
Humanoid Mobile Manipulation Using Controller
Refinement

Robert Platt, Robert Burridge, Myron Diftler,
Jodi Graf, Mike Goza, Eric Huber

Dexterous Robotics Laboratory
Johnson Space Center, NASA

{robert.platt-1,robert.r.burridge,myron.a.diftler,
jodi.s.graf,s.m.goza}@nasa.gov,eric@roboteyes.com

Oliver Brock
Robotics and Biology Laboratory
Department of Computer Science

University of Massachusetts, Amherst
oli@cs.umass.edu

Abstract— An important class of mobile manipulation prob-
lems are “move-to-grasp” problems where a mobile robot must
navigate to and pick up an object. One of the distinguishing
features of this class of tasks is its coarse-to-fine structure. Near
the beginning of the task, the robot can only sense the target
object coarsely or indirectly and make gross motion toward the
object. However, after the robot has located and approached
the object, the robot must finely control its grasping contacts
using precise visual and haptic feedback. This paper proposes
that move-to-grasp problems are naturally solved by a sequence
of controllers that iteratively refines what ultimately becomes
the final solution. This paper introduces the notion of a refining
sequence of controllers and characterizes this type of solution.
The approach is demonstrated in a move-to-grasp task where
Robonaut, the NASA/JSC dexterous humanoid, is mounted on a
mobile base and navigates to and picks up a geological sample
box. In a series of tests, it is shown that a refining sequence of
controllers decreases variance in robot configuration relative to
the sample box until a successful grasp has been achieved.

I. I NTRODUCTION

One of the most common requirements of future mobile
humanoid robots will be to locate, pick up, and retrieve
objects. Indeed, NASA foresees this as one important way
that space humanoids will be able to assist astronauts on
future lunar and planetary missions. This paper focuses on a
class of mobile manipulation problems called “move-to-grasp”
problems where a mobile humanoid robot must navigate to and
pick up a target object.

A key reason why mobile humanoids are important is their
ability to survive harsh environments, and because they can
perform physically challenging tasks that require dexterity
such as habitat and outpost construction. Indeed, NASA ex-
pects robots to be essential to future manned missions to the
moon and Mars. By functioning as assistants to astronauts,
robots are expected to increase the effectiveness of human
extra-vehicular activities (EVAs). In addition, the possibility
exists that robots could set up outposts for astronauts before
they arrive as well as continuing to function after the crew
return to Earth. Humanoid robots are particularly well suited to
assist in manned missions because they are physically capable
of performing many tasks that astronauts currently perform [1].
However, it is still not clear how to control these robots so that

they are able to perform complex mobile manipulation tasks
autonomously.

In the literature, mobile manipulation is frequently equated
with solving force and/or motion control tasks with one or
more mobile manipulators. A mobile manipulator frequently
consists of one or two arms mounted on a mobile base.
Important previous work includes work in Khatib’s lab regard-
ing the augmented object model and virtual linkage model
for controlling object dynamics in operational space and
modeling internal forces, respectively [2]. These models were
effectively used to program hybrid force-position control tasks
that used a mobile manipulator to erase a whiteboard, carry
a basket, and sweep off a desk. Tanet al. demonstrated an
approach to kinematic optimization and hybrid position and
force control in the context of a cart pushing task using
a mobile manipulator attached to a non-holonomic mobile
base [3]. Several researchers have proposed ways of extending
or applying behavior-based techniques to mobile manipulators.
MacKenzie and Arkin adapted a behavior-based approach to
a drum sampling task where a mobile robot needed to locate
and approach a barrel and insert a probe into its bung hole [4].
This task was accomplished by executing a sequence of behav-
iors including detectdrum, moveto goal, detectbunghole,
takesample, transfer sample, etc. Petersson and Christensen
divided the mobile manipulation problem into a mobility
portion and a manipulation portion [5]. They proposed that the
mobility part is best solved using behavior-based approaches
while the manipulation part should be solved using a hybrid
dynamical system. Pimentelet al. proposed a behavior-based
architecture that can be applied to a cooperative carrying
task [6].

Instead of addressing mobile manipulation in general, this
paper specifically focuses on move-to-grasp problems where
a mobile manipulator must locate, approach, and lift a desired
object. The general notion of “controller funneling” applies
to this class of tasks [7]. In controller funneling, the robot
executes a sequence of controllers such that the goal configu-
ration of one controller must be contained inside the domain
of attraction of the next. Effectively, these controllers “funnel”
the state of the robot toward a goal configuration. A major
advantage of this approach is that it is unnecessary to design a



single, monolithic controller that converges to the task goal and
yet has a large enough domain of attraction. Burridge, Rizzi,
and Koditschek demonstrated that controller funneling can be
an effective approach to dynamic robot juggling tasks [7].
Controller funneling has also been used in grasp synthesis
where two grasp controllers execute sequentially to generate
an enveloping grasp [8]. Huber and Grupen showed that it
is possible to autonomously learn a sequence of controllers
that funnel the state of a robot system toward specific goal
configurations [9].

This paper focuses on a special case of controller funneling
calledcontroller refinement. A refining sequence of controllers
must satisfy the conditions for controller funneling: the goal
region of every controller must be inside the domain of attrac-
tion of the next controller in the sequence. However, controller
refinement also requires the domain of attraction for each
subsequent controller in the sequence to be contained within
the domain of all previous controllers. This structure implies
that later controllers in the refining sequence will not cause the
robot to leave the domain of attraction of earlier controllers.
In addition, the state of the system will be iteratively confined
to smaller and smaller regions of configuration space. While
not all discrete control problems admit refining solutions,
this paper proposes that move-to-grasp problems are naturally
solved this way.

This approach is characterized as part of a field study
involving Robonaut, the NASA space humanoid, and SCOUT,
a semi-autonomous rover that can transport two astronauts.
In the part of the field study reported on in this paper,
astronauts have placed a geological sample box on SCOUT.
Robonaut, mounted on a mobile SegwayTMRobotic Mobile
Platform (RMP) base, navigates to a region around SCOUT,
approaches the sample box, and grasps and lifts the box. This
paper presents results that show that the controller refinement
approach leads to monotonically decreasing variance in posi-
tion error relative to the object. It is shown that localization
accuracy correspondingly goes up. Sections II and III propose
navigation and hybrid position-force controllers that can be
used to solve a move-to-grasp task. In Section IV, refining
sequences of controllers are defined and characterized. Finally,
Section V describes how these ideas apply to the Robonaut-
SCOUT field test and present the results from experimental
trials.

II. NAVIGATION CONTROLLERS

This section describes the navigation controllers that are
used in the solution to the move-to-grasp problem.

A. Approach Region Controller

The APPROACH REGIONcontroller navigates the robot over
uneven terrain while avoiding obstacles to within 2.5m of
the object to be picked up.APPROACH REGIONis a nested
hierarchical controller, as illustrated in Figure 1. A high level
controller iteratively computes obstacle-free paths to the goal
at approximately 10Hz (the “plan curve” box in Figure 1).
The low level controller follows this path by referencing PD

controllers to via points along the last computed path (the
“select via point” box in Figure 1). It is assumed that the goal
region can be identified by looking for a large object known to
be in the vicinity of the target object. In the Robonaut-SCOUT
field test, the sample box is assumed to be located on SCOUT.
Before moving, Robonaut visually localizes SCOUT, identi-
fies local obstacles using a laser range finder, and plans an
obstacle-free path to SCOUT. Robonaut’s motion is controlled
by appropriately parameterizing PD controllers that servo to
positions and angles along the path.En route to SCOUT,
APPROACH REGIONupdates the positions of local obstacles
using the laser range finder and re-evaluates a new obstacle-
free path at approximately 10Hz.

Robonaut uses a SICK laser scanner and a three-axis incli-
nometer to detect obstacles. Since Robonaut may be moving
through uneven terrain, the inclinometer is needed to project
the range data into a uniform reference frame. Instead of
developing a three-dimensional obstacle map, all obstacles are
projected onto a planar occupancy grid approximately parallel
to the ground. Each time the occupancy grid is populated,
all prior knowledge of obstacles is discarded and the new
occupancy grid is referenced to Robonaut’s most recent pose.
This occupancy grid covers a fixed area around Robonaut; all
space outside of the occupancy grid is assumed to be clear.

The occupancy grid is used to plan an obstacle-free path
from Robonaut’s current position to a region around SCOUT.
In order to accommodate the non-holonomic constraints of
the RMP base, a smooth curved path is calculated using a
non-uniform rational b-spline (NURB). The NURB is para-
meterized by a set of control points that are used to “pull”
the path away from obstacles. In addition, the NURB can be
parameterized with a fixed minimum radius that ensures that
minimum turn rate constraints are met.

Instead of planning a path for a volume of Robonaut’s actual
dimensions, the planning problem is simplified by “growing”
the obstacles by half the width of Robonaut and planning the
path of a “point robot.” The set of control points that “pull”
the NURB path away from obstacles is calculated iteratively.
As a first step, a NURB path connecting current to goal
configurations is calculated without using any control points.
This path is checked for collisions with the “grown” obstacles
in the occupancy grid. If a collision is detected, a control
point is inserted that causes the NURB to avoid the obstacle.
This process continues until no more collisions are detected.
Although this method of greedily placing control points for
a NURB is not guaranteed to find a solution, this was found
to be an efficient method of calculating an obstacle-free path
when relatively few obstacles were encountered. This method
is well matched to the “approach region” problem where it is
unnecessary to reach a precise goal configuration.

After planning a path, theAPPROACH REGION controller
follows the path by updating references for position and
orientation PD controllers. Robonaut’s position is projected
onto the closest point on the NURB. PD controllers are
referenced to a via point at some offset from the current
position along the curve.



obstacles

θ
∆ x

scanner
laser

curve
plan

via point
select

servo
PDpathgoal pose

robot
x, θ

∆

Fig. 1. APPROACH REGIONcontroller

State Condition Action
1 r ≥ R andβ ≥ B πrot(β)
2 r ≥ R andβ < B πlin(r)
3 r < R andα ≥ A πrot(α)

TABLE I

TURN-DRIVE-TURN CONTROL POLICY.

B. Turn-Drive-Turn Control Policy

After reaching a region around the target object, Robonaut
must navigate to a goal pose directly in front of the object. A
simple turn-drive-turn control policy is used that ignores the
presence of obstacles. Given a goal pose, this control policy
turns in the direction of the goal, moves in an approximate
straight line toward the goal, and after reaching the goal
position, turns into the goal orientation. Note that this approach
can only be used with robots capable of point-turns.

The “turn-drive-turn” strategy is a policy implemented over
the state variables,

r =‖ xref − x ‖, (1)

β = atan

(
yref − y

xref − x

)
,

α = θref − θ,

where (x, θ) is the current RMP pose and(xref , θref ) is
a reference pose. The state variables are as follows:r is
the distance between the current position and the reference
position,β is the heading of the object from Robonaut, and
α is the difference between the Robonaut orientation and the
object orientation.

Turn-drive-turn is the control policy illustrated in Table I. It
is defined over three discrete states and executes one of two PD
controllers as a function of state:πrot(θref ) andπfor(dref ).
πrot(θref ) rotates Robonaut to a reference orientation,θref .
πlin(dref ) moves the robot forward by a distance,dref . If
Robonaut is in state 1 (it is more thanR distance from
the object and is not pointing toward the reference position),
then turn-drive-turn executes a turn toward the reference using
πrot(β). If Robonaut is in state 2 (it is pointing toward the
reference, but more thanR away), then it drives to to the
reference position usingπfor(r). Finally, when Robonaut is
in state 3 (it is in the reference position, but not the reference
orientation), it executes a final turn,πrot(α), toward the
reference orientation.

−100 −50 0 50 100 150 200

−250

−200

−150

−100

−50 State 1

State 2

State3

State Representation

X−axis (cm)
Y

−a
xi

s 
(c

m
)

Fig. 2. States used by theAPPROACH OBJECTcontrol policy.

C. The Approach Object Policy

Instead of executing a single turn-drive-turn controller that
moves directly to the target object from a point 2.5m away,
the APPROACH OBJECTcontrol policy is implemented that
traverses this distance in three distinct turn-drive-turns. A
policy is defined over a discrete state space that essentially
navigates the robot through a sequence of pose via-points. The
discrete state space is a partition of the space of real-valued
robot-object poses. The fixed policy associates each discrete
state with an action that is implemented by a control process.

This implementation uses a fixed policy defined over the
three position-based states identified in Figure 2. The x- and
y-axes represent positions in centimeters. The cross near the
lower right corner represents the position and orientation of
the target object. The solid circle and the arc represent the
boundaries between the three states. The dotted lines represent
a sample trajectory taken by the RMP base and Robonaut’s
two hands using this implementation. State 1 corresponds to
the set of positions at least 1.8m from the target object. State
2 corresponds to the set of positions less than 1.8m. State 3
corresponds to a small radius around the set of poses (position
and orientation) 1.5m directly in front of the object.

The approach object policy is given in Table II. When
Robonaut is more than 1.8m away from the target object (state
1), then it drives directly toward the object to a point 1.5m
away. This should cause a transition to state 2. Once Robonaut
is less than 1.8m away, it drives to a point 1.5m directly in



State Controller Position reference
State 1 πdrive (the point between robot and object,

1.5m away from object)
State 2 πdrive (the point 1.5m directly in front of object)
State 3 πdrive (the point 0.6m directly in front of object)

the object)

TABLE II

APPROACH OBJECT CONTROL POLICY.

front of the object, which likely causes a transition to state
3. Finally, when Robonaut is in state 3, it it drives to a point
directly in front of the object.

III. H YBRID FORCE-POSITION CONTROLLERS

This paper takes a control-based approach to grasping
whereby grasps are synthesized by executing closed-loop con-
trollers that use position and force feedback. The grasping task
is decomposed into a sequence of hybrid force-position control
objectives. First, Robonaut reaches both hands to visually
determined reference configurations around the box. Next, a
guarded move is executed that puts both palms in contact with
the sides of the box. Next, a compliance controller executes
that presses the two palms flat against the sides of the box.
Finally, Robonaut lifts the box while maintaining a constant
grasping force.

In order to create the right set of hybrid force and position
controllers, a flexible framework for controller composition
such as thecontrol basisis used [10]. The control basis allows
force and position control primitives to be parameterized by
control points and references in a flexible way. It also allows
force and position controllers to be concurrently combined,
resulting in hybrid controllers. The control basis represents
a position control primitive as follows,φp|σp(y,xref )

τ . In
this expression,φp is a position artificial potential function,
σp(y,xref ) is the sensor transform that evaluates the position
error between the set ofy control points and a reference
position xref , and τ is the effector transform. For example,
φp|σp(p1,xref )

τ moves control pointp1 to reference position
xref . Similarly, the orientation control primitive,φr|σr(y,θref )

τ ,
moves they control points to a reference orientation,θref . The
force control primitive is represented,φf |σf (y,fref )

τ , wherey
is a set of control points (i.e. contacts) andfref is a reference
force. For example,φf |σf ({p1,p2},fref )

τ applies the reference
force, fref at control points,p1 and p2. In order to simplify
the notation in this paper, the following abbreviations for
these position and force controllers are defined. The notation,
πp(y,xref ), is used to represent the position control primitive,
φp|σp(y,xref )

τ . The notation,πr(y, θref ), is used to represent
the orientation controller,φr|σr(y,θref )

τ . Finally, πf (y, fref ),
represents the force control primitive,φf |σf (y,fref )

τ .
The control basis creates composite controllers by combin-

ing multiple control primitives. One controller,π2, executes
in the nullspace of the error function of another controller,
π1. In this case, both controllers execute concurrently, but the

contribution ofπ2 is constrained to not interfere withπ1. The
control basis framework denotes this composite controllerπ2/
π1. For example, consider executing the composite controller,
πf (p1, fref ) / πp(p2,xref ), where control pointp2 is already
in positionxref . This controller attempts to apply a force of
fref at control pointp1 while not moving control pointp2

from xref .
Grasps are synthesized by executing a sequence of four

controllers constructed using the control basis framework. The
first controller,

πreach = πp(ppalm,xobject) / πr(θpalm, θobject), (2)

moves the center of the palm to a reference position and
orientation.ppalm is a control point in the middle of the palm,
xobject is a goal position near the target object, andθobject is
a goal orientation near the object. The two control primitives,
πp(ppalm,xobject) andπr(θpalm, θobject), move the center of
the palm to a reference position and orientation, respectively.
For a redundant arm with at least six degrees of freedom, both
objectives can be simultaneously achieved. In this case, it is
possible to execute the two control primitives in either order.

Another controller,

πgm = πp(ppalm,xobject) / πf (ppalm, 0), (3)

executes a guarded move that places both palms in contact
with the object. This controller executesπp(ppalm,xobject) in
the nullspace ofπf (ppalm, 0). As before,ppalm is a control
point in the middle of the palm.xobject is a goal position
on (or inside) the target object.πp(ppalm,xobject) moves the
center of the palm to a point on the object.πf (ppalm, 0) is a
force control primitive that moves the palm away from applied
forces. When no forces are applied to the palm, this controller
moves the palms toward the object. However, the controller
will not push into the object because the higher-priority force
control primitive will prevent the manipulator from applying
large forces to the object.

The next controller,

πcomply = πf ({f1, f2}, 0)/πf (ppalm, fint)/πp(ppalm,xline),
(4)

complies the palm flat against the sides of the sample box.
This controller executesπf ({f1, f2}, 0), πf (ppalm, fint), and
πp(ppalm,xline) concurrently. The highest priority controller,
πp(ppalm,xline), is a position controller that keeps the palm
in approximately the same position on the object surface. A
point at the center of the palm is constrained only to move
normal to the object surface, alongxline. Without violating
this position constraint, the second highest priority controller,
πf (ppalm, fint), applies a force offint) at the palm toward
the object. This controller causes the palm to press on the
object. The lowest priority controller,πf ({f1, f2}, 0), allows
the two control points,f1 and f2 at the fingertips and the
heel of the palm to comply to the object surface. These two
control points are on either side of the point in the middle of
the palm. Since this controller is subordinate to the other two
controllers, it cannot push the palm away from the surface.



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Hand Trajectory During Lift Object

X axis

Y
 a

xi
s

A A 

B B C 

C D D 

Fig. 3. An example of the trajectory taken by Robonaut’s two palms as they
grasp the sample box. After starting at configuration “A,” the two palms reach
toward the object toward configuration “B.” Next, the robot executes guarded
move and a compliance controllers that move the palms to configurations “C”
and “D,” respectively.

The point in the middle of the palm applies a force toward
the object and “pushes” the fingers or the heel of the palm so
that they comply to the object surface.

Last,

πlift = πp({pl, pr},xgoal) / πf ({pl, pr}, fint), (5)

moves the two palms to a reference position while applying
an inward holding force. The highest priority control primi-
tive, πf ({pl, pr}, {fl, fr}), applies an internal force between
the two palms,p1 and p2, where fl and fr are inwardly
directed reference forces. The subordinate control primitive,
πp({pl, pr},xgoal), moves the two palms toxgoal while
maintaining the internal force.

Figure 3 shows an example of the trajectory taken by
Robonaut’s two palms when it executes these controllers in
sequence. The figure shows Robonaut’s two hands from an
overhead perspective. Each hand is represented by a line drawn
between the heel of the palm and the fingertips. The example
starts when the palms are located at the two positions labeled
(A) in Figure 3. Executingπreach = πp(ppalm,xobject) /
πr(θpalm, θobject) moves the palms to positions approxi-
mately 10cm away from the sides of the box (positions (B)
in the figure.) Next, Robonaut executes a guarded move,
πp(ppalm,xobject)/πf (ppalm, 0), toward the box. This moves
the palms to the positions labeled (C) in Figure 3. At this
point in the example, the heels of the two palms are touching
the sides of the box. Next, executing the comply controller,
πf ({f1, f2}, 0)/πf (ppalm, fint)/πp(ppalm,xline), moves the
palms to positions (D) in the figure. Now, both the fingers and
the heel on each palm are pressing flat against the box. Finally,
Robonaut executesπp({pl, pr},xgoal) / πf ({pl, pr}, fint) and
lifts the box.

IV. CONTROLLER REFINEMENT

In a refining sequence of controllers, the attractive domain
of each controller in the sequence is a subset of the domain
of all previous controllers. In addition, a refining sequence
must satisfy the conditions required for controller funneling:
each controller in the sequence must deliver the robot to a
configuration within the attractive domain of the next con-
troller. Refining controller sequences constitute an important
class because of their discrete transition characteristics. While
not all discrete control problems admit refining solutions, some
problems, such as move-to-grasp, are naturally solved this
way. This section reviews controller funneling and describes
controller refinement.

In controller funneling, pairs of controllers that execute
sequentially must satisfy thepreparescondition.π1 is said to
prepareπ2 when the goal region ofπ1 is inside the domain of
π2: g(π1) ⊆ D(π2). This condition guarantees that the robot
always remains within the domain of attraction of the currently
executing controller. A discrete control system that obeys this
constraint is guaranteed to maintain control of the robot [7],
[9]. One way to build such a control system is to calculate
the acyclic graph over controllers defined by theprepares
relation. This graph describes all sequences of controllers that
satisfy the constraint. Breath-first-search may be used to search
this graph for a sequence of controllers that leads to the goal
configuration.

The preparescondition can also be enforced in the context
of a state-based discrete control process. This approach re-
quires discrete states to be defined over the robot configuration
space. By executing controllers, the system can transition
between states. A policy that associates each state with an
action can be used to specify the behavior of the discrete
control system. A common framework for representing the
choices that a discrete control system has available is the the
Markov Decision Process (MDP). Because the MDP specifies
a stochastic transition function, this framework can be used to
characterize the stochastic dynamics of the discrete system.
When a discrete control problem is framed as an MDP,
standard planning and machine learning techniques such as
dynamic programming and Reinforcement Learning (RL) can
be used to autonomously learn a control policy [9], [11]. When
an MDP representation is used, safety constraints such as the
preparescondition can be enforced simply by pruning actions
from the MDP as a function of state [9], [11]. When all
“unsafe” actions are eliminated from the MDP, trial-and-error
learning algorithms such as RL are able to explore the space
safely.

Controller refinement defines an additional constraint be-
yond thepreparescondition. If π2 refinesπ1, then the follow-
ing conditions must be satisfied: First,π1 must prepareπ2,
i.e. g(π1) ⊆ D(π2). Second, the domain of attraction ofπ2

must be a subset of the domain ofπ1: D(π2) ⊆ D(π1).
Not all discrete control problems admit refining solutions.

However, when a refining solution is possible, it can be
characterized in two special ways. First, if it is assumed that



State Condition Controller Description
1 rrmp ≥ 2.5m πar approach region
2 rrmp < 2.5m πao approach object
3 rrmp < 0.7m πreach reach toward object
4 rpalms < 0.2m πgm guarded move
5 cpalms πcomply comply to object
6 cheel ∧ ctips πlift lift object

TABLE III

THE REFINING CONTROL POLICY USED IN THEROBONAUT-SCOUTFIELD

STUDY.

controllers are only active within their domains of attraction,
then no subsequent controller can cause the system to leave
the domain of attraction of an earlier controller. In the context
of a state-based representation, no controller can cause the
system to transition to a previously visited state. Second, as a
refining sequence of controllers executes, the robot is confined
to a smaller and smaller region of configuration space. In
the context of a state-based representation, the state of the
robot can be defined in terms of the smallest domain of
attraction that contains the current robot configuration. These
characteristics are illustrated in the solution to the move-to-
grasp problem that is described in the next subsection.

V. CONTROLLER REFINEMENT IN THE

ROBONAUT-SCOUT FIELD STUDY

Controller refinement was explored in the context of the
Robonaut-SCOUT field study. The Robonaut-SCOUT field
study involves a mobile humanoid robot, the NASA/JSC
Robonaut Unit B mounted on an RMP mobile base, and
a semi-autonomous rover, SCOUT. Starting far away from
SCOUT, Robonaut must avoid obstacles while navigating to
a platform mounted on the rear of SCOUT. After reaching
the platform, Robonaut must pick up a geological sample
box placed there. The move-to-grasp problem is solved by
executing the controllers described in Section II and III in
a refining sequence. A deterministic policy is defined over
states that roughly correspond to the domains of attraction of
the navigation and hybrid force-position controllers. The state
set and associated control policy is shown in Table III. The
states are defined in terms of: 1) distance from the RMP to
the target object,drmp; 2) distance of the two palms to the
object, dpalms; 3) boolean contact state for the two palms
(whether the palms are in contact with the object or not),
cpalms; 4) boolean contact state for the heel of the palms,
cheel; 5) boolean contact state for the tips of the fingers,ctips.
Column two (“Condition”) of Table III defines a sequence
of states by adding constraints to earlier states. For example,
the condition for state 4 denotes thatrpalms < 0.2m and
rrmp < 0.7m. This reflects the characteristic of refining
control sequences described in Section IV, that states later
in the sequence describe subsets of the configuration space
represented by earlier states.

The policy in Table III does the following. When the RMP
base is more than 2.5m away from the target object, the policy

−300 −250 −200 −150 −100 −50 0

−100

−50

0

50

100

150

Robot Trajectories

X−axis (cm)

Y
−a

xi
s 

(c
m

)

Fig. 5. The trajectories taken by Robonaut during the eight experimental
trials. The “lightning-bolt” trajectories on the left side are the trajectories
taken by the mobile base. The “L”-shaped trajectories on the right are the
paths taken by Robonaut’s two palms.

executes theAPPROACH REGIONcontroller,πar, that uses the
visual location of the SCOUT vehicle to move the RMP to a
point within 2.5m of the sample box. At this point, the policy
executes theAPPROACH OBJECTcontrol policy that moves
the RMP directly in front of the object. When the RMP is
less than 0.7m from the box (state 3), the policy executes a
reach controller that moves the hands around the box. Next,
the policy executes a guarded move that makes contact with
the sides of the box. After making contact, the control policy
executesπcomply to comply to the sides of the box andπlift

to lift the box.
In order to characterize this solution to the move-to-grasp

task, a series of eight trials were conducted where Robonaut
navigated to and picked up a geological sample box measuring
7in×8in×11in. This experiment did not test the first controller
in Table III, APPROACH REGION. Instead, Robonaut started
each trial in a different location and orientation approximately
2.25m away from the box and executed the refining control
policy illustrated in Table III. The experimental scenario is
illustrated in Figure 4. In Figure 4(a), Robonaut is 2.25m away
from the box. In Figure 4(b), Robonaut has navigated to a point
just in front of the box. In Figure 4(c), Robonaut is lifting the
box.

Figure 5 illustrates the trajectories followed by the robot
during these eight trials. In this figure, the sample box is at
the origin with its major axis oriented horizontally. The lines
on the left side of the plot illustrate the path of the center of
the Robonaut RMP base. The two clusters of “L”-shaped lines
on the right illustrate the paths of the left and right palms. The
“lightning bolt” shape of the RMP trajectories is the result of
the APPROACH OBJECTcontrol policy. Since, in each of these
trials, Robonaut started less than 2.5m from the sample box,
Robonaut is in state 2 in Table III and executes theAPPROACH

OBJECT control policy first. Since Robonaut is more than
1.5m away from the sample box,APPROACH OBJECTmoves



(a) (b) (c)

Fig. 4. Illustration of Robonaut completing the move-to-grasp task in the Robonaut-SCOUT field study.

Approach Region Approach Object Comply
0

0.5

1

1.5

2

2.5

3

3.5

4
Localization Error

Stage

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Fig. 6. Standard deviation in the estimated box position decreases as the
refining control policy of Table III executes. The first bar, “approach region”
gives standard deviation when Robonaut is approximately 2.25m away from
the sample box. The second bar shows standard deviation after approaching
the sample box. The third bar shows standard deviation after making contact
and complying to the sides of the box.

directly toward the box. When it gets to a point within 1.5m, a
transition to state 2 occurs (in theAPPROACH OBJECTpolicy,
shown in Table II) and Robonaut moves to a point along the
axis of the box. When Robonaut reaches a point 1.5m directly
in front of the box, the system transitions to state 3 in the
APPROACH OBJECTpolicy and drives toward the box. After
arriving in front of the box,APPROACH OBJECTterminates and
the refining policy of Table III takes over again and reaches
the two palms toward the box. Following the reach, the palms
make contact with the sides of box, comply with the box, and
pick it up.

The eight trajectories shown in Figure 5 illustrate how
Robonaut is confined to a smaller and smaller region of con-
figuration space as it approaches the goal. Robonaut starts the
experiment in a large range of positions, approximately 2.25m
away from the object. However, the variance in Robonaut’s
position decreases significantly when it reaches a position
directly in front of the sample box. Finally, after Robonaut
makes contact and complies with the box, this variance virtu-

ally disappears.
Robonaut’s progression through the refining sequence of

controllers is mirrored by a continual decrease in the variance
of the estimated pose of the sample box. This is illustrated
in Figure 6. When Robonaut is 2.25m away from the box,
the variance in the visually estimated position is large (the
“approach region” bar in Figure 6). However, after approach-
ing the box, Robonaut is able to localize the box much more
precisely (the “approach object” bar). Finally, after contacting
and complying with the object, Robonaut augments is visual
sense with tactile information that estimate the object pose
very precisely (“comply” bar).

This improvement in localization accuracy is one reason
why the sequence of executed controllers have a refining
effect. The variance in estimated box position when Robonaut
is 2.25m away suggests that information sufficiently accurate
to solve this task in a single step is simply not available at the
beginning of the task. Any solution must approach the object
in stages, acquiring better information at each step. As long
as the constituent controllers are themselves robust, a refining
sequence of controllers will robustly move the robot closer and
closer to the goal configuration. In addition, since this can be
a refining sequence ofdifferentcontrollers, controllers at dif-
ferent stages of the task can use different kinds of information
to solve the problem. This was particularly advantageous in
the Robonaut-SCOUT field test implementation because, in
the later stages of the task, tactile information could be used
to move the contacts into a precise grasping configuration.

VI. CONCLUSION

This paper has addressed a class of mobile manipulation
problems called “move-to-grasp” problems, where a mobile
manipulator must navigate to and pick up an object. It is
proposed that move-to-grasp problems are best solved by
a refining sequence of controllers, where each controller in
the sequence iteratively confines the robot to a smaller and
smaller region of configuration space. Refining sequences are
particularly robust because the robot is always within the
domain of attraction of all previously executed controllers in
the sequence. This approach is explored in a move-to-grasp



task where Robonaut must navigate to and pick up a geological
sample box off of a platform in the rear of SCOUT. Results are
given that show that over a series of trials, Robonaut’s config-
uration is confined to an iteratively smaller region around the
sample box. This narrowing in configuration space is mirrored
by improvements in the precision of Robonaut’s estimated
position of the box. It is proposed that a refining sequence
of controllers is a good way to take advantage of new and
different sensory information accumulated by the robot during
the progress of the task.

REFERENCES

[1] M. Diftler, J. Mehling, P. Strawser, W. Doggett, and M. Spain, “A
space construction humanoid,” inProceedings of the IEEE Int’l Conf.
on Humanoid Robotics, 2005.

[2] K. Chang, R. Holmberg, and O. Khatib, “The augmented object model:
Cooperative manipulation and parallel mechanism dynamics,” inProc.
IEEE Int’l Conf. on Robotics and Automation, 2000.

[3] J. Tan, N. Xi, and Y. Wang, “Integrated task planning and control for
mobile manipulators,”Int’l Journal of Robotics Research, vol. 22, no. 5,
2003.

[4] D. MacKenzie and R. Arkin, “Behavior-based mobile manipulation for
drum sampling,” inProc. IEEE Int’l Conf. on Robotics and Automation,
1996.

[5] L. Petersson and H. Christensen, “A framework for mobile manipula-
tion,” in 7th International Symposium on Robotics Systems, 1999.

[6] B. Pimentel, G. Pereira, and M. Campos, “On the development of
cooperative behavior-based mobile manipulators,” inProc. of the Int’l
Conf. on Autonomous Agents, 2002.

[7] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,”International Journal of
Robotics Research, vol. 18, no. 6, 1999.

[8] R. Platt, A. Fagg, and R. Grupen, “Extending fingertip grasping to whole
body grasping,” inIEEE Int’l Conference on Robotics and Automation,
Taipei, Taiwan, May 2003.

[9] M. Huber and R. Grupen, “Robust finger gaits from closed-loop con-
trollers,” in IEEE Int’l Conf. Robotics Automation, 2002.

[10] M. Huber, “A hybrid architecture for adaptive robot control,” Ph.D.
dissertation, U. Massachusetts, 2000.

[11] R. Platt, A. H. Fagg, and R. A. Grupen, “Manipulation gaits: Sequences
of grasp control tasks,” inIEEE Int’l Conf. Robotics Automation, New
Orleans, Louisiana, April 2004.


