K. SD50
SWIFT, W.R. ED44
SUGGS, R.M. ED44
COOKE, W.J. Morgan Research Corporation/ED44

SWINGLE, M.R. University of South Alabama
CISZAK, E.M. UAH/SD46
HONKANEN, E. University of South Alabama

TATARA, J.D Qualis Corporation
PERRY, J.L. FD21

TAYLOR, J. Austin Peay State University
RAKOCZY, J. SD71
STEINCAMP, J. SD71

TAYLOR, T.L. XP01

THORNTON, G. SD70

TINKER, M.L. ED20
STEINCAMP, J.W. ED20
STEWARD, E.T. ED20
PATTON, B.W. ED20
PANNELL, W.P. ED20
NEWBY, R.L. ED20
COFFMAN, M.E. ED20
MOLVIK, G. Arnold Engineering

TUCKER, K. TD64
WEST, J. TD64
WILLIAMS, R. TD64
LIN, J. TD64
ROCKER, M. TD64
CANABAL, F. TD64
ROBLES, B. TD64
GARCIA, R. TD64
CHENOWETH, J. CRAFT Tech

TUCKER, D.S. SD71
ETHRIDGE, E.C. SD71
SMITH, G.A. UAH

TUCKER, D.S. SD71
SMITH, G.A. UAH
The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses—Abstract Only. For publication in the Progress in Materials Science (Book Chapter), 2004.

TURNER, S. XP01

TURPIN, J.B. TD53

VALENTINE, P.G. MEYER, D. SNOW, H. ED34

VAN DER WOERD, M.J. SD46
DNA in a Tunnel: A Comfy Spot for Recognition—or The Structure of BsoBI complexed With DNA—What Can We Learn About Function Via Structure Determination and How Can This Be Applied to Bone or Muscle Biology?—Abstract Only. For presentation at an Invited Talk at Johnson Space Center, Houston, TX, March 26, 2004.

VAN DYKE, M.K. TD40

VAN DYKE, M.K. MARTIN, J.J. TD40

VAN PELT, M. HUNT, C.D. ESA-ESTEC TD31

VAUGHAN, W.W. ANDERSON, B.J. ED44

VAUGHN, J.A. CURTIS, L. GILCHRIST, B.E. BILEN, S. LORENZINI, E. ED31
University of Michigan Pennsylvania State University
Smithsonian Astrophysics

VANCE, J.A. SCHNEIDER, T.A. POLK, J. GOEBEL, D. OHLINGER, W. ED31
Jet Propulsion Laboratory Jet Propulsion Laboratory Consultant
Georgia Institute of Technology

VINE, F.J. MANKOWSKI, J.J. SAEKS, R.E. CHOW, A.S. TD40
Accurate Automation Accurate Automation Accurate Automation

VOLZ, M.P. SD46

WACHTER, S. SD50
KOUVELIOTOU, C. SD50
PATEL, S.K. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
EICHLER, D. SD50
LYUBARSKY, Y. SD50
BOUCHET, P. SD50

WANG, T.-S. TD64

WANG, T.-S. TD64

WATSON, M.D. ED12

WATSON, M.D. ED12
ASHLEY, P.R. U.S. Army AMRDEC

WEISSKOPF, M.C. SD50

Chandra Observations of Microquasars—Abstract Only. For presentation at the Fifth Microquasar Workshop, Beijing, China, June 7–13, 2004.

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50 DAVIS, J.M. SD50
ALDCROFT, T.L. SD50 GARY, G.A. SD50
CAMERON, R.A. SD50 NOBLE, M. SD50
GANDHI, P. SD50 The Marshall Space Flight Center Solar Ultraviolet Magneto
FOELLMI, C. SD50 graph—Abstract Only. For presentation at and publication
PATEL, S.K. SD50 WESTRA, D.G. ED25
O’DELL, S.L. SD50 HEINRICH, J.C. University of Arizona
 The First Chandra Field: The Identification of Leon POIRIER, D.R. University of Arizona
X-1—Abstract Only. For presentation at the 2004 Meeting Simulating the Effect of Space Vehicle Environments on
of the High Energy Astrophysics Division of the American Directional Solidification of a Binary Alloy—Abstract Only.
Astronomical Society, New Orleans, LA, September 8–11, For presentation at the 42nd AIAA Aerospace Sciences
2004.

WEISSKOPF, M.C. SD50 WHORTON, M.S. TD54
ALDCROFT, T.L. Smithsonian Astrophysics Closed Loop System Identification With Genetic Algorithms—Final Paper. For presentation at the AIAA GN&C
GANDHI, P. European Southern Observatory WHORTON, M.S. TD54
FOELLMI, C. European Southern Observatory Robust Control for the g-Limit Microgravity Vibration Isolation System—Final Paper. For publication in the Journal of
PATEL, S.K. USRA WILSON, C.A. SD50
O’DELL, S.L. SD50 The BATSE Earth Occultation Catalog—Abstract Only. WILSON, COE, M.J. Southampton
 For presentation at Beyond Einstein: From the Big Bang to WEISSKOPF, M.C. SD50
WU, K. University College London REIG, P. University of Crete
TENNANT, A.F. SD50 GRO J2058+42 Observations With Chandra and Detection WILSON, FINGER, M.H. SD50
of a Likely Optical Counterpart—Abstract Only. For WEISSKOPF, M.C. SD50
presentation at and publication in Proceedings of the Meeting GREINER, J.C. MPE
of the High Energy Astrophysics Division of the American WILSON, FINGER, M.H. SD50

WILSON, C.A. SD50 WHORTON, M.S. TD54
COE, M.J. Southampton Robust Control for the g-Limit Microgravity Vibration Isolation System—Final Paper. For publication in the Journal of
WEISSKOPF, M.C. SD50 WILSON, C.A. SD50
GRO J2058+42 Observations With Chandra and Detection TENNANT, A.F. SD50 The BATSE Earth Occultation Catalog—Abstract Only. WEISSKOPF, M.C. SD50
of a Likely Optical Counterpart—Abstract Only. For GREINER, J.C. MPE
presentation at and publication in Proceedings of the Meeting WILSON, FINGER, M.H. SD50
of the High Energy Astrophysics Division of the American GREINER, J.C. MPE

WINGARD, C.D. ED34 Background Studies for EXIST—Abstract Only. For pre-
CHARACTERIZATION OF SPACE SHUTTLE EXTERNAL TANK THERMAL PROTECTION SYSTEM (TPS) MATERIALS IN SUPPORT OF THE

WOODCOCK, G. Gray Research
BYERS, D. SAIC
ALEXANDER, L.A. TD05
KREBSBACH, A. TD05

WRIGHT, K.H. UAH
GARBE, G. TD05

XIONG-SKIBA, P. Austin Peay State University
HULGUIN, R. Austin Peay State University
ENGELHAUPT, D. UAH
RAMSEY, B.D. SD50

YAMAUCHI, Y. SD50/NRC
MOORE, R.L. SD50
SUESS, S.T. SD50
WANG, H. NJIT/BBSO

YAMAUCHI, Y. SD50
SUESS, S.T. SD50

ZATESPIN, V.I. Moscow State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State U.
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZELY, A.R. Southern University
GANEL, O. University of Maryland
ET AL.

The Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For publication in Nuclear Instruments and Methods, 2004.

ZENG, W. UAH
HORWITZ, J.L. UAH
CRAVEN, P.D. SD50
RICH, F.J. Air Force Research Laboratory
MOORE, T.E. Goddard Space Flight Center

ZIMMERMAN, F.R. ED33

INDEX

TECHNICAL MEMORANDUM

BAILEY, J.W. ... 1
BROWN, T.M. ... 3
CAMPBELL, J.W. .. 2, 3
CARRUTH, M.R. .. 2, 3
CATO, S.N. .. 2
CURRERI, P.A. .. 1
EDWARDS, D.L. .. 3
FAZAH, M. .. 1
FINCHUM, A. .. 3
FLACHBART, R.H. .. 1
FOWLER, B.A. .. 1
FREESTONE, T.M. ... 2
GAMWELL, W.R. .. 3
HAINES, S.L. .. 3
HASTINGS, L.J. .. 1, 3
HEDAYAT, A. .. 1, 3
HOUTS, M.G. .. 1
HOWARD, R.T. ... 3
HUFF, T.L. ... 1
HUSTON, D. ... 3
ILA, D. ... 3
JEDLOVEC, G.J. .. 3
JOHNSTON, N.A.S. .. 3
KAPERNICK, R.J. ... 2
LAK, T. ... 1
MALONE, T.W. .. 2
MARTIN, J.J. .. 1
MAXWELL, G. .. 3
MUNTELE, C. .. 3
MUNTELE, I. ... 3
MURPHY, K.L. ... 1
MURPHY, N.C. .. 3

NABORS, S. .. 3
NGUYEN, H. .. 1
ROBINSON, M.B. ... 1
RUSSELL, C.K. .. 2
SMALLEY, L. .. 3
STANLEY, D.C. ... 1
STEEVE, B.E. .. 2
SUGGS, R.J. .. 3
SUMMERS, F.G. .. 4
VAN DYKE, M.K. ... 1
WATSON, D.W. ... 3
ZIMMERMAN, R. .. 3

TECHNICAL PUBLICATION

ADAMA, R.B. .. 5
ADAMS, R.B. .. 5
ALEXANDER, R.A. .. 5
ANDERSON, B.J. .. 6
BONEMETTI, J. ... 5
CAMPBELL, A. ... 7
CHAPMAN, J.M. .. 5
DELAMERE, P. ... 6
FINCHER, S.S. ... 5
HATHAWAY, D.H. .. 5, 6
HOPKINS, R.C. ... 5
KABIN, K. .. 6
KALKSTEIN, M. .. 5
KHAZANOV, G.V. .. 6
KRIEG, J. ... 7
LINDE, T.J. .. 6
LITCHFORD, R.J. ... 5, 6
MARSHALL, P. ... 7

55
MCCAEB, R.C. .. 6
MESSENGER, S.R. ... 7
MORTIN, T.L. .. 7
PATTON, B.W. ... 5
PHILIPS, A.D. ... 5
POLSGROVE, T.T. ... 5
REEVES, M. .. 7
ROBERTS, F.E. ... 5
SCHMEICHEL, W. ... 7
STATHAM, G. .. 5
THIO, Y.C.F. ... 5
TITUS, J. ... 7
TURLINGER, T. ... 7
WALTERS, R.J. .. 7
WHITE, P.S. ... 5
WILSON, R.M. .. 5, 6

CONFERENCE PUBLICATIONS

CHRISTENSEN, C.B. ... 8
COOK, M.B. ... 8
CROSS STANLEY, D. .. 8
GEORGE, P. ... 8
HOWELL, J.T. .. 8
MANKINS, J.C. .. 8
MARZWELL, N. ... 8
MINOR, J.L. ... 8
MULLINS, C.A. ... 8
O’NEIL, D.A. ... 8

CONTRACTOR REPORTS

BLAND, J. .. 9
BRAUTIGAM, D.H. ... 9
DAVIS, V.A. .. 9
FREDEICKSON, A.R. ... 9

FREEMAN, L.M. ... 9
KARR, G. .. 9
MANDELL, M.J. .. 9
MCNULTY, P.J. ... 9
NASH-STEVenson, S.K. 9
THOMSEN, M.F. .. 9

MSFC ABSTRACTS, ARTICLES, PAPERS,
AND PRESENTATIONS CLEARED
FOR DISSEMINATION

ABBAS, M.M. ... 11, 23, 40
ABUSHAGUR, M. .. 23, 52
ACHTERBERG, R.K. .. 11, 23, 40
ADAMEK, D.H. .. 28, 46
ADAMS, C.W. .. 11
ADAMS, J.H. ... 11, 17, 40, 47, 54
ADAMS, M. ... 11
ADE, P. .. 23
ADKINS, W. ... 18, 52
ADRIAN, M.L. .. 11, 24
AFFLECK, D.L. ... 33
AGGARWAL, P.K. ... 12
AHI, H.S. ... 11, 17, 40, 47, 54
ALBARDO, T. .. 28
ALBYN, K. ... 11, 14, 15
ALDCROFT, T.L. .. 52, 53
ALEXANDER, L.A. ... 31, 54
ALHORN, D.C. ... 12
ALLEN, P.A. ... 12
ALRED, J. .. 11
ALSTATT, R.L. ... 37
ALTINO, K.M. .. 12
ALTSTATT, R. .. 52
ANDERSON, B.J. .. 51
ANILKUMAR, A.V. .. 12, 26
ANTIPIN, M.Y. ... 38
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLE, J.</td>
<td>26</td>
</tr>
<tr>
<td>ARAKERE, N.K.</td>
<td>12</td>
</tr>
<tr>
<td>ARMSTRONG, J.</td>
<td>16</td>
</tr>
<tr>
<td>ARZOUMANIAN, Z.</td>
<td>13</td>
</tr>
<tr>
<td>ASHCROFT, P.</td>
<td>25</td>
</tr>
<tr>
<td>ASHLEY, P.R.</td>
<td>32, 52</td>
</tr>
<tr>
<td>ASTAFIEVA, M.M.</td>
<td>12</td>
</tr>
<tr>
<td>AVANOVA, L.A.</td>
<td>12</td>
</tr>
<tr>
<td>BACHMANN, K.</td>
<td>16</td>
</tr>
<tr>
<td>BAGDIGIAN, B.</td>
<td>17</td>
</tr>
<tr>
<td>BAGGETT, R.M.</td>
<td>31</td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>14, 15, 25, 36</td>
</tr>
<tr>
<td>BALASUBRAMANIAN, S.</td>
<td>18, 22</td>
</tr>
<tr>
<td>BALLARD, R.</td>
<td>12</td>
</tr>
<tr>
<td>BAN, H.</td>
<td>12, 34, 35</td>
</tr>
<tr>
<td>BANCROFT, S.</td>
<td>50</td>
</tr>
<tr>
<td>BARBER, W.C.</td>
<td>41</td>
</tr>
<tr>
<td>BARCZY, P.</td>
<td>49</td>
</tr>
<tr>
<td>BARNES, R.J.</td>
<td>23</td>
</tr>
<tr>
<td>BARUCCI, A.</td>
<td>23</td>
</tr>
<tr>
<td>BASHINDZHAGYAN, G.L.</td>
<td>11, 17, 40, 47, 54</td>
</tr>
<tr>
<td>BASSLER, J.A.</td>
<td>19</td>
</tr>
<tr>
<td>BATKOV, K.E.</td>
<td>11, 17, 40, 47, 54</td>
</tr>
<tr>
<td>BAUTZ, M.</td>
<td>52</td>
</tr>
<tr>
<td>BEARD III, J.W.</td>
<td>16</td>
</tr>
<tr>
<td>BEAUMONT, B.</td>
<td>25</td>
</tr>
<tr>
<td>BECKER, W.</td>
<td>13</td>
</tr>
<tr>
<td>BEDARD, J.</td>
<td>17</td>
</tr>
<tr>
<td>BEECHER, E.A.</td>
<td>32</td>
</tr>
<tr>
<td>BEISSER, K.B.</td>
<td>23</td>
</tr>
<tr>
<td>BEJ, A.</td>
<td>41</td>
</tr>
<tr>
<td>BELCHER, J.A.</td>
<td>13</td>
</tr>
<tr>
<td>BELLAMY, H.</td>
<td>35</td>
</tr>
<tr>
<td>BEMPORAD, A.</td>
<td>42, 49</td>
</tr>
<tr>
<td>BENEFIELD, M.PJ.</td>
<td>13</td>
</tr>
<tr>
<td>BENFORD, A.</td>
<td>13</td>
</tr>
<tr>
<td>BENFORD, D.J.</td>
<td>48</td>
</tr>
<tr>
<td>BENGTSON, R.</td>
<td>18</td>
</tr>
<tr>
<td>BERNHARDSDOTTER, E.C.M.J.</td>
<td>13</td>
</tr>
<tr>
<td>BESHEARS, R.</td>
<td>45</td>
</tr>
<tr>
<td>BEST, S.</td>
<td>39</td>
</tr>
<tr>
<td>BEZARD, B.</td>
<td>23</td>
</tr>
<tr>
<td>BHARDWAJ, A.</td>
<td>13, 21</td>
</tr>
<tr>
<td>BHOWMICK, J.</td>
<td>12</td>
</tr>
<tr>
<td>BIAZAR, A.</td>
<td>39</td>
</tr>
<tr>
<td>BILEN, S.</td>
<td>51</td>
</tr>
<tr>
<td>BISHOP-BEHREL, K.</td>
<td>31</td>
</tr>
<tr>
<td>BJORAKER, G.</td>
<td>11</td>
</tr>
<tr>
<td>BJORAKER, G.L.</td>
<td>23</td>
</tr>
<tr>
<td>BLACKWELL, W.C.</td>
<td>14</td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>14, 15, 17, 25, 29, 36</td>
</tr>
<tr>
<td>BLANDFORD, R.</td>
<td>34</td>
</tr>
<tr>
<td>BLEVINS, J.A.</td>
<td>14</td>
</tr>
<tr>
<td>BLUME, J.L.</td>
<td>14</td>
</tr>
<tr>
<td>BOCCIO, D.</td>
<td>16</td>
</tr>
<tr>
<td>BOCCIPIPO, D.J.</td>
<td>14</td>
</tr>
<tr>
<td>BOEDER, P.</td>
<td>14</td>
</tr>
<tr>
<td>BONAMENTE, M.</td>
<td>14, 38</td>
</tr>
<tr>
<td>BONOMETTI, J.A.</td>
<td>31</td>
</tr>
<tr>
<td>BOOK, M.L.</td>
<td>29</td>
</tr>
<tr>
<td>BOOTE, R.</td>
<td>16</td>
</tr>
<tr>
<td>BORGSTAHN, G.</td>
<td>35</td>
</tr>
<tr>
<td>BORS, K.</td>
<td>20, 43</td>
</tr>
<tr>
<td>BOUCHET, P.</td>
<td>52</td>
</tr>
<tr>
<td>BOWDLE, D.A.</td>
<td>39</td>
</tr>
<tr>
<td>BRADFORD, R.N.</td>
<td>14, 15</td>
</tr>
<tr>
<td>BRADSHAW, R.C.</td>
<td>30</td>
</tr>
<tr>
<td>BRADSHAW, T.</td>
<td>31, 34</td>
</tr>
<tr>
<td>BRAGG-SITTON, S.M.</td>
<td>15</td>
</tr>
<tr>
<td>BRANDT, P.C.</td>
<td>35</td>
</tr>
<tr>
<td>BRANDUARDI-RAYMONT, G.</td>
<td>13, 15</td>
</tr>
<tr>
<td>BRASUNAS, J.C.</td>
<td>23</td>
</tr>
<tr>
<td>BREIZMAN, B.</td>
<td>18</td>
</tr>
<tr>
<td>BRIDGE, K.</td>
<td>28</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BRIGGS, M.S.</td>
<td>41</td>
</tr>
<tr>
<td>BRISCOE, J.M.</td>
<td>15, 19</td>
</tr>
<tr>
<td>BRODERICK, D.J.</td>
<td>15</td>
</tr>
<tr>
<td>BROOKMAN, S.</td>
<td>27</td>
</tr>
<tr>
<td>BROW, R.K.</td>
<td>43</td>
</tr>
<tr>
<td>BROWN, A.M.</td>
<td>15</td>
</tr>
<tr>
<td>BROWN, K.K.</td>
<td>41</td>
</tr>
<tr>
<td>BRUBAKER, N.</td>
<td>15</td>
</tr>
<tr>
<td>BRYAN, T.C.</td>
<td>29</td>
</tr>
<tr>
<td>BUECHLER, D.E.</td>
<td>14, 15, 25</td>
</tr>
<tr>
<td>BURKS, J.</td>
<td>31, 34</td>
</tr>
<tr>
<td>BURNS, H.</td>
<td>15</td>
</tr>
<tr>
<td>BURNS, L.</td>
<td>16</td>
</tr>
<tr>
<td>BURRIS, J.</td>
<td>39</td>
</tr>
<tr>
<td>BUTLER, C.</td>
<td>16</td>
</tr>
<tr>
<td>BYBERG, A.</td>
<td>48</td>
</tr>
<tr>
<td>BYERS, D.</td>
<td>54</td>
</tr>
<tr>
<td>CAI, D.S.</td>
<td>39</td>
</tr>
<tr>
<td>CAMERON, R.A.</td>
<td>14, 52, 53</td>
</tr>
<tr>
<td>CAMILO, F.</td>
<td>13</td>
</tr>
<tr>
<td>CAMPBELL, B.A.</td>
<td>24</td>
</tr>
<tr>
<td>CAMPBELL, J.</td>
<td>16</td>
</tr>
<tr>
<td>CAMPBELL, J.W.</td>
<td>16</td>
</tr>
<tr>
<td>CANABAL, F.</td>
<td>50</td>
</tr>
<tr>
<td>CANFIELD, S.</td>
<td>16</td>
</tr>
<tr>
<td>CANNING, F.X.</td>
<td>16</td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>38</td>
</tr>
<tr>
<td>CARDELINO, C.A.</td>
<td>16</td>
</tr>
<tr>
<td>CARDELINO, H.</td>
<td>16</td>
</tr>
<tr>
<td>CARLSTROM, J.E.</td>
<td>14</td>
</tr>
<tr>
<td>CARPENTER, P.K.</td>
<td>16, 24</td>
</tr>
<tr>
<td>CARRASQUILLO, R.L.</td>
<td>17</td>
</tr>
<tr>
<td>CARRIER, M.</td>
<td>17</td>
</tr>
<tr>
<td>CARRINGTON, C.K.</td>
<td>17</td>
</tr>
<tr>
<td>CARTER, L.</td>
<td>17</td>
</tr>
<tr>
<td>CARTER, R.</td>
<td>45</td>
</tr>
<tr>
<td>CASAS, J.</td>
<td>38</td>
</tr>
<tr>
<td>CASIANO, M.J.</td>
<td>17</td>
</tr>
<tr>
<td>CATALINA, A.V.</td>
<td>17</td>
</tr>
<tr>
<td>CECIL, D.J.</td>
<td>14, 17, 29</td>
</tr>
<tr>
<td>CHANDLER, M.O.</td>
<td>12, 19</td>
</tr>
<tr>
<td>CHANG, H.</td>
<td>17, 47</td>
</tr>
<tr>
<td>CHANG, J.</td>
<td>11, 17, 40, 47, 54</td>
</tr>
<tr>
<td>CHANG, S.-W.</td>
<td>13, 18</td>
</tr>
<tr>
<td>CHANG-DIAZ, F.</td>
<td>18</td>
</tr>
<tr>
<td>CHAVERS, G.</td>
<td>18</td>
</tr>
<tr>
<td>CHEN, F.</td>
<td>18, 52</td>
</tr>
<tr>
<td>CHENOWETH, J.</td>
<td>50</td>
</tr>
<tr>
<td>.Chernov, A.A.</td>
<td>18, 29</td>
</tr>
<tr>
<td>CHIANESE, S.</td>
<td>14</td>
</tr>
<tr>
<td>CHOU, S.-H.</td>
<td>18</td>
</tr>
<tr>
<td>CHOUHARY, D.P.</td>
<td>18, 27</td>
</tr>
<tr>
<td>CHOW, A.S.</td>
<td>51</td>
</tr>
<tr>
<td>CHRISTENSEN, D.L.</td>
<td>23</td>
</tr>
<tr>
<td>CHRISTIAN, H.</td>
<td>25</td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>15, 19</td>
</tr>
<tr>
<td>CHRISTL, M.J.</td>
<td>11, 17, 19, 41, 47, 54</td>
</tr>
<tr>
<td>CHU, Y.S.</td>
<td>29</td>
</tr>
<tr>
<td>CISSOM, R.D.</td>
<td>19</td>
</tr>
<tr>
<td>CISZAK, E.M.</td>
<td>19, 20, 21, 33, 36, 42, 50</td>
</tr>
<tr>
<td>CLANTON, S.E.</td>
<td>28</td>
</tr>
<tr>
<td>CLARK, D.W.</td>
<td>44</td>
</tr>
<tr>
<td>CLAYTON, L.</td>
<td>19</td>
</tr>
<tr>
<td>CLINTON, JR., R.G.</td>
<td>19</td>
</tr>
<tr>
<td>CLOUD, D.</td>
<td>17</td>
</tr>
<tr>
<td>COBB, S.D.</td>
<td>40, 51</td>
</tr>
<tr>
<td>COE, M.J.</td>
<td>53</td>
</tr>
<tr>
<td>COFFMAN, M.E.</td>
<td>50</td>
</tr>
<tr>
<td>COHEN, C.</td>
<td>37</td>
</tr>
<tr>
<td>COHEN, T.</td>
<td>28</td>
</tr>
<tr>
<td>COLA FRANCESCO, S.</td>
<td>38</td>
</tr>
<tr>
<td>COLE, J.</td>
<td>16</td>
</tr>
<tr>
<td>COMARAZAMY, D.E.</td>
<td>25</td>
</tr>
<tr>
<td>Name</td>
<td>Page Range(s)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ENGLISH, J.M.</td>
<td>23</td>
</tr>
<tr>
<td>ESKRIDGE, R.</td>
<td>33, 36</td>
</tr>
<tr>
<td>ESTES, H.</td>
<td>22</td>
</tr>
<tr>
<td>ETHRIDGE, E.C.</td>
<td>50</td>
</tr>
<tr>
<td>EVANS, S.W.</td>
<td>22, 48</td>
</tr>
<tr>
<td>EWING, A.</td>
<td>16</td>
</tr>
<tr>
<td>FALCONER, D.A.</td>
<td>11, 18, 22, 38</td>
</tr>
<tr>
<td>FARR, R.A.</td>
<td>23</td>
</tr>
<tr>
<td>FARRELL, W.M.</td>
<td>36</td>
</tr>
<tr>
<td>FARROW, J.L.</td>
<td>23</td>
</tr>
<tr>
<td>FAZELY, A.R.</td>
<td>11, 18, 41, 47, 54</td>
</tr>
<tr>
<td>FEINBERG, L.D.</td>
<td>48</td>
</tr>
<tr>
<td>FERGUSON, C.K.</td>
<td>23</td>
</tr>
<tr>
<td>FERGUSON, D.</td>
<td>46</td>
</tr>
<tr>
<td>FIETKIEWICZ, K.</td>
<td>40</td>
</tr>
<tr>
<td>FIMOGNARI, P.</td>
<td>33, 36</td>
</tr>
<tr>
<td>FINCHUM, C.</td>
<td>16</td>
</tr>
<tr>
<td>FINCKENOR, M.</td>
<td>14, 16, 33</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>24, 53</td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>23, 39, 53</td>
</tr>
<tr>
<td>FLANDRO, G.A.</td>
<td>23</td>
</tr>
<tr>
<td>FLASAR, F.M.</td>
<td>11, 23</td>
</tr>
<tr>
<td>FOELLM, C.</td>
<td>53</td>
</tr>
<tr>
<td>FOK, M.-C.</td>
<td>32</td>
</tr>
<tr>
<td>FORBES, J.C.</td>
<td>23</td>
</tr>
<tr>
<td>FORD, P.</td>
<td>21</td>
</tr>
<tr>
<td>FORK, R.</td>
<td>29</td>
</tr>
<tr>
<td>FORSBACKA, M.</td>
<td>15</td>
</tr>
<tr>
<td>FORSYTHE, E.L.</td>
<td>23, 25</td>
</tr>
<tr>
<td>FOUCHET, T.</td>
<td>40</td>
</tr>
<tr>
<td>FOX, N.J.</td>
<td>23</td>
</tr>
<tr>
<td>FULLER, K.A.</td>
<td>23, 39, 47</td>
</tr>
<tr>
<td>FUSS, T.</td>
<td>24</td>
</tr>
<tr>
<td>GALLAGHER, D.L.</td>
<td>11, 18, 19, 20, 24, 32, 35, 39, 47</td>
</tr>
<tr>
<td>GAMAYUNOV, K.V.</td>
<td>32</td>
</tr>
<tr>
<td>GANDHI, P.</td>
<td>53</td>
</tr>
<tr>
<td>GANEL, O.</td>
<td>11, 18, 41, 47, 54</td>
</tr>
<tr>
<td>GANGOPADHYAY, A.K.</td>
<td>30, 34</td>
</tr>
<tr>
<td>GARBE, G.</td>
<td>16, 24, 54</td>
</tr>
<tr>
<td>GARCIA, R.</td>
<td>24, 50</td>
</tr>
<tr>
<td>GARDNER, B.</td>
<td>38</td>
</tr>
<tr>
<td>GARRIOTT, O.K.</td>
<td>13</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>22, 24, 34, 53</td>
</tr>
<tr>
<td>GATLIN, P.N.</td>
<td>15, 24</td>
</tr>
<tr>
<td>GATTIS, C.B.</td>
<td>29</td>
</tr>
<tr>
<td>GAVIRA, J.A.</td>
<td>42</td>
</tr>
<tr>
<td>GAVIRA-GALLARDO, J.A.</td>
<td>46</td>
</tr>
<tr>
<td>GEPPERT, U.</td>
<td>33</td>
</tr>
<tr>
<td>GERMANY, G.</td>
<td>24, 36, 48</td>
</tr>
<tr>
<td>GEVEDEN, R.D.</td>
<td>24, 45</td>
</tr>
<tr>
<td>GHOSH, K.K.</td>
<td>49, 53</td>
</tr>
<tr>
<td>GIERASCH, P.J.</td>
<td>23</td>
</tr>
<tr>
<td>GIERLOTKA, S.</td>
<td>40</td>
</tr>
<tr>
<td>GILCHRIST, B.E.</td>
<td>51</td>
</tr>
<tr>
<td>GILL, L.</td>
<td>28</td>
</tr>
<tr>
<td>GILLANI, N.</td>
<td>39</td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>24</td>
</tr>
<tr>
<td>GLADSTONE, G.R.</td>
<td>13, 15, 21</td>
</tr>
<tr>
<td>GODFROY, T.J.</td>
<td>15</td>
</tr>
<tr>
<td>GOEBEL, D.</td>
<td>51</td>
</tr>
<tr>
<td>GOGUS, E.</td>
<td>24</td>
</tr>
<tr>
<td>GOLDBERG, R.</td>
<td>23</td>
</tr>
<tr>
<td>GOLDBERG, R.A.</td>
<td>36</td>
</tr>
<tr>
<td>GOLDMAN, A.</td>
<td>25</td>
</tr>
<tr>
<td>GONZALEZ, J.E.</td>
<td>25</td>
</tr>
<tr>
<td>GOODMAN, D.D.</td>
<td>25</td>
</tr>
<tr>
<td>GOODMAN, H.M.</td>
<td>25, 32</td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>12, 14, 15, 24, 25</td>
</tr>
<tr>
<td>GORTI, S.</td>
<td>23, 25</td>
</tr>
<tr>
<td>GOSTOWSKI, R.</td>
<td>14, 25, 26</td>
</tr>
<tr>
<td>GOU Dy, R.</td>
<td>45</td>
</tr>
<tr>
<td>GOWDA, S.</td>
<td>44</td>
</tr>
<tr>
<td>GRADY, C.A.</td>
<td>49</td>
</tr>
<tr>
<td>GRANOT, J.</td>
<td>43</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>HRBUD, I.</td>
<td>20</td>
</tr>
<tr>
<td>HU, Z.W.</td>
<td>29</td>
</tr>
<tr>
<td>HUANG, T.S.</td>
<td>18</td>
</tr>
<tr>
<td>HUBBS, W.S.</td>
<td>21, 28</td>
</tr>
<tr>
<td>HULCHER, A.B.</td>
<td>30</td>
</tr>
<tr>
<td>HULGUIN, R.</td>
<td>54</td>
</tr>
<tr>
<td>HUNG, C.-C.</td>
<td>24</td>
</tr>
<tr>
<td>HUNT, C.D.</td>
<td>51</td>
</tr>
<tr>
<td>HUTCHENS, C.</td>
<td>30</td>
</tr>
<tr>
<td>HYERS, R.W.</td>
<td>30, 34, 43</td>
</tr>
<tr>
<td>ICE, B.</td>
<td>16</td>
</tr>
<tr>
<td>ICE, G.E.</td>
<td>39</td>
</tr>
<tr>
<td>IRWIN, D.E.</td>
<td>30, 46</td>
</tr>
<tr>
<td>IRWIN, P.G.J.</td>
<td>40</td>
</tr>
<tr>
<td>ISKANDEROVA, Z.A.</td>
<td>32</td>
</tr>
<tr>
<td>JAAP, J.</td>
<td>30</td>
</tr>
<tr>
<td>JACOBSON, D.</td>
<td>30</td>
</tr>
<tr>
<td>JAHN, J.M.</td>
<td>35</td>
</tr>
<tr>
<td>JAMES, B.F.</td>
<td>31</td>
</tr>
<tr>
<td>JANSEN, H.</td>
<td>20</td>
</tr>
<tr>
<td>JEDLOVEC, G.J.</td>
<td>15, 17, 18, 25, 27, 30, 31, 49</td>
</tr>
<tr>
<td>JERMAN, G.</td>
<td>29, 46</td>
</tr>
<tr>
<td>JESSNER, A.</td>
<td>13</td>
</tr>
<tr>
<td>JOHNSON, D.L.</td>
<td>31</td>
</tr>
<tr>
<td>JOHNSON, L.</td>
<td>31, 38</td>
</tr>
<tr>
<td>JOHNSON, R.</td>
<td>40</td>
</tr>
<tr>
<td>JOHNSON, R.E.</td>
<td>22</td>
</tr>
<tr>
<td>JOHNSON, S.</td>
<td>39</td>
</tr>
<tr>
<td>JOHNSTON, A.S.</td>
<td>29</td>
</tr>
<tr>
<td>JONES, C.</td>
<td>11</td>
</tr>
<tr>
<td>JONES, J.</td>
<td>37</td>
</tr>
<tr>
<td>JONES, J.</td>
<td>47</td>
</tr>
<tr>
<td>JONES, J.E.</td>
<td>36</td>
</tr>
<tr>
<td>JONES, P.R.</td>
<td>31</td>
</tr>
<tr>
<td>JONES, R.E.</td>
<td>27</td>
</tr>
<tr>
<td>JONES, S.</td>
<td>25</td>
</tr>
<tr>
<td>JONES, W.</td>
<td>26</td>
</tr>
<tr>
<td>JONGEWARD, G.A.</td>
<td>46</td>
</tr>
<tr>
<td>JOY, M.K.</td>
<td>14</td>
</tr>
<tr>
<td>JUDGE, R.A.</td>
<td>31</td>
</tr>
<tr>
<td>JUSTUS, C.G.</td>
<td>31, 32</td>
</tr>
<tr>
<td>KAASTRA, J.</td>
<td>14</td>
</tr>
<tr>
<td>KAKAR, R.</td>
<td>29, 32</td>
</tr>
<tr>
<td>KALISZ, G.</td>
<td>40</td>
</tr>
<tr>
<td>KANBACH, G.</td>
<td>13</td>
</tr>
<tr>
<td>KAPER, L.</td>
<td>45</td>
</tr>
<tr>
<td>KAPERNICK, R.J.</td>
<td>15, 48</td>
</tr>
<tr>
<td>KARR, L.</td>
<td>28</td>
</tr>
<tr>
<td>KAUFFMAN, B.</td>
<td>32, 37</td>
</tr>
<tr>
<td>KELLER, V.W.</td>
<td>16, 31, 32</td>
</tr>
<tr>
<td>KELTON, K.F.</td>
<td>25, 30, 34, 43</td>
</tr>
<tr>
<td>KEPHART, R.</td>
<td>31</td>
</tr>
<tr>
<td>KERSLAKE, T.W.</td>
<td>46</td>
</tr>
<tr>
<td>KESTER, T.</td>
<td>26</td>
</tr>
<tr>
<td>KEYS, A.S.</td>
<td>32</td>
</tr>
<tr>
<td>KHAZANOV, G.V.</td>
<td>24, 32, 35, 47, 48</td>
</tr>
<tr>
<td>KIESSLING, E.</td>
<td>32</td>
</tr>
<tr>
<td>KIM, C.W.</td>
<td>43</td>
</tr>
<tr>
<td>KING, D.A.</td>
<td>45</td>
</tr>
<tr>
<td>KIRKPATRICK, C.</td>
<td>37</td>
</tr>
<tr>
<td>KISSEL, D.E.</td>
<td>18, 43, 52</td>
</tr>
<tr>
<td>KLEIMAN, J.I.</td>
<td>32</td>
</tr>
<tr>
<td>KLOSE, S.</td>
<td>26, 33</td>
</tr>
<tr>
<td>KNOX, J.C.</td>
<td>33</td>
</tr>
<tr>
<td>KNUDSEN, E.C.</td>
<td>12</td>
</tr>
<tr>
<td>KNUPP, K.R.</td>
<td>12, 39, 44</td>
</tr>
<tr>
<td>KNUTESON, D.</td>
<td>49</td>
</tr>
<tr>
<td>KO, Y.</td>
<td>42</td>
</tr>
<tr>
<td>KOBELL, W.</td>
<td>33</td>
</tr>
<tr>
<td>KOELFGEN, S.J.</td>
<td>33, 36</td>
</tr>
<tr>
<td>KOIDE, S.</td>
<td>39</td>
</tr>
<tr>
<td>KOLODZIEJCZAK, J.J.</td>
<td>33, 43</td>
</tr>
<tr>
<td>KONNERT, J.</td>
<td>25</td>
</tr>
<tr>
<td>KOONTZ, S.</td>
<td>14</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>KOROTCHKINA, L.G.</td>
<td>33, 36</td>
</tr>
<tr>
<td>KOS, L.D.</td>
<td>50</td>
</tr>
<tr>
<td>KOSHAK, W.</td>
<td>21, 25, 33</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>24, 26, 33, 34, 43, 45, 52</td>
</tr>
<tr>
<td>KOZYRA, J.U.</td>
<td>35</td>
</tr>
<tr>
<td>KRADER, P.</td>
<td>41</td>
</tr>
<tr>
<td>KREBSBACH, A.</td>
<td>54</td>
</tr>
<tr>
<td>KRIVORUTSKY, E.N.</td>
<td>32</td>
</tr>
<tr>
<td>KRUCKER, S.</td>
<td>18</td>
</tr>
<tr>
<td>KUDOH, T.</td>
<td>39</td>
</tr>
<tr>
<td>KULPA, V.</td>
<td>34</td>
</tr>
<tr>
<td>KUNDE, V.G.</td>
<td>11, 23</td>
</tr>
<tr>
<td>LA CASSE, K.</td>
<td>15</td>
</tr>
<tr>
<td>LAFONTAINE, F.J.</td>
<td>17, 27, 29</td>
</tr>
<tr>
<td>LAI, B.</td>
<td>29</td>
</tr>
<tr>
<td>LAM, S.-N.</td>
<td>22</td>
</tr>
<tr>
<td>LAPENTA, W.M.</td>
<td>17, 18, 25, 34</td>
</tr>
<tr>
<td>LAROQUE, S.</td>
<td>14</td>
</tr>
<tr>
<td>LEACH, R.</td>
<td>20</td>
</tr>
<tr>
<td>LEAHY, F.B.</td>
<td>34</td>
</tr>
<tr>
<td>LECLAIR, A.</td>
<td>11, 40</td>
</tr>
<tr>
<td>LEE, C.P.</td>
<td>26</td>
</tr>
<tr>
<td>LEE, G.W.</td>
<td>30, 34</td>
</tr>
<tr>
<td>LEE, J.A.</td>
<td>34</td>
</tr>
<tr>
<td>LEE, J.K.</td>
<td>11, 34</td>
</tr>
<tr>
<td>LEE, M.</td>
<td>33, 36</td>
</tr>
<tr>
<td>LEHNER, D.</td>
<td>26</td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>12, 35, 49</td>
</tr>
<tr>
<td>LEIMKUEHLER, T.O.</td>
<td>34</td>
</tr>
<tr>
<td>LEISAWITZ, D.T.</td>
<td>48</td>
</tr>
<tr>
<td>LEMAIRE, J.F.</td>
<td>20</td>
</tr>
<tr>
<td>LEMBEGE, B.</td>
<td>39</td>
</tr>
<tr>
<td>LENTZ, M.</td>
<td>28</td>
</tr>
<tr>
<td>LESHER, C.E.</td>
<td>24</td>
</tr>
<tr>
<td>LESLIE, F.W.</td>
<td>42</td>
</tr>
<tr>
<td>LEVAN, A.</td>
<td>34</td>
</tr>
<tr>
<td>LEWIS, J.</td>
<td>17</td>
</tr>
<tr>
<td>LI, C.</td>
<td>12, 34, 35, 49</td>
</tr>
<tr>
<td>LIEMOHN, M.W.</td>
<td>24, 32, 35</td>
</tr>
<tr>
<td>LIEU, R.</td>
<td>14</td>
</tr>
<tr>
<td>LIN, B.</td>
<td>12, 35</td>
</tr>
<tr>
<td>LIN, D.</td>
<td>42</td>
</tr>
<tr>
<td>LIN, J.</td>
<td>28, 50</td>
</tr>
<tr>
<td>LISOTTA, A.J.</td>
<td>14, 15</td>
</tr>
<tr>
<td>LITCHFORD, R.J.</td>
<td>35</td>
</tr>
<tr>
<td>LIU, W.</td>
<td>39</td>
</tr>
<tr>
<td>LIU, Z.-J.</td>
<td>42</td>
</tr>
<tr>
<td>LO, Y.</td>
<td>45</td>
</tr>
<tr>
<td>LOBL, E.</td>
<td>25</td>
</tr>
<tr>
<td>LONDON III, J.R.</td>
<td>23, 45</td>
</tr>
<tr>
<td>LORENZINI, E.</td>
<td>51</td>
</tr>
<tr>
<td>LORIMER, D.</td>
<td>13</td>
</tr>
<tr>
<td>LOVELACE, J.</td>
<td>35</td>
</tr>
<tr>
<td>LU, H.-L.</td>
<td>44</td>
</tr>
<tr>
<td>LUGAZ, N.</td>
<td>21</td>
</tr>
<tr>
<td>LUGINBUHL, C.B.</td>
<td>33</td>
</tr>
<tr>
<td>LUKENS, C.</td>
<td>34</td>
</tr>
<tr>
<td>LUO, Q.</td>
<td>44</td>
</tr>
<tr>
<td>LUVALL, J.C.</td>
<td>18, 25, 42, 43, 52</td>
</tr>
<tr>
<td>LUZ, P.</td>
<td>26</td>
</tr>
<tr>
<td>LYUBARSKY, Y.</td>
<td>52</td>
</tr>
<tr>
<td>MACHI, D.M.</td>
<td>17, 36</td>
</tr>
<tr>
<td>MACLEOD, T.C.</td>
<td>36</td>
</tr>
<tr>
<td>MADDOX, W.</td>
<td>36, 48</td>
</tr>
<tr>
<td>MAJDALENI, J.</td>
<td>23</td>
</tr>
<tr>
<td>MAJEED, T.</td>
<td>13</td>
</tr>
<tr>
<td>MAJEED, T.E.</td>
<td>21</td>
</tr>
<tr>
<td>MAJUMDAR, A.</td>
<td>36</td>
</tr>
<tr>
<td>MAKAL, A.</td>
<td>36</td>
</tr>
<tr>
<td>MALONE, C.C.</td>
<td>28</td>
</tr>
<tr>
<td>MALONE, R.W.</td>
<td>36</td>
</tr>
<tr>
<td>MANDELL, M.</td>
<td>38</td>
</tr>
<tr>
<td>MANGUS, D.</td>
<td>36</td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>29, 40</td>
</tr>
</tbody>
</table>
MANKOWSKI, J.J. .. 51
MARCU, B. .. 21
MARKS, F. .. 29
MARKUSIC, T.E. ... 36
MARKWARDT, C.B. 25
MARSHALL, H.L. .. 52
MARSHALL, S. ... 44
MARTIN, A. .. 36, 41
MARTIN, J.J. ... 36, 44, 51
MARTIN, M.A. ... 37, 39
MARZWELL, N.I. ... 19
MASETTI, N. ... 33
MASK, P. .. 43
MASON, R. .. 17
MASSON, A. ... 20
MATSON, D.M. ... 30
MAXWELL, T. ... 30
MAY, G. ... 37
MAYNE, A.W. ... 23
MAZURUK, K. ... 37
MAZZALI, P.A. .. 43
MCCALL, S.D. ... 16
MCCARTY, W. ... 18
MCCAUL, E. .. 25
MCCAUL, JR., E.W. 14, 15, 37
MCCLYMER, J.P. .. 46
MCCOLLUM, M. ... 37
MCDANIELS, D.M. 45
MCGHEE, D.S. ... 15
MCNAMARA, H. .. 37
MCNEAL, JR., C.I. 37
MCNIDER, R.T. .. 39
MECIKALSKI, J.R. 18
MEEGAN, C.A. ... 37, 41
MEHROTRA, A. .. 14
MEINHOLD, A. ... 37
MELCHER, C. ... 16
MENDE, S. .. 18
MENDE, S.B. ... 48
METZGER, A.E. .. 13
MEYER, D. .. 51
MEYER, P.J. .. 27
MIKATARIAN, R. .. 14
MIKELLIDES, I.G. 46
MILLER, J. .. 19
MILLER, M.D. ... 47
MILLER, T. .. 28
MINAMITANI, E.F. 37
MINOR, J. .. 32
MINOW, J.I. ... 14, 37, 38, 52
MITCHELL, B. ... 37
MITCHELL, D.W. .. 37
MOHAROS, J. .. 23
MOLVIK, G. .. 50
MONACO, L ... 37
MONTGOMERY, S.E. 31
MONTGOMERY IV, E.E. 24, 38
MOORE, C.E. ... 16, 38
MOORE, R.L. .. 18, 22, 24, 38, 49, 54
MOORE, T.E. ... 19, 23, 54
MORRIS, C.E.K. ... 19
MORRIS, C.I. ... 38
MOSE, D. ... 19
MOSES, K. .. 36
MOTAKEF, S. ... 40, 42
MULLOTH, L.M. ... 33
MULQUEEN, J.A. .. 27
MURPHY, L. .. 44
MURAY, S.S. ... 52
NALL, M.E. ... 38
NANDY, D. .. 27
NEERGAARD, L.F. 37, 38
NEHLS, M.K. ... 21
<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NELSON, JR., T.R.</td>
<td>32</td>
</tr>
<tr>
<td>NERNEY, S.</td>
<td>49</td>
</tr>
<tr>
<td>NESTEROV, V.N.</td>
<td>38</td>
</tr>
<tr>
<td>NESTEROV, V.V.</td>
<td>38</td>
</tr>
<tr>
<td>NETTLES, A.T.</td>
<td>38</td>
</tr>
<tr>
<td>NEVALAINEN, J.</td>
<td>38</td>
</tr>
<tr>
<td>NEWBY, R.L.</td>
<td>50</td>
</tr>
<tr>
<td>NEWWELL, P.T.</td>
<td>18</td>
</tr>
<tr>
<td>NEWMAN, T.S.</td>
<td>32, 34, 39</td>
</tr>
<tr>
<td>NEWTON, R.L.</td>
<td>39</td>
</tr>
<tr>
<td>NG, J.D.</td>
<td>13, 42</td>
</tr>
<tr>
<td>NGUYEN, H.H.</td>
<td>37, 39</td>
</tr>
<tr>
<td>NICHOLS, K.F.</td>
<td>39</td>
</tr>
<tr>
<td>NISHIKAWA, K.I.</td>
<td>39</td>
</tr>
<tr>
<td>NIX, M.</td>
<td>40</td>
</tr>
<tr>
<td>NIXON, C.A.</td>
<td>11, 23, 40</td>
</tr>
<tr>
<td>NOBLE, M.</td>
<td>53</td>
</tr>
<tr>
<td>NORDIN, G.P.</td>
<td>23</td>
</tr>
<tr>
<td>NORDLEY, G.D.</td>
<td>44</td>
</tr>
<tr>
<td>NUNES, JR., A.C.</td>
<td>40, 45, 46</td>
</tr>
<tr>
<td>O’CONNOR, E.</td>
<td>17</td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>14, 26, 43, 53</td>
</tr>
<tr>
<td>O’NEIL, D.A.</td>
<td>29, 40</td>
</tr>
<tr>
<td>O’NEILL, M.</td>
<td>29</td>
</tr>
<tr>
<td>OELGOETZ, P.</td>
<td>40</td>
</tr>
<tr>
<td>OGLESBY, R.</td>
<td>44</td>
</tr>
<tr>
<td>OHLINGER, W.</td>
<td>51</td>
</tr>
<tr>
<td>OOI, T.K.</td>
<td>22</td>
</tr>
<tr>
<td>OOSTERBROEK, T.</td>
<td>38</td>
</tr>
<tr>
<td>OSTGAARD, N.</td>
<td>13</td>
</tr>
<tr>
<td>OVERBEY, B.G.</td>
<td>40</td>
</tr>
<tr>
<td>OWEN, T.</td>
<td>11</td>
</tr>
<tr>
<td>PAKHOMOV, A.V.</td>
<td>28</td>
</tr>
<tr>
<td>PALAZZI, E.</td>
<td>26</td>
</tr>
<tr>
<td>PALOSZ, B.</td>
<td>40</td>
</tr>
<tr>
<td>PANDEY, A.B.</td>
<td>40</td>
</tr>
<tr>
<td>PANDEY, B.</td>
<td>40</td>
</tr>
<tr>
<td>PANDEY, W.P.</td>
<td>50</td>
</tr>
<tr>
<td>PANOV, A.D.</td>
<td>40</td>
</tr>
<tr>
<td>PARKER, J.H.</td>
<td>32</td>
</tr>
<tr>
<td>PARKINSON, D.A.</td>
<td>41</td>
</tr>
<tr>
<td>PARRISH, P.D.</td>
<td>40</td>
</tr>
<tr>
<td>PATEL, M.S.</td>
<td>33, 36</td>
</tr>
<tr>
<td>PATEL, S.K.</td>
<td>25, 34, 43, 52, 53</td>
</tr>
<tr>
<td>PATRICK, C.</td>
<td>53</td>
</tr>
<tr>
<td>PATRICK, M.C.</td>
<td>41</td>
</tr>
<tr>
<td>PATTON, B.W.</td>
<td>50</td>
</tr>
<tr>
<td>PEARSON, J.B.</td>
<td>47</td>
</tr>
<tr>
<td>PECK, J.</td>
<td>41</td>
</tr>
<tr>
<td>PEDDIESON, J.</td>
<td>16</td>
</tr>
<tr>
<td>PENDLETON, N.</td>
<td>53</td>
</tr>
<tr>
<td>PERRIN, D.J.</td>
<td>41</td>
</tr>
<tr>
<td>PERRY, J.L.</td>
<td>17, 45, 50</td>
</tr>
<tr>
<td>PESAVENTO, P.</td>
<td>16</td>
</tr>
<tr>
<td>PETERSEN, W.A.</td>
<td>14</td>
</tr>
<tr>
<td>PETERSON, T.</td>
<td>46</td>
</tr>
<tr>
<td>PETERSON, W.A.</td>
<td>14</td>
</tr>
<tr>
<td>PHANORD, D.</td>
<td>21</td>
</tr>
<tr>
<td>PHIPPS, C.</td>
<td>16</td>
</tr>
<tr>
<td>PICON, A.</td>
<td>25</td>
</tr>
<tr>
<td>PIKUTA, E.V.</td>
<td>20, 29, 41</td>
</tr>
<tr>
<td>PIVOVAROFF, M.J.</td>
<td>41</td>
</tr>
<tr>
<td>POIRIER, D.R.</td>
<td>53</td>
</tr>
<tr>
<td>POJOGA, S.</td>
<td>18</td>
</tr>
<tr>
<td>POLETTO, G.</td>
<td>41, 42, 49</td>
</tr>
<tr>
<td>POLITES, M.E.</td>
<td>20</td>
</tr>
<tr>
<td>POLK, J.</td>
<td>51</td>
</tr>
<tr>
<td>POPP, C.G.</td>
<td>42</td>
</tr>
<tr>
<td>PORTER, J.G.</td>
<td>38, 53</td>
</tr>
<tr>
<td>POTTER, R.</td>
<td>36, 42</td>
</tr>
<tr>
<td>POWERS, W.T.</td>
<td>41</td>
</tr>
<tr>
<td>PRAISSMAN, J.</td>
<td>42</td>
</tr>
<tr>
<td>PREECE, R.</td>
<td>39</td>
</tr>
</tbody>
</table>
STEEVE, B.E. .. 48
STEFANESCU, D.M. ... 17
STEINBERG, J.T. ... 54
STEINCAMP, J. ... 50, 53
STEINCAMP, J.W. .. 50
STEL’MAKH, S. .. 40
STELLINGWERF, R.F. .. 22, 48
STERLING, A.C. ... 18, 38, 49
STEWART, E.T. .. 50
STORRIE-LOMBARDI, M.C. ... 49
STOTT, J.E. ... 45
STROM, R. ... 45
SU, C.-H. ... 12, 35, 49
SUEMATSU, Y. ... 18
SUESS, S.T ... 20, 41, 42, 49, 54
SUGGS, R.J. .. 31, 49
SUGGS, R.M ... 19, 37, 49, 50
SULLIVAN, D. .. 43
SWANK, J.H. .. 25
SWANSON, G.R. .. 12
SWARTZ, D.A. .. 13, 22, 49, 53
SWEET, R.M. .. 35
SWIDERSKA-SRODA, A. ... 40
SWIFT, W.R. ... 50
SWINGLE, M.R. .. 50
SZOFRAN, F.R. .. 40, 42, 52
SZOKE, J. ... 49
TANG, J. ... 41
TANKOSIC, D. ... 11
TATARNA, J.D. .. 17, 50
TAYLOR, C. ... 41
TAYLOR, J. ... 50
TAYLOR, T.L. ... 50
TEMPEL, W. ... 42
TEMPLETON, G. .. 27
TENNANT, A.F. .. 13, 34, 49, 52, 53
TEXTER, S. ... 48
THIGPEN, W.W. .. 15
THOMAS, B.R. .. 29
THOMPSON, M.S. .. 28
THORNTON, G. .. 50
TILGHMAN, N. .. 27
TIMOFEEVA, T.V. .. 38
TINKER, M.L. ... 13, 50
TIPPETT, D.D. .. 32
TODD, D. ... 40
TORRES, I. ... 41
TREVINO, L.C. .. 20, 53
TRICHILO, M. ... 42
TROTIGNON, J.G. ... 20
TUCKER, D.S. ... 50
TUCKER, K. ... 50
TURNER, M.B. ... 50
TURNER, S. ... 51
TURPIN, J.B. ... 51
TYLER, T. ... 23
TYSON, R.W. ... 19
UDDIN, W. ... 18
VALENTINE, P.G. ... 51
VAN DEN HEUVEL, E.P.J. .. 45
VAN DER HORST, A.J. .. 45
VAN DER KLIS, M. ... 25
VAN DER WOERD, M.J. .. 31, 47, 51
VAN DYKE, M.K. ... 51
VAN PELT, M. .. 51
VAN SANT, J.T. .. 24
VAUGHAN, W.W. ... 31, 51
VAUGHN, J.A. .. 51
VEITH, E.M. .. 42
VEKILOV, P.G. .. 18
VETTAIKKORUMAKANKAUV, A.K. 36
VICKERS-RICH, P. .. 12
VINE, F.J. ... 51
VIRANI, S.N. .. 14
<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>FY 2004 Scientific and Technical Reports, Articles, Papers, and Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. AUTHORS</td>
<td>B.A. Fowler, Compiler</td>
</tr>
</tbody>
</table>
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812 |
| 8. PERFORMING ORGANIZATION REPORT NUMBER | M–1162 |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | National Aeronautics and Space Administration
Washington, DC 20546–0001 |
| 10. SPONSORING/MONITORING AGENCY REPORT NUMBER | NASA/TM—2006–214379 |
| 11. SUPPLEMENTARY NOTES | Prepared by the Marshall IT Services Office, Office of Chief Information Officer |
| 12a. DISTRIBUTION/AVAILABILITY STATEMENT | Unclassified-Unlimited
Subject Category 99
Availability: NASA CASI 301–621–0390 |
| 12b. DISTRIBUTION CODE | |
| 13. ABSTRACT (Maximum 200 words) | This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2004. It also includes papers of MSFC contractors.
After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.
The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available. |
| 14. SUBJECT TERMS | Scientific and Technical Reports, Articles, Papers, Presentations |
| 15. NUMBER OF PAGES | 76 |
| 16. PRICE CODE | |
| 17. SECURITY CLASSIFICATION OF REPORT | Unclassified |
| 18. SECURITY CLASSIFICATION OF THIS PAGE | Unclassified |
| 19. SECURITY CLASSIFICATION OF ABSTRACT | Unclassified |
| 20. LIMITATION OF ABSTRACT | Unlimited |
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390