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ABSTRACT

A simple exponential-potential model of molecular collisions leads to a two-
parameter analytic expression for rates of collisionally induced vibrational-
translation (VT) energy exchange that has been shown to be accurate over
variations of orders of magnitude as a function of temperature in a variety of
systems. This includes excellent agreement with reported experimental and
theoretical results for the fundamental self-relaxation rate of molecular hydro-
gen H2(v = 1) + H2 → H2(v = 0) + H2. The analytic rate successfully fol-
lows the five-orders-of-magnitude change in experimental values for the tem-
perature range 50-2000 K. This approach is now applied to isotope effects in
the vibrational relaxation rates of excited HD and D2 in collision with H2:
HD(v = 1) + H2 → HD(v = 0) + H2 and D2(v = 1) + H2 → D2(v = 0) + H2. The
simplicity of the analytic expression for the thermal rate lends itself to conve-
nient application in modeling the evolving vibrational populations of molecular
hydrogen in shocked astrophysical environments.

1. VT transitions in shocked environments

In many astrophysical environments, shock fronts can significantly disturb the ther-
modynamic equilibrium between the kinetic and vibrational motion of quiescent molecular
species present (as in cold molecular clouds). Although kinetic energies can rise rapidly in
response to the shock, vibrational populations are slower to respond, producing non-LTE
situations. Molecular collisions drive the vibrational populations to become equilibrated
with thermal kinetic energy by inducing energy exchange between vibrational and trans-
lational (VT) forms. The VT rate will determine the evolution of relative populations of
vibrational levels in such disturbed environments where the vibrational and translational
temperatures are not equilibrated. This will affect an astrophysical systems spectroscopy,
energetics, reactions, and radiative signatures.
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The evolution of vibrational populations can be calculated if state-to-state rates for
vibrational-rotational transitions are available for the species desired. However, these are
often hard to come by. Yet, much modeling and analysis can be done by lumping all the
rotational states together by envisioning a spherically symmetric molecule whose radius
can vibrate (or breathe). By further assuming that the interaction of the target molecule
with the collider is exponential with collisional separation, Bieniek & Lipson (1996) showed
how a very simple expression for VT rates can be obtained by analytically summing over
collisional partial waves and evaluating the thermal average over collisional energies by the
method of steepest descent. The resulting mathematical expression has been shown to
be highly accurate in predicting VT rates for vibrationally excited N2, NO, and OH over
large temperature ranges and levels of activation with just two fitting parameters. The
astrophysically interesting molecule of H2 and its isotopes is actually the hardest test for
the breathing-sphere idea because of the large rotational spacing relative to the vibrational
energies. This paper presents numerical results for the fundamental vibrational quenching
v = 1 → 0 of H2, HD, and D2 in collision with H2. The predictions are in impressive
agreement with experimental results for molecular hydrogen from 50-2000 K.

2. Analytic VT Rate Constant

The underlying assumption of the collisional model is a breathing sphere comprised of
Morse oscillator states for the target molecular coordinate r perturbed by an exponential
interaction in the collision coordinate R. Morse oscillators are used to model the diatomic
because the vibrational eigenenrgies are Ev = ~ωe(v + 1

2
)[1 − χe(v + 1

2
)] nicely incorporate

the important anharmonicity χe into the calculation of the change in vibrational energy
∆Ev = Ev−Ev−1 that is transferred to translational motion. The perturbing collider will be
represented as a structureless particle of mass M here (although there are methods of allowing
for it to change vibrational state). Consequently, the potential operator is V (R, r) = hmo(r)+
Ae(−αR−γ∆r), where A is the strength of the perturbation interaction, α is the exponential
slope of the collisional perturbation, and γ is the transitional perturbation between the Morse
oscillator states in the molecular stretch ∆r. Because the perturbation is fundamentally
caused by the collider, we can relate the α and γ by a simple proportion involving the masses
(m1 and m2) of the two atoms in the target diatomic: γ = min(m1,m2)

m1+m2

α. The transitional

coupling between the Morse oscillator states U
v,v

′ =< v|e−γ∆r
|v′ > needed here can be

analytically evaluated with known properties of these oscillators. It turns out the strength
A cancels out in the expression for the rate, so its value need not be not be known. The
only other parameter besides α that is needed in the model is the characteristic collisional
radius Rc of the interaction, which should be on the order of molecular diameters. All other
needed quantities such as molecular masses and vibrational energy spacing can be readily
obtained from standard data tables.

The analytic expression for the VT rate constant has been derived elsewhere. Although
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it can be modified to incorporate the effects of multi-quantum transitions, we are only dealing
with the fundamental single-quantum quenching transitions v = 1→ v = 0 transition here.
For single-quantum transitions v → v−1, the analytic expression for the thermally averaged
rate constant (in units of length3/time) is:
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and Xv is the root of the equation
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where a = 0.85 and z(x) is the argument of the hypergeometric function 2F1:
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Although all this expression may seem daunting, it is actually very easy to use, once one
recognizes that 1) there are only two adjustable parameters: α and Rc; 2) the hypergeometric
function is straightforward to calculate using a standard series expansions 3) the hyperge-
ometric function is very nearly 1.0 for all reasonable values of its argument encountered in
molecular collisions (and can just be set to one); 4) the important equation for Xv has only
a single root and it can be found easily using any root-solving iterative process (even the
simple Newton-Raphson method).

3. Vibrational relaxation rates for molecular hydrogen and its isotopes

The vibrational relaxation rates for H2(v = 1→ 0) in collision with ground state H2 have
been experimentally measured by Audibert, Joffrin & Ducuing (1974) in the temperature
range T=50-400 K, and by Dove & Teitelbaum (1974) for T=1350-2000 K . This experimental
data was to determine the two parameters of the analytic rate constant, α and Rc. One first
adjust α until the rate shape of the k1→0 vs. T curve is found, and then Rc is simply
adjusted to agree with the absolute value of the rate. The values producing the best fit
are: α = 2.02bohr−1 = 38.2nm−1 and Rc = 5.4 bohr = 0.29 nm. These same values can
be used for the interaction of electronically identical HD and D2 in isotopic substitution.
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The resulting temperature dependence of quenching rates is shown in the Figure 1. Note
the excellent agreement with experimental results from 100-2000 K with this two-parameter
model.

Fig. 1.— Collisional rates for vibrational relaxation of isotopes of molecular hydrogen
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