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NOMENCLATURE

A = first end-body
B = second end-body
C = center of mass of the tether system
E = longitudinal stiffness of the tether
Jo = moment of inertia of the tether system
L = total tether length
L =length of the k-th segment of the tether
m 4 = mass of the first end-body
mp = mass of the second end-body
my = embedded mass &
R = geocentric radius
Ry = mean radius of the Earth
R¢ = geocentric radius of the center of mass
s = arclength along the unstretched tether
T = tether tension
t = time
~ = tether elongation
p = tether mass per unit length
A = longitude
T = unit vector along the tether line
T, = direction of the imaginary straight tether line
{2 = rotational angular rate
(") = differentiation with respect to time

(") = differentiation with respect to the arclength



1. FORMULATION OF THE PROBLEM

In this study, we consider the dynamics of a spinning tether system in an
elliptical orbit in application to the Momentum Exchange Electrodynamic Reboost
system. Momentum exchange tether systems have been studied in a variety of ap-
plications since Hans Moravec’s early publication [1]. It has recently been suggested
that momentum exchange systems can be enhanced with electrodynamic reboost
between payload transfers [2-4].

The Momentum Exchange Electrodynamic Reboost system (MXER) has a
projected tether span of up to 100 km, and spins rapidly with a period of 6-7 min.
It is placed in an orbit with a low perigee of about 400 km and a high apogee of
about 8000 km. To capture a payload at a perigee rendezvous, within a window of a
few seconds, the motion of the system has to be predicted with very high precision,
having acceptable position errors on the order of 1 m.

While this level of precision is routinely achieved today for conventional (non-
tethered) satellites, it is much more difficult to achieve for a 100 km long flexible
tether system. It is the goal of this study to investigate theoretical aspects of the
dynamics and offer a practical approach to high precision dynamic modeling of a
typical momentum exchange tether system.

2. DYNAMIC MODEL AND EQUATIONS OF MOTION

For the purposes of this study, we will assume that the momentum exchange
system consists of two end-bodies 4 and B, modeled as point masses m 4 and msp,
respectively, and a number of embedded masses my, k = 1,..., K, connected with
tether segments of lengths Ly, as shown in Fig. 1. Mass m 4 can be counted as m,,
and mass mp as mg1. Segment Ly connects masses my and my1.

L, L, Ly

Mma m, m, my My Mg

Fig. 1. Structure of the momentum exchange tether system.
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All point masses and the masses of the tether segments are assumed to be
constant. Tether mass per unit length can vary along the tether.

Positions of the tether elements with respect to a non-rotating geocentric
reference frame OXY Z are defined by the geocentric radius R as a function of the
arclength s measured along the unstreched tether from A4 to B, and time t,

R = R(s,1),
Positions of the end masses and embedded masses are

R, =R(ss,t), Rp=R(sst), Ry=R(ss,0).

Rp

Ra
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Fig. 2. Positions of the tether sy

The tension vector of a perfectly flexible tether is tangent to the tether line

T

where prime denotes differentiation with respect to the arclength s, and v is the
local tether elongation.

The tether tension can be expressed as a function of the elongation v, elon-
gation rate 7, temperature @, and other factors, such as creep history,

T=T(s1t77 0,...). (2)



Equations of motion of the tether system constitute a mix of ordinary and
partial differential equations [5]. The motion of the end masses and embedded
masses is described by the ordinary differential equations

mAf{A =Ts +maga+Fy
mp RB =-Tg +mpgp+Fs (3)
mi Ry =Ty — Tioe +megr + Fy

where dots denote differentiation with respect to time, g4, gz, and gj are the
gravity accelerations at points A, B, and k, respectively, F4, Fp, and F, are non-
gravitational forces acting on the end masses and embedded masses. The tether
tension vectors are taken at the following points: T, at point A, Ty at point B,
Ty at point k of segment L1, and Ty at point k of segment Ly.

The motion of the tether is described by the partial differential equation
pPR=T' +pg+F (4)

where dots denote differentiation with respect to time ¢, and primes denote differ-
entiation with respect to the arclength s, p is the tether mass per unit length, and
T is the tether tension.

3. GRAVITATIONAL FIELD MODEL

The gravitational field is a sum of the gravitational field of the Earth and
other celestial bodies, primarily, the Moon and the Sun.

The geopotential U is usually represented as
U= ERFi T;) mX::O (%) (Crm cosmA + Sy sinmA) Py (cos a), (5)

where pp is the gravitational constant of the Earth, Ry is the equatorial radius of
the Earth, R is the geocentric radius, A is the geographical longitude eastward from
Greenwich, « is the geocentric colatitude (the angle between the rotation axis of
the Earth and the geocentric radius of a point, & = 0 at the North Pole), P,,, are
normalized Legendre functions,

Py (cos o) = 5, P (cos a),
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»," 1s a norm,
x =1/2n 11, with m =0,

m 2(2n +1)(n — m)!
no (n +m)!

, with  m > 0,

and PT* are associated Legendre functions of degree n and order m,

m m/a AT 1 dn
PP() = (1— )™ Py (a), Pol2) = 5 (e?

dzm™ "

- 1)n,
P) =1,
Pl(cos a) = cos a,
Pl(cosa) =sina,
1 1
P)(cos o) = 2(3 cos2a +1) = 5(3cosza - 1),
3
P)(cosa) = 5 sin 2a = 3sin a cos a,
3
P}(cosa) = 5(1 — cos2a) = 3sin’a,
1 1
P)(cos a) = §(5 cosJa + Jcos ) = 5(5 cos® a — 3 cos a),

3
P} (cosa) = -8—(sina + 5sin3a) = —2—sin a(5cos’a — 1),

15
P(cosa) = —(cos a — cos 3a) = 15sin’a cos a,

4
15

P}(cosa) = 2(3 sin @ — sin 3a) = 15sin® o,

The components of the gravitational acceleration g = VU are

Lw w1 w
9r = OR’ o = R 0o’ Ir = Rsina )’

where gg is pointing along the geocentric radius, g, is pointing southward along
the meridian, and g, is pointing eastward along the parallel. In the geocentric axes

0XYZ,
9z = (gr cos¢@ + go sinp) cos A — gy sin A

gy = (gr cosp + gq sing) sin A + gy cos A
9= = gr Singp — go COSQ
where ¢ = /2 — « is the latitude.



To properly evaluate convergence, we should use a geopotential model of the

maximum available degree and order. An obvious choice is the Earth Gravity Model
EGMY96 [6], of degree and order 360.

According to this model, uy = 398600.4415 km?/sec?, Ry = 6378.1363 km,

and the normalized coefficients Crm and Snm are as follows:

C’o,o =1, 5—'0,0 — not used

0—'1,0 =0, .5_'1,0 — not used

Ci11 =0, S11=0,

Cao = —0.484165371736 - 1073, S20 — not used

Ca,1 = —0.186987635955 - 102, S2,1 = 0.119528012031 - 107,

Ca,2 = 0.243914352398 - 10~°, S2,2 = —0.140016683654 - 10~
Cs,0 = 0957254173792 - 107, S3,0 — not used

Cs,1 = 0.202998882184 - 1075, S3,1 = 0.248513158716 - 107,

Cs,2 = 0.904627768605 - 107, S3,2 = —0.619025944205 - 109,
Cs,3 = 0.721072657057 - 10~°, Ss,3 = 0.141435626958 - 10~°,
Cs60,350 = 0.183971631467 - 10710 S360,350 = —0.310123632209 - 1072°,
Css0,360 = —0.447516389678 - 10~ 2%, Ss60,360 = —0.830224945525 . 1019

Gravitational perturbations caused by the Earth tides can be described by
time dependent variations in the geopotential expansion coefficients [7].

Gravitational perturbations caused by a celestial body of mass M, located at
R, with respect to the geocentric axes OXY Z are described as

R,-R Rp>’ (6)

gy = G, (!Rp "R R

where G is the universal gravity constant, and R, = |R,|.
For most practical purposes and for all celestial bodies, except the Moon, the
linear approximation

GM,
gp = R3

[3ey(ep, R) — R, (7)

where e, = R, /R, is a unit vector of the direction to the celestial body, should be
adequate [7].
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4. STATIONARY ROTATION

If we disregard non-gravitational forces F in equations (3)-(4) and assume
that the tether is inextensible (v = |R'| = 1) and gravitational acceleration does
not vary along the tether (g = gc¢), then equations (3)—(4) will have a stationary
solution

T = T(s)1(t), R = Rc(t) + (s — s¢) T(t), (8)
where Ro(t) and 1(t) are determined from
Re = go, T=-071. (9)

Here, R is the radius-vector of the center of mass, moving as a point mass, g¢ is
the gravity acceleration at the center of mass, T is a unit vector along the tether line
rotating at a constant angular velocity Q in a fixed plane normal to Q, 2 = |Q],
sc 1s the arclength corresponding to the center of mass

1

B
S¢ = 7 (mASA + mpsp + zk:mkslc +/A psds), (10)

and M is the total mass of the tether system.

In the stationary motion (8)—(9), we have
R=Rc+(s—sc)T=gc— (s —sc) 22T

After substitutin
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(11)

TB = mBQZ(sB — Sc),

Tt = Th— — mkgz(sk —8¢),

where the last equation defines tension increments associated with the embedded
masses mp.

The equilibrium tension is obtained by solving the first equation of (11) with
the initial condition 7" = T4 given by the second equation and incrementing the
tension at the points si, as described by the last equation of (11). The boundary



condition T' = T} given by third equation is always satisfied because of the definition
of the value s¢ (10) and the structure of equations (11).

In general, the equilibrium tension increases from the value T, at the end A
to its maximum value T¢ at the center of mass C, and then drops to the value T}
at the other end, as shown in Fig. 3.

To minimize mass, the tether should be tapered, with the linear density vary-
ing along the tether, p = p(s). Ideally, the tether should be equally stressed /strained
at all points,

T

where E is the longitudinal tether stiffness, and §, is the maximum allowed strain.
Condition (12) can be rewritten as

2, (13)

T = pv> 6., UE:\

y ¢

where v is the longitudinal wave velocity in the tether. Now, we can express the
linear density as a function of tension, p = Tv;% 6!, and substitute this relation
into the first equation of the boundary problem (11) to produce a boundary problem
for an ideal equally stressed/strained tether.

T (kN

60

40
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/
/
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Fig. 3. Tension profile of a tether system with (a) and without (b) payload.
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In practice, the tether can be made of a number of uniform segments, approx-
imating the desired taper profile.

Typical tension profiles are shown in Fig. 3 for a 90 km tether system with
my4 = 250 kg, mp = 11000 kg, and 8 embedded masses m;, = 200 kg placed 10 km
apart. The tethers are made of Zylon and are uniform on each segment with a
maximum strain of §, = 0.01. The system spins at {2 = 0.8 deg/sec. In case (a),
the end mass A carries a 2500 kg payload, and there is no payload in case (b).

5. SMALL OSCILLATIONS AND EIGENFORMS

To study small oscillations of the tether system about the stationary rotation,
we introduce a rotating reference frame C¢n(, with the origin at the center of mass,
axis C'¢ aligned with the tether line, and axis C¢ aligned with the angular rate vector
Q, so that

T=(1,0,0), Q =(0,0, £2).

With respect to the rotating axes C¢n(, the stationary motion (8)—(9) is viewed as
a relative equilibrium.
Equations of small oscillations of the tether system about the relative equi-

librium are derived from (3)-(4),

p D(ér) = &§T',

m 4 D((SI'A) = 6TA,

mpg D((SI'B) = _6TB7

mE D(5I‘k) = 5T}C+ - 5Tk._,

(14)

where ér and 6T are deviations from the relative equilibrium, and D denotes the
linear expression

D(6t) = 6% +2Q x 8 + Q x (Q x ér),

in which derivatives are calculated with respect to the rotating axes Cén(.

Small oscillations (14) have two independent components. One is normal to
the tether line in the plane of the stationary rotation,

ér = (0, n, 0), §T = (0, Tn', 0),
and the other one is normal to the rotation plane
ér = (0, 0, ¢), §T = (0,0, TC").

There is no longitudinal component in the linear approximation for an inextensible
tether.



Equations of small in-plane oscillations take the form

p(fi— 2%n) = (Tn'),

m4 (74— 2°14) = (Tn') 4,

mp (ﬁB - QZTIB) = —(Tﬂl)m

mi (7ik — 2°m) = (T )kt — (T )=

(15)

After substituting n = Up(s) cos(§2,t) into (15), we arrive at the following eigen-
value problem,

(TUL) = —p(27 + 2*)U
(TU’II’L)A —Ma (Q-,zl+02)UnA7
16
(TU,,,_L)B mpg (02 +02)Un3, ( )
(TUL)e+ = (TUp )k ~ ma (02, + 2°) Uni,
Small out-of-plane oscillations are described by
p{=(1¢,
maCa = (T¢)a,
AGa ( )A (17)

mp 513 - —(TC')B,
mi Gk = (T¢ s — (T )=

After substituting { = Uy,(s) cos({2,t) into (17), we derive the following eigenvalue
problem,

(TU,) = —p 2, Un,

(TU!)a = —ma 022 Una, a8)
(TU!)g = mp 22 Upp,

(TUL )kt = (TUR)k— — mue 825, Uni

The eigenvalue problems (16) and (18) are very similar. They have the same
eigenfunctions U,(s), and their eigenfrequencies are bound by a simple relation,

220 =002, + 0. (19)

Analyzing the boundary problem (11) for the equilibrium tension and the
eigenvalue problems (16), (18), we note that the eigenforms do not depend on the
angular rate 2. Indeed, we can introduce a normalized equilibrium tension

T(s)
02

P(s) = (20)

21
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and rewrite equations (11) as

PI:_p(s—'SC)a

By = —mA(SA = Sc),

21
Py = mB(SB = Sc), ( )
Pk+ = Pk_ - mk(sk — sc),

while equations (16) and (18) can be reduced to
PU,) = ‘Pﬂvzz Un,
PU:,,)A = ﬁmAﬂ:_ U‘n-A,
(22)

(

(

(PU,IL)B = mpg ﬁi UnB’

(PUp)k+ = (PU,)k— — m B2 U,

where 3, are dimensionless eigenvalues. The resulting system of equations (21)-
(22) and its solutions do not depend on the angular rate 2.

The eigenfrequencies §2,,, and £2,,¢ can be expressed through the dimensionless
eigenvalues 3, as

oy =+/B2-110, §p¢ = Ball. (23)
The eigenvalue problem (21)-(22) has two trivial solutions,
Bo =0, Up =1, (24)

and
B =1, Uy =s—sc. (25)

The first solution simply reduces the right and the left parts of (22) to zero, while
the second solution reduces (22) to (21). Dynamically, solution (24) corresponds to
perturbations of the motion of the center of mass, while solution (25) corresponds
to variations of the angular rate and direction of the axis of the stationary rotation.

The trivial solutions are followed by an infinite series of solutions {3,, U},

n =2,3,..., which constitute an orthogonal basis with the orthogonality condition
(Ui, Uj) =0, L # I (26)
where
B
(Ui, Uj) = mA(Uin)A + mB(Uin)B = ka(Uin)k +/ p(Uin)ds. (27)
k A



Un n=2
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Un n=3

~ ]
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Fig. 4. Lower eigenforms of a spinning tether system (n = 2, 3).

The orthogonality condition can also be expressed as
B
Irrt . .
/A PUU;ds =0, 1% 7. (28)

The norms of the eigenfunctions are defined as
Ul = (Un, Un). (29)

The norm of the first trivial eigenfunction (24) is equal to the total mass of
the tether system

B
||Uo||=M:mA+mB+ka+/ pds, (30)
k A

while the norm of the second trivial eigenfunction (25) is equal to the moment of
inertia about the center of mass,

10| =T =
? (31)

my(sa — sc)2 +mp(sp — 30)2 + ka (sk — sc)2 +/ p(s— sc)zds.
k A
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Fig. 5. Higher eigenforms of a spinning tether system (n = 8,9, 19).
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Also, the following relation for the eigenvalues can be derived from (22)

Some eigenforms are shown in Fig. 4-5 for the same parameters as in case (b)
of Fig. 3, namely, L = 90 km, m, = 250 kg, mp = 11000 kg, mi = 200 kg, k =
1,...,8, connected with 10 km long uniform tethers of the following masses: 318,
365, 406, 438, 461, 473, 475, 473, 460 kg. The corresponding nontrivial eigenvalues
(n=2,...,19) are given below

B, = 2.136, Bs = 10.497, Bia = 20.182,
Bs = 3.339, Bs = 11.355, Bis = 20.573,
Bs = 4.590, Bio = 12.414, Bie = 22.015,
Bs = 5.912, P11 = 15.549, Bir = 23.714,
Bs = 7.328, Bi2 = 18.020, Bis = 25.550,
B7 = 8.853, Bz = 19.320, Bro = 27.529.

Generally, the n-th form has n nodes. Note that while the lower modes (Fig. 4)
show smooth curves of average collective behavior, the higher modes (Fig. 5) exhibit
a more peculiar interplay between the tether and embedded mass dynamics.

6. DECOMPOSITION OF MOTION

Using eigenforms obtained from the solution of the boundary problem (21)
and the eigenvalue problem (22) for a simplified case of a stationary rotation, we can
represent solutions of the general equations (3)—(4) in the form of a series expansion

O

R(s,t) = Z qn(t) Un(s), (33)

n=0

where the term n = 0 (trivial form U, = 1) represents, in essence, the orbital motion
of the center of mass, qo = R¢(t), and the term n = 1 (trivial form U; = s — s¢)
describes a quasi-rigid rotation of an imaginary straight tether, q, = 7,(¢), where
T, is pointing, along the imaginary straight tether line, sa that.

R(s,1) = Ro(t) + (s = sc) (1) + 3 au(t) Un(s). (34)
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The higher order terms n > 2 represent tether oscillations about the imaginary
straight line drawn through the center of mass C' along vector T,. Kinematically,
they do not contribute to the displacement of the center of mass and the quasi-rigid
rotation because of the orthogonality conditions (26).

Note that the term with T, also describes a uniform elongation of the tether
system. If we disregard the higher order terms n > 2, then the tether elongation
7 = |R'| = |7;| = 71 will be the same for all tether elements.

Expression (33) yields similar kinematic and dynamic relations,

R(s,) =3 au®Unls)  Ris,t)= Y au(0)Un(s),  (35)

or in terms of (34),

F(&ﬂ:=Rcﬁ)+(s—8c)h(04-}:qﬂU)Uﬁ@%
2 (36)
R(s,t) = Re(t) + (s — so) %1 (t) + D dn(t) Un(s),

where the derivatives are calculated with respect to the non-rotating geocentric

frame OXY Z.

We can now substitute the second equation of (35) into the general equations
(3)-(4), multiply by U,, n = 0,1,2,..., and sum over all tether elements and point
masses. Applying the orthogonality conditions (26), we find that

(Qn + Gy + @,), n=01,2,..., (37)

&= 7]

where Q,, is reduced to an integral of tension,

B
Qn = TaUpa — TgUpnp + Z(Tk—{— - Tk—) Unk +/ T,Un ds
k

! (38)
B
= —/ T U] ds,
A
G, is expressed through the inner product (27),
Grn = (g, Un)
? (39)
=mua(gUn)a + mp(gUn)s + ka(g Un)i +/ p(gUx)ds,
. A



and @, is a generalized sum of non-gravitational forces,

B
®p = Fuls + Folns + 3 Fi Uy + / FU, ds. (40)
k A

The system of ordinary differential equations (37) is equivalent to the original
system of mixed partial and ordinary differential equations (3)-(4), because it is
derived through the general transformation of variables (33) without any simplifying
assumptions.

Using notations (34), and taking into account that [|Us]| = M and Q, vanishes
because Uy = 0, the motion of the center of mass is described by

Rc = le_f (Go + @y). (41)

Taking into account that ||U, || = Jo and U! = 1, the quasi-rigid rotation and
uniform elongation are described by

.1 B
T = — (Q1 —f’“ G1 + (Dl), Q1 = — / T dS. (42)
Jc A

According to (34), the tangent to the tether line is defined as

R' =1, + a7, AT = Z q.U.. (43)
n=2

Assuming that |aT| < |1,], the elongation can be approximated as

7 =R = V|ul2+2(1,a1) + [a1]2 & 71 + (€1, aT) = 1 + qun U,, (44)
n=2

where
T1

"= 111’7 € = 77 Gen = (e17qn)' (45)

1
The tether tension depends not only on the elongation, but also on temper-
ature, internal friction, creep history, and other factors. The following expression

can be adopted within a certain range of conditions,
T =T+ E(y-7)+ D, (46)

where T, is a reference tension, FE is the tether longitudinal stiffness, D is the

damping coefficient,
Y« =Y +e(t —to) + (O — 0y), (47)
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%Yo is the elongation under the reference tension Tt at time ¢, and a reference tem-
perature O, ¢ is the creep rate, o is the thermal expansion coeflicient, and @ is the
current temperature of the tether element. Other terms can be added as needed.

Substituting (44) into (46), we derive

T:Tl‘f‘Z(EQen‘f‘D‘jen)U:w T1:T0+E(71_7*)+D71? (48)

n=2
and then calculate

z£+$ g[@—%) qen+Déen] Uy, (49)

=

st 1

Retaining only linear terms in gy, the integral of tension Q, can now be
represented as

B B 0
an—/ ZR'ULdsz*/ %(71+quU,Q>U,st
k=2

A7 A
B o 0]
_/ (Tlel-l—ch U,'c) U, ds,
A k=2

where €, = T, /7, is a unit vector along the imaginary straight tether line and

(50)

&

] T
Cpn = Eel‘]en + DelQen + 7_1 (Qn - elQen), Jen = (ela qn)' (51)
1

Expression (50) can be significantly simplified in the ideal case of a perfectly
tapered tether. Let us define the tether reference state To(s) as a stationary rotation
at an angular rate {2, free of external torques, as described in Section 4, with the
exception that the tether is now elastic. Let us assume that the tether is perfectly
tapered so that all tether elements have the same elongation 7, under the stationary
tension T; at a given temperature @,. Then, similarly to (11), the equilibrium
tension profile can be determined from the boundary problem

T' = —p (s — 50) Yo,

T, = —mA-Qz(SA - 50)’)’07

) (52)
Tg =mpg? (SB - Sc)’)’Oa
Ter =Ty — mkﬂz(sk — $¢) Yo,
and similarly to (20), the equilibrium tension can be expressed as
Ty(s) = 227, P(s), (53)



where P(s) is the solution of the boundary problem (21).

Within the linear elasticity region, the longitudinal stiffness of the tether can
be related to its tension as

= kg D2 P(s),  kg= - To - (54)
-

With a strain on the order of v, — 1 ~ 0.01, the coefficient kg ~ 100.

The internal damping coefficient is usually considered directly proportional to
the longitudinal stiffness and inversely proportional to the frequency of oscillations
{2,,, which gives

D(s,$2,) = ES:U =, Qg P(s), UVp = — (55)

where 7 is a loss factor, on the order of 0.1 for braided tethers.

After these substitutions, the first term under the integral in formula (50)
takes the form

Tie; = Qgp(s)[’yo + kg (1 — %)+ 1 e = Qozp(s)ul T1,

where 1
Uy = jy*[’)’o—f'kE(’)ﬁ —7«) + 14 411, (56)
1

and the expansion coefficients become
Cp = \QSP(S) [kE elQen + Vn elq.en + Uy (qn - elQen)} .

If we assume that v, defined by (47) does not vary along the tether, i.c., the
creep rate, thermal expansion coefficient, and the temperature are the same for all
tether elements, then we can apply the orthogonality condition (28) along with the
eigenvalue relation (32) to derive

Q =-J¢ 03 u; Ty, (57)
forn =1 and
Q. = _HUnHﬂTZLQ(? [kE €1Gen + Vn €1Gen + Uy (qn - elqen)] (58)

forn =2,3,...

Now, we can rewrite the equation of quasi-rigid rotation (42) as

- 1
T + .(202 ULty = j— (G1 + (I)]_), (59)

C
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and the equations of tether oscillations (37),n=2,3,..., as

(Gn + @,).  (60)

qn+/63u0§ [kEeIQen"*’Vnelq.en‘*'ul (qn —elqen)] = Trr
HYn |

7. GRAVITATIONAL FORCES

The gravitational terms in the equations of motion (41), (59) and (60) are de-
fined by (39). The variation of the main component of the gravitational acceleration
g along the tether can be represented in the linear approximation in displacement
from the center of mass as

peR peRe HtE

8= " ¥ RY +E[36R(3R,r)“r], (61)

where p15 is the gravity constant of the Earth, ex = R¢/Rc is a unit vector along
the geocentric radius of the center of mass R, and

2(s8) = (s = ) Ti(t) + 3 u(t) Un(s) (62)

is the position vector relative to the center of mass.

Substituting expressions (61)—(62) into (39), and applying the orthogonality
conditions (27) and the norm definition (29), we obtain

peRe
Go~ - M R
G, ~ J¢ ’u_f [3eR (er,T1) —Tl], (63)
Ry
GTL%”URH_;;_?' [3eR(eR,qn)——qn], ’n:2,3’_..,
c

where M is the total mass of the system (30), and J. is the moment of inertia of
an imaginary system with an unstretched straight tether about the center of mass
defined by (31).

Note that in the linear approximation, the higher modes of oscillations do
not affect the motion of the center of mass and the quasi-rigid rotation about the
center of mass, and there is no practical need to include higher order terms in q. as
long as typical amplitudes of tether oscillations in a momentum exchange system
are relatively small. However, to achieve the required precision, it is necessary to
include higher order terms in (s — s¢) T;.



The variation of the main (Newtonian) term of the gravitational acceleration
along the line (s — s¢)T; drawn through the center of mass is given by

g:_MER:_#E[Rc+(S—Sc)T1] ] €r +ce; (64)
R3 Re+(s—sc)m® RZ (1 —2ze + £2)3/2
where ( )
Tl 8§ — S¢ ")’1
r = —(egp,e,), e, = — €= -——>1
( R 1) 1 71’ RC

As known in the theory of Legendre functions,

1 s .
(1—2ze +e2)1/2 2 Pale)er,
n=0

where P,(z) are Legendre polynomials. Differentiating this equation with respect
to = and dividing by ¢, we find that

]' C 1 n
(1 —2ze +2)3/2 2 Pra(@)er,
n=0

where P/ are the first derivatives of the Legendre polynomials.

After substituting this expression in (64), we obtain

s —sc)m

E= g L lenPate) te Pie)] | BB )

n=0

This series expansion converges rapidly because (s—sc)/Rc is typically small,
on the order of 0.01. To determine a minimum number of terms required for
practical computation, consider a simple inequality

L\" In (n/6)
— ] < 4, > —— L7 (66)
”(R) S Y0 ) o

where the left part estimates the contribution of the n-th term, L is the total tether
length, and 6 is a maximum acceptable relative error. Generally, all terms n > N,
where N is the minimum number satisfying (66), can be dropped. For a typical
momentum exchange system, it is sufficient to retain only 5 terms at the perigee,
and 4 terms at the apogee to achieve 10-digit precision (6 ~ 10719,

Expansion (65) can be also presented as

g:Zgg(s—sc)n, gg:—‘“ ) (67)

n=0
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where the derivatives with respect to s are calculated along the line (s — s¢)m
drawn through the center of mass. For the Newtonjan term, according to (65),

LE Y,
- R2+n [
C

er P y1(2) 4 e Pi(z)] (68)

g =

Note that expansion (67) can be treated more broadly to include all terms of
the standard representation of the Earth gravitational field, as well as the gravita-
tional fields of other celestial bodies.

Using (67), the generalized gravitational forces G (39) can be represented as
G, = Zgé I1];7 I: ={(s - sc)k’ Ur). (69)
k=0

Applying the orthogonality conditions (27), norm definition (29), and trivial
form properties (24)-(25), (30)—(31), we find that

=M, I;=0, IlI=Js, .. I'=1,

70
=0, IL=Jo, =L, .. I¥=I4., (70)

where I, are the high order moments,
B
In=mu(ss—sc)"+mp(sp—sc)" + ka (sk —sc)" +/ p(s—sc)"ds. (1)
A

We note also that
IO:I}L:O, n=23,... (72)

The practical benefit of using expansion (69) is that the quantities I* can be
precomputed to avoid integration of the gravitational force along the tether on each
step of solution propagation.

Another practical question is to estimate how many terms of the gravitational
field expansion (5) must be retained to achieve the required accuracy. The problem
is in the slow convergence of the series expansion at low altitudes when the ratio

Rgz/R is close to 1.
On average, according to the Kaula rule [7], the normalized geopotential co-
efficients Ch,,, and S,,.,, decrease in inverse proportion to the second power of their

degree,
- ~ 10—°

Onmasnm ~ 5 -

(73)
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Fig. 6. Minimum degree of the geopotential expansion for MXER.

Taking this empirical rule into account, the following inequality roughly esti-
mates the contribution of the higher degree terms to the acceleration of the center
of mass of a momentum exchange tether system,

—5 n 1 ‘15
() 56 o oz RRO1Y )

NG

n \{tc / ~ In (RC/RE

Numerical experiments show that a value of § ~ 10™? can be assumed for
MXER to achieve better than 1 m prediction accuracy over one orbit. The minimum
degree N that satisfies (74) is shown in Fig. 6 as a function of the geocentric radius
and flight time. We see that a lower degree model is adequate for the most part of
the orbit, but a model of a much higher degree is needed during perigee passages.
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8. SIMULATION APPROACH

Now, we can gather all equations, and apply formulas for the gravitational
forces derived in the previous section. The equation of motion of the center of mass
(41) takes the form

: 1 & o
Re=gc+ 37 D soly+ 47, (75)
k=2

the equation of the quasi-rigid rotation (59) can be rewritten as

1 & @
- 2 a1, 1 kok , P
T+ uT *go+JC ’;gcl—l + 7o (76)
and the equations of tether oscillation (37), n=2,3,..., can be reduced to

qn+ 13727,002 [kE €19en + Un €1 ¢en + Uy (qn - elQen)] =

=3 [3er(€er,qn) — qn| + k[,’f+ .
Ry Benlem ) =@l + iy > gl L+

As noted earlier, very few terms g& are needed to achieve the desired precision,
and quantities I¥ can be precomputed.

Equations (75)-(77) cleanly separate three dynamically different kinds of mo-
tions of the momentum exchange tether system. They are compact and flexible
in sense that the number of the gravitational terms and the number of the tether
oscillation modes can be selected depending on the desired accuracy. This opens a
way to building a very computationally effective simulator.

Preliminary testing for a typical momentum exchange system showed that
equations (75)-(77) can be integrated with a time step of about 4 seconds of orbital
time, and it takes only a few seconds on a standard issue PC to propagate a solution
over one orbit with 9-10 digit precision. More studies are needed to understand
possible limitations of this approach.
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