ISS Commercial Cargo Service: Requirements & Constraints Summary

ISS Commercial Cargo Service Industry Day Conference

April 25, 2005

Valin Thorn
Neil Leemmons
Matt Scheutz

ISS Strategic Planning & Requirements Office
http://saber.iss.nasa.gov
281.244.7097
Background

- ISS commercial cargo transportation services will compensate for some cargo lost from Shuttle retirement in December 2010
- The NASA Launch Services Program Office (LSPO) at KSC is leading the acquisition effort with ISS assistance
- ISS preliminary requirements provided to LSPO (March 15th) for ICCS Draft RFP preparation
- ICCS requirements revision expected before Draft RFP release
Philosophy

Service vs. Spacecraft Acquisition

- NASA is acquiring a service, not spacecraft
- ISS requirements for integration of visiting vehicles included
 - Prox ops, docking, berthing, robotics, interfaces, attached operations, resource availability, safety, etc.
- ICCS annual cargo needs specified – maximum and minimum levels
 - Minimum level to help set contract firm commitment with options for additional service
ICCS Cargo Vehicle Flight Rate

- **ICCS vehicle flight rate limited to 6 flights/year**
 - Crew time impact for arrival and departure operations
 - Impact to micro-g operations, still important to ISS partners
 - Soyuz, Progress, ATV, HTV vehicles visit 10 to 12 times/year in total
- **ICCS must be able to respond to a cargo service request within 180 days**
 - Unexpected need for crew supplies, maintenance, utilization, etc.
ISS Cargo Categories

- Assembly hardware
 - Not ICCS requirement

- Crew Supplies
 - Food
 - Water
 - Gas
 - Flight crew equipment

- Maintenance
 - Internal & external ORUs
 - Preventative and corrective maintenance

- Utilization/Research
 - Research equipment, experiments
 - Laboratory consumables
Cargo Packaging

- Rack delivery **not** required
- Internal cargo usually in soft sided stowage bags
- Large external ORUs – CMGs, TCS pumps, etc.
 - TCS radiators excluded because of spares already in orbit and projected need
- Experiment packages
 - Express rack elements
Late and Early Cargo Access

- Various payloads, such as plants and animals require late loading into the cargo vehicle
 - Cargo service/vehicle should provide cargo access as late as 19 hours before launch
- Returning payload specimens and samples will need to be removed from the cargo vehicle shortly after landing
 - The cargo service/vehicle should provide the capability to remove the payload from the cargo vehicle within 4 hours after returning to Earth
Power to Payloads

- ICCS payload power requirements during transportation
 - 500 W average
 - 1500 KW peak
 - Return power assumed to equal delivery power needed

Example Payload:
Commercial Generic Bioprocessing Apparatus
ISS Rendezvous, Prox Ops, Docking, Berthing Aids

- No existing automated rendezvous & docking system to US segment
 - ISS only provides visual aids for Shuttle prox ops/docking
 - ICCS provided AR&D system for ISS is an available solution option
- HTV automated rendezvous to robotic capture and berthing
 - DGPS & TCS navigation
 - R-Bar approach to ISS nadir capture box – robotic berthing to Node 2 nadir
- Soyuz, Progress, and ESA ATV vehicles use Russian RF based, rendezvous & docking system
 - Applicable for dockings to ISS Russian segment
 - Service Module (SM) aft
 - SM/Docking Compartment nadir
 - FGB nadir
ISS Flight Attitude

- ICCS vehicles must dock and mate with the ISS in its normal operational flight attitude

 • X Y V Z Nadir TEA
 - X body axis on velocity vector
 - Z body axis down/nadir
 - TEA – Torque Equilibrium Attitude
ISS Mating Location Options

- ISS has six candidate ports available for attaching ICCS vehicles
 - The ports on the Russian Segment will be occupied continuously with Soyuz, Progress, and ATVs
 - Additional vehicles can visit these ports but will decrease the docked time of the Progress and ATV
 - The US Segment’s ports have low occupancy rate
 - Attaching to the US Segment offers more flexibility
ISS Docking & Berthing

- ISS dockings to US Segment use Russia's Androgynous Peripheral Attachment System (APAS)
 - +X Body: PMA2
 - +Z Body: PMA3
- ISS module interfaces use Common Berthing Mechanisms (CBMs)
 - ISS robotic capture & mating only
 - MPLM, HTV
Vehicle Stay Time

- ICCS vehicles must be capable of staying at the Station at least 7 days
 - Minimum time required to handle cargo transfer operations
 - Results of recent HTV studies may increase this minimum time
- Maximum stay time dependent on ISS operational vehicle traffic and port utilization plans
 - Longer stay time improves operational flexibility
ISS Resources for ICCS Vehicles

- **Power**
 - Allocation of 500 W average, 1500 W peak for ICCS
 - Typically 3 kW capacity

- **Thermal**
 - Thermal water loops available at Node 2 Nadir, Node 3, and Node 1 port side CBMs
 - ~ 3 kW capacity
 - Allocation of 500 W average heat rejection

- **Inter-module ventilation**
Robotic & EVA Compatibility

- ICCS external cargo must be compatible with ISS US Segment robotic systems and EVA handling
 - SSRMS
 - Special Purpose Dexterous Manipulator (SPDM/Dextre)
 - Mobile Transporter
Cargo Return & Disposal

- **ICCS vehicles must have the capability to safely return cargo to Earth**
 - Internal cargo: 11 MT/yr max, 1 MT/yr min
 - External cargo: 3.3 MT/yr max, 0 min
 - Return cargo delivery to NASA within 14 days of landing
 - 4 hours for critical cargo

- **Cargo disposal required for large portion of ISS cargo**
 - Safe disposal requirements for expendable vehicles must be satisfied
 - Internal cargo: 8.3 MT/yr max, 400 kg/yr min
 - External cargo: 2.2 MT/yr max, 1400 kg/yr min
ISS Cargo Supply Balance

- 3 ISS Crew
 - U.S. - Russian Bilateral Obligations
 - External Utilization
- 6 ISS Crew
 - Comm Max Capability
- 6 ISS Crew
 - Augmented Capability

Remove Blue and Red Lines

- Baseline Capability
- Internal Maintenance and EVA Hardware
- External Maintenance
- Internal Utilization

• Assembly Hardware is not included
• Accommodation masses are not included
• Crew rotation mass not included
Philosophy

Maximum Cargo Requirements

• ICCS maximum cargo requirements
 ◆ Based on making up shortfall from baseline partner cargo delivery contribution
 ◆ Includes latest available updates in need for crew supplies, maintenance, utilization, gas, & water
 ◆ New NASA ISS USOS utilization requirements official update expected in coming weeks from ESMD – preliminary requirements received recently
 ◆ Return Cargo
 ◆ Maximum return capability of ~15,000 kg/yr
Philosophy

Minimum Cargo Requirements

- **ICCS minimum cargo requirements**
 - Based on making up shortfall from baseline partner contributions and ISS cargo needs with reductions in maintenance & utilization
 - **Crew Supplies**
 - No further reduction, already at minimum acceptable level
 - **Maintenance (L&M provided minimum requirement)**
 - Internal maintenance reduced 20%
 - External maintenance
 - Assumes 57 FRAM Eq of pre-positioned maintenance/spare ORUs at Shuttle retirement
 - Reduced failure rates
 - **Utilization**
 - NASA program
 - Internal: 2000 kg/yr internal cargo delivery
 - External: Zero
 - IP Research Program
 - Internal: 2650 kg
 - External: 440 kg
 - **Return Cargo**
 - 1000 kg/yr – internal cargo only

Strategic Planning & Requirements
Valin Thorn
ISS NASA/JAXA/ESA/CSA

Cargo Demand/Delivery Balance Summary

- Assembly Hardware is not included
- Accommodation masses are not included
- Crew rotation mass not included
ISS NASA/JAXA/ESA/CSA Cargo

Internal Demand/Delivery Balance

- Assembly Hardware is not included
- Accommodation masses are not included
- Crew rotation mass not included

Fiscal Year

Mass (Kg)

Comm Max Capability
Comm Mini Capability
Augmented Capability
Baseline Capability
ISS NASA/JAXA/ESA/CSA Cargo

External Demand/Delivery Balance

- Assembly Hardware is not included
- Accommodation masses are not included
ISS NASA/JAXA/ESA/CSA Cargo

Water Demand/Delivery Balance

- Accommodation masses are not included

Strategic Planning & Requirements
Valle Thorn
ISS NASA/JAXA/ESA/CSA Cargo
Gas Demand/Delivery Balance

- Accommodation masses are not included

Strategic Planning & Requirements
Vallin Thorn
Key ICCS Requirements Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IS5 Commercial Cargo Service Requirements Summary</th>
<th>Cargo Delivery</th>
<th>Return Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal Cargo (MT/Yr)</td>
<td>External Cargo (MT/Yr)</td>
<td>Water (MT/Yr)</td>
</tr>
<tr>
<td>Max Requirements</td>
<td>13.4</td>
<td>4.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Min Requirements</td>
<td>10.4</td>
<td>2.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Parameter</td>
<td>Launch On Need</td>
<td>Flight Rate</td>
<td>Dock Berth</td>
</tr>
<tr>
<td>Requirement</td>
<td>180 Days</td>
<td><= 90 Yr</td>
<td><= 7 Days</td>
</tr>
</tbody>
</table>

Strategic Planning & Requirements
Valin Thorn
Conclusion

- The fundamental requirements necessary to begin acquisition of an ISS Commercial Cargo Service are complete
 - The "ICCS Commercial Maximum" satisfies current projections for NASA/JAXA/ESA/CSA cargo delivery demand
 - The "ICCS Commercial Minimum" may be acceptable if key risk areas have optimistic outcomes and utilization cargo need is substantially reduced
- ICCS requirements revision planned after official utilization requirements update -- expected in coming weeks