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This chapter reviews the past and current projects on artificial gravity during space missions. The 
idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of 
Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 
2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a 
spaceship bound for Jupiter. The O’Neill-type space colony provides another classic illustration of this 
technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller 
centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their 
gravity therapeutic dose for a certain period of 
time, daily or a few times a week. This 
simpler concept is current being tested 
during ground-based studies in several 
laboratories around the world. 
 
Figure 3-01. A short-radius human centrifuge. “Artificial 
gravity is an idea whose time has come around,  …and 
around, …and around, …”-- Laurence Young, Man-Vehicle 
Laboratory, Massachusetts Institute of Technology. 
 

1  CONCEPTS 

1.1 History of Space Travel and 
Artificial Gravity 

The notion of creating a substitute for 
gravity through centrifugation was 
introduced early in the conception of human 
space travel. In fact, schemes for achieving artificial gravity in space preceded real manned spaceflight by 
many decades. Konstantin Tsiolkovsky, the influential Russian space visionary, discussed the idea in 
1883. In his manuscript Free Space, first published in 1956, he drew the primitive design of a true 
spacecraft, which moved in space with the help of reactive forces, described the life and ways of motion 
in zero gravity, and discussed the possibility of a spinning space vehicle for creating artificial gravity 
(Figure 3-02). 
 
Figure 3-02. This was the first drawing of Tsiolkovsky's of a space vehicle, from his monograph Free Space (1883). It shows 
cosmonauts in weightlessness inside the vehicle, and in artificial gravity when running along the internal walls. 
 

Tsiolkovsky never saw his designs materialize. However, 50 years later, a younger generation of 
Russian engineers and scientists began to make his visionary concepts reality. Among these was Sergey 



Korolev, who would become the “Chief Designer” of the Soviet space program, and who launched 
humanity into space with Laika on Sputnik and Yuri Gagarin on Vostok (for a detailed chronology of the 
space missions involving humans and animals, see Fundamentals of Space Biology, in this Space 
Technology Library series). 

As early as 1959, a team of enthusiasts led by Sergey Korolev was already working on a concept, 
fantastic at the time, for a manned mission to Mars. Gradually, the concept was taking on the form of a 
design, which became the basis for defining specifications of the advanced N1 rocket, then in its initial 
design phase. N1 rocket was to put into a circular orbit a spacecraft with an upper stage, which was then 
to be injected into a Mars fly-by trajectory. Subsequently, assisted by the Martian gravity field, it was to 
come back to the vicinity of the Earth, and the descent vehicle was to return to Earth. The Heavy 
Interplanetary Manned Vehicle (HIMV) had a mass of 75 tons, a length of 12 meters, and a pressurized 
cabin of 6 meters in diameter for a crew of three. For the total flight time of 2 or 3 years, it was envisaged 
as having an instrumentation compartment (doubling as a radiation shelter for the crew during solar flare 
activity), as well as a biological reactor to provide food for the crew. In flight, HIMV was to revolve 
about its long axis to create artificial gravity. 

The development of the HIMV was projected for 1962-1965 (Vetrov 1998). During the following 
decade, however, the Soviet rocket industry concentrated its efforts mostly on matching NASA's Apollo 
program and toward the mass deployment of intercontinental ballistic missiles. Nevertheless, Korolev was 
always interested in application of artificial gravity for large space stations and interplanetary craft. He 
sought to test this in orbit from the early days of the Voskhod program (Harford 1973). Two modules 
connected by a tether were considered. Separation of the two components would first produce 0.03 g of 
artificial gravity. When the distance between the two modules would reach 300 m, a rotation rate of 1 rpm 
would achieve 0.16 g. The two modules scheme was attractive because nose-to-nose tethering meant that 
the living module would have the correct vertical orientation for sustained experiments. However, the 
flight would be limited to a maximum of three days of experiments because the batteries would run down 
since the solar cells could not be kept oriented to the sun during the artificial gravity experiment. After 
Korolev’s sudden death in 1966, the project was closed and not pursued further. 

In the same period, inspired by the pioneering projections of Hermann Oberth, Hermann 
Noordung introduced a detailed engineering proposal for a space station with artificial gravity in 1928. 
Noordung's proposed design consisted of a wheel-shaped structure for living quarters, a power generating 
station attached to one end of the central hub, and an astronomical observation station. The last two 
components were connected to the habitat by an umbilical. Collecting sunlight through the concave 
mirror in the center generated power. This power allowed the habitat wheel to rotate, thus creating 
artificial gravity inside the space station (Figure 3-03). 
 
Figure 3-03. The Austrian writer Hermann Noordung’s space station was a 30-m diameter rotating station called “Wohnrad” 
(Living Wheel) that he placed in geostationary orbit. This cover of the August 1929 number of the Science Wonder Stories 
magazine by well-known science fiction illustrator Frank R. Paul illustrates Noordung’s space station array. 
 

In his vision of space exploration in the Collier’s Weekly space magazine, Wernher von Braun 
proposed an updated Noordung’s rotating wheel of 76 m in diameter (von Braun 1953). Orbiting at an 
altitude of 1730 km1, his inflated three-deck space station would be built of reinforced nylon fiber 
covered with protective plates and rotate at three revolutions per minute (rpm) to provide the occupants 
with 0.3 g, a suitable platform for Mars expeditions (Figure 3-04).  
 
Figure 3-04. Von Braun’s original vision for a spinning space station with its crew of fifty was to serve as a major jumping off 
point for exploring the Solar System. In the centre of the wheel is a “de-spun” section housing the airlock. 
 

                                                      
1 This orbit was later found to be within the then-unexpected Van Allen’s radiation belts and therefore unusable by a 
manned spacecraft. 



Later, Wernher von Braun worked with Walt Disney Studios on presenting to the public concepts 
about space travel. The spinning station in the Disney television series Man in Space (1955-1957) was an 
update of the Collier's station that von Braun had designed a few years earlier, the main difference being 
that instead of being solar powered the station included nuclear reactor on its axis (Figure 3-05).  
 
Figure 3-05. Wernher Von Braun spinning station in the Disney television series Man in Space aired on ABC in 1955. 
 

1.2 Science Fiction 
The popularization of artificial gravity, however, is attributable to the science fiction community. 

The large rotating space station image in the second episode (TMA-1) of the movie 2001: A Space 
Odyssey, directed by Stanley Kubrick in 1968 (Figure 3-06) is also based on Wernher Von Braun's 
concept. The movie script was based on Arthur C. Clarke’s short story The Sentinel, written two decades 
earlier (Clarke 1948). Clarke returned the favor to Stanley Kubrick by writing a novel version of the film 
that was published concurrently with its release (Clarke 1968). The Earth-orbiting space station in the 
second episode of the movie was 300 m in diameter and was home to an international contingent of 
scientists, passengers, and bureaucrats. It rotated around its center to provide artificial gravity to its 
inhabitants. 
 
Figure 3-06. The gigantic space station in Earth orbit in the movie 2001: A Space Odyssey produced and directed by Stanley 
Kubrick (1968). The station is shaped like a pair of four-spoked wheels on a common axis, about which it rotates to provide 
artificial gravity. It had not yet been completed: one of the wheels consisted primarily of a bare “wire” frame, with “skin” only 
at the points of intersection with the spokes. 
 

In the third episode of Kubrick’s 2001: A Space Odyssey (Jupiter mission), the Discovery One 
spacecraft used for interplanetary travel included another means for providing artificial gravity. Discovery 
One consisted of a large sphere as its fore end, then a long segmented spine with a communications dish, 
and a matrix of hexagonal exhaust nozzles (Figure 3-07a). The equatorial region of the sphere comprised 
a slowly rotating carousel, 11 m in diameter (Figure 3-07b). By rotating at slightly above 5 rpm this 
internal centrifuge produced an artificial gravity equal to that of the Moon. According to Clarke and 
Kubrick, this was enough to prevent the physical atrophy that would result from weightlessness, and it 
also allowed the routine functions of living to be carried out under nearly normal conditions (Figure 3-
08). 
 
Figure 3-07. A. External view of the interplanetary spaceship in the movie 2001: A Space Odyssey. B. Cross-section of the 
Discovery One spacecraft showing the location of the internal centrifuge. 
 

The internal centrifuge in the spacecraft Discovery One presented an idealized version of life in 
space, free of health problems and the negative effects usually associated with transiting from the rotating 
to the stationary parts of the station. The carousel contained the kitchen, dining, washing, and toilet 
facilities. Around the rim of the carousel were five tiny cubicles, fitted out by each astronaut according to 
taste and containing his personal belongings. The spin of the carousel could be stopped if necessary, when 
this happened, its angular momentum had to be stored in a flywheel, and switched back again when 
rotation was restarted. But normally it was left running at constant speed, for it was easy enough to enter 
the big, slowly turning drum by going hand-over-hand along a pole through the 0-g region at its center. 
According to Clarke’s story “transferring to the moving section was as easy and automatic, after a little 
experience, as stepping onto a moving escalator”2 (Figure 3-09).  
 
                                                      
2 In reality, adaptation to the changes in gravity level and to Coriolis forces when crewmembers were passing from 
artificial gravity to weightlessness and back might take much more than just “a little experience”, as suggested by 
the ground-based studies in slow rotating rooms (see this Chapter, Section 3)! 



Figure 3-08. This scene of the movie 2001: A Space Odyssey shows the internal centrifuge in Discovery One. Astronaut Frank 
Poole is jogging around the rim of its inner circumference. When this scene was recorded, the actor was in fact running in place 
and the carousel rotated around him (Bizony 2000). In a real spinning space station, a jogger running along the rim of the 
station in the direction of the spin would increase his tangential velocity, thereby creating a slight increase in the centrifugal pull 
he would experience, and giving him the impression of running uphill. Running anti-spinward would decrease the pull slightly 
and create the impression of running downhill (see Chapter 2 for a description of the physics behind this phenomenon).  
 
Figure 3-09. In this other scene of the movie, an astronaut is emerging from an access panel at the hub of the Discovery One 
centrifuge. The access way (hub hatch) is at the hub of the centrifuge, and is stationary while the centrifuge rotates about it. The 
bottom of the ladder leads to the rim of the centrifuge, where the astronaut walks to join the first astronaut. In a real spinning 
centrifuge, moving along the ladder and transitioning from the ladder to the rim of the centrifuge would quite challenge the 
vestibular and balance systems (see Chapter 4). 
 
 For making the scene involving the astronauts walking and jogging inside the spinning carousel, 
Kubrick had an 11-m diameter circular set (built at the cost of $750,000, a considerable part of the film’s 
budget), which could spun on its axis at a rotation rate of less than 1 rpm (corresponding to a speed of 0.5 
km/h at the rim). The actors were always at the bottom. As they walked, the set would be turned to keep 
the actors at the bottom and prevent them from falling over, like the hamsters in an exercise wheel. The 
camera and the operator were installed on a wheeled dolly allowing it to also sit at the bottom. From the 
camera’s point of view, and the audience’s, the astronauts appeared to be walking around the walls while 
the set stood rock steady. Earlier shots in the mocvie, of a stewardess climbing around the walls in the 
Aries kitchen module, were achieved in a similar way (Bizony 2000). A similar technique was first used 
in the movie Royal Wedding (Director Stanley Donen, 1951, MGM) where Fred Astaire in one of his 
best-known solos dances on the walls and ceilings of his hotel room (Figure 3-10). The number was 
filmed by mounting the camera and operator in a cage that rotated with the room, while Fred Astaire was 
dancing in a normal orientation relative to gravity.  
 
Figure 3-10. In this scene of the movie Royal Wedding (1951) Fred Astaire performs a tapdance on the walls and ceiling of his 
hotel room. In fact, the furnishings were anchored and the room was built inside a rotating carousel that turned simultaneously 
with the camera, permitting the impressive special effects. Even knowing how this cinematic legendary scene was accomplished 
does not detract from its brilliance and virtuosity. The movie has slipped into public domain and this particular scene is 
accessible at the following URL:  

http://www.youtube.com/watch?v=ac6o8PXthzQ  
 

Science and the popular press, however, continued to concentrate on Von Braun and Kubrick’s 
“space wheels”. In 1971, Henry Gray proposed expanding the hub of such a station into a cylindrical 
habitat, which he called a Vivarium and patented under that name. Earlier, in 1956, Darrell Romick had 
advanced a yet more ambitious proposal for a rotating cylinder one km long and 300 m in diameter that 
would be home to 20,000 people. In 1964 Dandridge Cole and Donald Cox suggested hollowing out an 
ellipsoidal asteroid about 30-km long, rotating it about its major axis to generate artificial gravity, 
reflecting sunlight inside with mirrors, and creating on the inner shell a pastoral setting as a permanent 
habitat for a colony. 

In his novel Rendez-Vous With Rama (1973) Arthur Clarke took Romick’s kilometer-long 
cylindrical habitat and increased its size by an order of magnitude, combining it with the concept of the 
“generation ship” as a vehicle for interstellar travel at an achievable velocity. The vehicle called Rama 
was a dome-ended cylinder 50-km long and 16 km in diameter, rotating at one 0.25 rpm to produce a 
near-terrestrial acceleration on the interior of its hull. Huge banks of lights in three vast trenches running 
the length the cylinder, 120 degrees apart, lighted that interior. A ten-km-wide “Cylindrical Sea” at its 
equator divided it into two sections.  

Another futurist thinker who has considered space stations with artificial gravity is Gerard K. 
O’Neill, an American physicist at the Institute for Advanced Studies, Princeton. In 1969, O'Neill began to 
work out a strategy for the future expansion of the human race into space. He championed the idea of 
orbital settlements in several papers (O’Neill 1974) and his book The High Frontier (1972). O'Neill first 
envisaged the construction of a space colony within a self-sufficient sphere, some 500 m in diameter. His 



Island One space sphere, rotating at 2 rpm would generate an Earth-normal artificial gravity at its equator. 
An advantage of the sphere is that it has the smallest surface area for a given internal volume, so 
minimizing the amount of radiation shielding required.  

O'Neill later built plans to orbit permanent colonies at the L4 and L5 Lagrange points in near-
Earth space, culminating in a structure 32-km long and 3.2 km in radius, and capable of permanently 
supporting hundreds of thousands (Island Two) or even millions of inhabitants (Island Three). Normal 
Earth gravity would be achieved by rotating the colony at a rate of 0.53 rpm. The interior of the cylinder 
would have three inhabited “valleys” each containing lakes, forests, towns, and so forth (Figure 3-11). 
Three large mirrors, capable of being opened and closed on a regular day/night basis, would shine 
sunlight into the valleys, and a large parabolic collector at one end of the cylinder would focus solar 
energy onto steam-driven generators to provide the colony’s electricity needs. His large orbiting space 
colony consisted of an immense rotating aluminum cylinder, the structure of which would be built of 
material mined from the Moon or asteroids. 
 
Figure 3-11. Dr. Gerard O’Neill’s vision of a space colony with artificial gravity. The cylinder sits with one hub pointed so that a 
maximum shielding affect is gained in the direction of maximum solar storm flux. Visiting spaceships dock at the center of the 
hub. There is zero gravity at the axis, so this area could be used for human powered flight, 0-g sports or microgravity research. 
Artificial gravity is generated on the inner rim of the cylinder.  

1.3 Formal Studies 
Clarke and O’Neill’s “space arks” sparked fire with both the science-fiction readership and the 

scientific community. Suddenly, mere space stations like the NASA Skylab were no longer enough. 
Once-conservative scientists began setting their sights higher and their goals loftier. Artificial worlds 
were now the order of the day. 

The first formal studies into the feasibility of man-made worlds were conducted in 1975 with a 
10-week program in systems engineering design conducted by NASA and the American Society for 
Engineering Education. This resulted in a 185-page report called Space Settlements: A Design Study 
(Johnson and Holbrow 1977). It proposed several types of space habitats: an updated version of the 
O’Neill Island One sphere, a domed cylindrical design inspired by Clarke’s Rama and a ring-shaped 
design that expanded Von Braun’s space wheel into a self-sufficient “space island.” 

NASA selected the new space wheel or “toroidal habitat” design, submitted by Stanford 
University students and later dubbed the Stanford torus to recognize their contribution, as the most 
feasible of the proposed designs, making it the focus of the study. Deemed both ambitious and achievable, 
the Stanford torus was a cylindrical tube 130 m in diameter and 5.6-km long, bent into a circle and joined 
end-to-end to form a wheel 1.8 km across. The shape and design of the Stanford torus is perfect for 
creating artificial gravity. Spinning the torus like a giant centrifuge at exactly 1 rpm generates centripetal 
acceleration toward the exterior that feels just like Earth gravity to the inhabitants of the colony. The 
Stanford torus would accommodate 80,000 people in a near-Terrestrial environment complete with 
suburban villages, parks, and woodlands with free-running streams (Figure 3-12). 
 
Figure 3-12. Artist conception of the inside of a Stanford torus, with a radius of 1.8 km and spinning at 1 rpm to produce a 1 g 
artificial gravity environment. Photo courtesy of NASA. 
 

Following these pioneering ideas, the majority of early space station concepts created artificial 
gravity one way or another (see Figures 2-12, 2-13, and 2-14) in order to simulate a more natural 
environment for the astronauts. During the Mercury and Gemini program, the astronauts had no trouble 
doing activities as long as they were inside the spacecraft, but they experienced difficulty when carrying 
out extravehicular activities (spacewalk or EVA). Only later, it was discovered that training for EVA 
could be reasonably achieved on Earth in simulations, such as neutral buoyancy in a water tank. At the 
time, artificial gravity in an orbital station was seen as a situation “where we [NASA] do not have to train 



the people, where we would be able to accommodate a greater variety of experimenters and not to have to 
end up training for every task prior to flight” (Faget and Olling 1968).  

However, the concept of a rotating spacecraft or two spacecrafts connected by a tether presents 
serious design, financial, and operational challenges for a maneuvering space station. In more recent 
studies, emphasis has been placed on reducing the artificial gravity level, reducing the radius, and 
increasing the rotation rate (Loret 1963, Shea 1992). However, all these trends introduce new problems. 
First, the surest artificial gravity solution is clearly one that produces a gravito-inertial environment close 
to that on Earth. It remains to be determined whether a lesser gravity level will suffice. And second, 
reducing the radius and increasing the rotation rate introduce potential problems associated with gravity 
gradient and Coriolis forces (see Chapter 2, section 3), such as disorientation, and impaired movement 
and locomotion. These problems might in turn compromise the conditions of living and working in a 
rotating environment.  

An alternative to a rotating spacecraft is in-flight exposure to artificial gravity within a small 
internal centrifuge. A 2-m-radius centrifuge permits subjects to stand upright and even walk within its 
limited confines. Of course, the head is then close to the center of rotation and a significant gravity 
gradient appears in the head-to-foot direction. As the radius shrinks even further to less than 1.5 m, the 
taller subjects can no longer stand erect but must assume a squatting or crouching posture. In order to 
generate 1 g at the subject’s feet, such a short-radius device would also have to spin much faster than a 
large continuous system, and would produce significant Coriolis forces and motion sickness stimuli if the 
head is moved, at least until adaptation occurs. 

However, just for other physical stimuli, there must certainly be some dose-response relationship 
between the amplitude and duration of the gravity level and the physiological body functions, which 
remains to be determined (Young 1999). Although our current knowledge is limited, it is very likely that 
humans do not need a continuous exposure to 1 g to remain healthy. As part of our normal circadian 
rhythm, the very gravity dependent processes that result in body fluid loss and bone deconditioning are 
probably turned off during normal sleeping hours (Diamandis 1997, Vernikos 2004). Furthermore, with 
the use of a centrifuge for short periods, there is no reason to be restricted to 1 g: the exposure might be as 
high as 2 or 3 g in periods of perhaps 1 hour daily or several times per week, just enough to deliver 
adequate stresses on the bone, muscle, cardiovascular, and sensory-motor systems. An on-board human 
periodic or intermittent small centrifuge therefore presents a realistic near-term opportunity for providing 
artificial gravity during planetary missions. Note that the physiological responses to continuous Mars 
gravity (0.38 g) exposure, such as anything other than 1 g, are unknown. If it turns out that substantial 
physiological deconditioning occurs at Mars gravity, then intermittent artificial gravity may be required to 
protect crews during long stays on the surface of Mars as well. 

The potential use of 1.5 to 2-m-radius centrifuges for intermittent artificial exposure to astronauts 
has been validated in numerous ground-based studies as an effective way to overcome the deconditioning 
of bed rest. The main results of these studies are reviewed in the flowing section. 

2 EXPERIENCE WITH ARTIFICIAL GRAVITY 
Despite the long-standing interest in artificial gravity, experimental evidence from space is very 

limited. A few space missions early in the space program were devoted to animal studies. Rats were 
centrifuged continuously at 1 g for several days and showed no deconditioning. Hopefully, the planned 
2.5-m-radius centrifuge on the ISS will afford the opportunity to examine the adequacy of various levels 
of artificial gravity in protecting rodents during spaceflight. Human experiments with artificial gravity are 
even more limited. They include anecdotal reports of the crew on the lunar surface, during space missions 
with tethered and spinning vehicles, during orbital maneuvering systems burn, or when riding eccentric 
rotating chairs and sleds used by scientists for investigations of the vestibular system in orbit.  



2.1 Flight Animal Experiments 
The Soviet space research community expressed an early and intense interest in artificial gravity 

and, in 1961, began testing rats and mice in the 25-s weightless periods of parabolic flight. Animals 
showed normal appearing posture and locomotion during brief periods at 0.3 g, thus setting this as a 
minimum g requirement for locomotion (Yuganov et al. 1962, 1964).  

The first animals to be centrifuged in space were flown on the 20-day Cosmos-782 mission in 
1975, when fish and turtles housed in containers were centrifuged at 1 g. The center of the containers was 
placed at 37.5 cm from the center of a platform rotating at 52 rpm. After the flight, the centrifuged 
animals were found indistinguishable from their 1-g ground and 0-g flight controls. Furthermore, turtles 
centrifuged at levels as low as 0.3 g showed none of the muscle wasting typical of weightlessness (Ilyin 
and Parfenov 1979).  

A much more extensive investigation was carried out on rats centrifuged during the 19-day 
mission of Cosmos-936 in 1977. Rats were kept in individual cages and were not restrained. Cages were 
placed in a small-radius (32 cm), high-speed (53.5 rpm) 1-g centrifuge (Figure 3-13). Results showed that 
in-flight centrifugation had a protective effect on the myocardium and the musculo-skeletal system, as 
compared to the microgravity-exposed animals. On the other hand, some adverse influences of in-flight 
centrifugation were noted on the visual, vestibular and motor coordination, such as equilibrium, righting 
reflex and orientation disorders. These deficits may have been the result of the high rotation rate of the 
centrifuge and the high gravity gradient (Adamovich et al. 1980). 
 
Figure 3-13. Centrifuge for housing rats on board the Cosmos missions. Adapted from Adamovich et al. (1980). 
 

In another series of experiments, four rats were rotated on suborbital rockets during a 5-min 
period of free fall. A special motor rotated the rocket at 45 rpm about its longitudinal axis, creating a 
variable artificial gravity field of 0.3 to 1.5 g along the boxes that housed the rats. The rats’ movements 
recorded on film showed than one rat stayed where the artificial gravity was about 0.4 g, whereas the 
other three settled down where the artificial gravity was 1 g (Lange et al. 1975). 

Small radius centrifuges (with high rotation rate) have also flown in the Spacelab of the Space 
Shuttle or in the Skylab, Salyut, and Mir space stations, to conducted experiments on bacteria, cells, and 
other biological specimens. Results showed that microgravity effects, especially at the cellular level, may 
be eliminated by artificial gravity (see Clément and Slenzka 2006 for review). 

The current plans for the ISS include a module for a 2.5-m-radius centrifuge to carry up to eight 
modules for rodents, fish, and eggs (Figure 3-14). This variable gravity animal centrifuge not only serves 
as a 1-g control for the 0-g experiments, but also allows exploring the entire range from 0.01 g to 1 g for a 
variety of species. Such device would afford the opportunity to examine the adequacy of various levels of 
artificial gravity in protecting rodents during spaceflight. It would be very unfortunate if this centrifuge, 
which is the heart of the gravitational biology flight program, were to be eliminated from the ISS 
program. Not only is it essential for basic research, but it also forms the basis for understanding the 
physiological effects of short radius artificial gravity in a manner needed for effective human artificial 
gravity prescription.  

Finally, it is worth to mention the efforts of the students from the Massachusetts Institute of 
Technology (MIT), and the Georgia Institute of Technology who propose to study the effects of Mars 
gravity on mice on board an unmanned biosatellite. Their project of Mars Gravity Biosatellite is a 400-kg 
biosatellite carrying 15 mice housed in individual life support systems that will rotate about its central 
axis, providing 0.38 g outwards against a curved floor. After 5 weeks in low Earth orbit, the re-entry 
capsule will separate from the primary spacecraft to return the mice safely to a landing zone in the 
Australian desert. The biosatellite provides autonomous life support capabilities and data telemetry or 
storage from on-board experiments. The comparison between the deconditioning of the mice in the Mars 
Gravity Biosatellite and in previous microgravity space missions should provide valuable data about the 
effects of partial gravity on physiological functions. 



 
Figure 3-14. A 2.5-m centrifuge is currently planned to be housed in the Centrifugation Accommodation Module developed 
jointly by JAXA and NASA for the ISS. This photograph of a test of such a centrifuge at the NASA Ames Research Center shows 
the habitats that house various biological specimens, from cells to large plants to rodents. Photo courtesy of NASA. 
 

2.2 Human Space Experience  
No formal human artificial experiments were performed in space during the first 40 years of the 

space age. During the earliest years of human spaceflight, the major physiological disturbance involved 
space motion sickness and this was of concern only for the first few days in orbit. After the Apollo 
missions, the NASA flight surgeon position was the following: “The magnitude of the motion-sickness 
problem experienced by astronauts to date does not appear to suggest clearly the need for design and 
incorporation of artificial gravity system in near-future space vehicles” (Berry 1973). The debilitating 
effects of weightlessness on the bone, muscle, and cardiovascular system were demonstrated on the 
longer Skylab missions in the early 1970s and later on the long-duration Salyut and Mir flights. However, 
it was believed that in-flight exercise, augmented by resistance training and fluid loading, would solve the 
problem. As time passed, the opportunities for human centrifuges or rotating spacecraft in orbit 
disappeared.  

The Gemini-11 mission in 1966 offered the first chance to turn artificial gravity science fiction 
into fact. Half the Gemini program had passed, however, before NASA got around to planning tethered 
vehicle flights. When NASA planners listed tethered flight as a mission objective, they first thought of it 
as a way of evaluating the tether as an aid to station keeping, but it might also be a means of inducing 
some degree of artificial gravity. The minimum rotation rate depended on whether the tethered activity 
was intended primarily for formation flying or for achieving gravity. NASA decided to try for both, 
although it would settle for “an economical and feasible method of long-term, unattended station 
keeping”, and chose a 36-meter Dacron line (Wade 2005). 

An astronaut tethered an orbiting Agena rocket casing to the Gemini-11 spacecraft during a 
spacewalk and the two vehicles were put into a slow spin (see Figure 2-03). The rotation rate was about 
0.15 rpm. At a distance of about 19 m from the center of rotation, the Gemini cabin and its crew 
(astronauts Gordon and Conrad) experienced 0.0005 g of artificial gravity. When the astronauts put a 
camera against the instrument panel and then let it go, it moved in a straight line to the rear of the cockpit 
and parallel to the direction of the tether. However, the crew, themselves, did not sense any physiological 
effect of gravity. After they had been rotated for 2½ orbits around the Earth (about four hours), the pilots 
ended the exercise by jettisoning the spacecraft’s docking bar. All in all, they reported it had been “an 
interesting and puzzling experience” (Wade 2005). 
 It is now known that Sergey Korolev also had a project for an artificial gravity experiment in 
1965-1966 (Harford 1973). As mentioned above, his plan was to deploy a tether between a Voskhod 
vehicle and the spent last stage of its booster, and rotate both vehicles, thus providing artificial gravity in 
the crew compartment. The flight was planned to last for 20 days to definitively upstage the Americans. 
The crew would have included a pilot and a physician (Volynov and Katys), and artificial gravity 
experiments would have been conducted for 3-4 days of the flight. However, after the unexpected death 
of Korolev in January 19966, the Soviet space program was in crisis. This mission was postponed to 
February 1966, with the deletion of the artificial gravity experiment, before being definitely cancelled 
(Wade 2005). 

No further spacecraft artificial gravity tests have been conducted. Since then, the only 
opportunities for artificial gravity human experiments in weightlessness have come from anecdotal 
reports by the crew, and from neurovestibular system investigations utilizing controlled, although short-
lasting, linear accelerations.  

For example, during the Skylab missions, the crew took advantage of the large open compartment 
to run around the curved circumference, imitating the jogger in Stanley Kubrick’s film. The astronauts 
produced a self-generated artificial gravity by running (see the video at the following URL site: 



http://www.artificial-gravity.com/Skylab-clip2.mpg). They reported no difficulty with either locomotion 
or motion sickness during this exercise (Conrad and Klausner 2005).  
 In late 1960s, tests were also conducted in parabolic flights to define artificial gravity 
requirements for a space station, and to assure that the crew could perform well in reduced gravity. 
Parabolas were flown at 0.1, 0.2, 0.3, and 0.5 g during about one-half minute each. The tests subjects, 
who had previously flown several hundreds of parabolas in reduced gravity, carried certain predefined 
tasks. These tasks included walking while carrying small and large containers, tightening bolts, 
connecting and disconnecting electrical equipment, and pouring water back and forth between two 
containers. These tests, although preliminary in nature, indicated that 0.2 g provided a much better 
environment for such tasks than did 0.1 g. At gravity levels greater than 0.2 g, very little gain in 
performance was indicated. Furthermore, the test subjects reported that at 0.5 g they felt as sure of 
themselves and as comfortable as they did at 1 g (Faget and Olling 1968). 

In a European Space Agency (ESA) linear acceleration experiment on board the Spacelab D-1 
mission in 1985 subjects were oscillated in a sinusoidal fashion on a linear sled at frequencies between 
0.18 Hz and 0.8 Hz generating a peak linear acceleration of 0.2 g (Figure 3-15). The acceleration could be 
in either the interaural (Gy) or the longitudinal (Gz) direction, with ±Gy directed to the right or left 
shoulder, respectively, and the ±Gz directed head-to-foot or foot-to-head, respectively (for the definition 
of axis and direction, see Figure 2-02). The fundamental result was that the test subjects in microgravity 
did not perceive linear Gz accelerations of less than 0.2 g in magnitude as artificial gravity (Arrott et al. 
1990).  
 
Figure 3-15. The ESA linear sled on board the Spacelab D-1 mission could generate linear accelerations ranging from 0.2 g to 1 
g. Due to the limited track length (2.5 m), sustained constant exposure was only possible for very low (<0.05 g) acceleration 
levels. Perception studies involved sinusoidal profiles with the subjects behind accelerated back and forth in either the interaural 
(sideways) or longitudinal (forward-backward) directions. Photo courtesy of ESA. 
 

Another experiment conducted during the Spacelab International Microgravity Laboratory (IML-
1) mission flown on STS-42 in 1992, four subjects were spun on a rotator in pitch and in roll (Figure 3-
16). The head of the subjects was 0.5 m off-center experiencing an acceleration of 0.22 g (–Gz), while the 
feet were on the other side of the rotation axis, experiencing an acceleration of 0.36 g (+Gz). No unusual 
inversion phenomena were reported, indicating that the artificial gravity stimulus of –0.22 g at the head 
did not provide a vertical reference in any of the test subjects (Benson et al. 1997).  
 
Figure 3-16. The Microgravity Vestibular Investigations rotator flown on STS-42. With the subjects being spun in pitch (as seen 
here) or in roll, because the axis of rotation was at about the center of mass, the centrifugal force (0.22 g) exerted at the head 
was directed foot-to-head (-Gz), whereas the centripetal acceleration exerted at the feet was directed head-to-foot. Photo 
courtesy of NASA. 
 

During the Neurolab mission frown on STS-90 in 1998, a systematic evaluation of the effects of 
artificial gravity in humans was conducted using the ESA off-axis rotator, a short-radius centrifuge with a 
variable radius of 0.5 to 0.65 m that was capable of generating artificial gravity levels of 0.5 and 1 g. The 
artificial gravity forces were applied through the subject’s ±Gy or –Gz axis for seven minutes at a time 
(Figure 3-17). Eye movements and perception recorded during the artificial gravity events provided both 
objective and subjective data. The experiment indicated that the test subjects perceived sustained levels of 
0.5 g and 1 g as artificial gravity (Clément et al. 2001). 
 
Figure 3-17. The off-axis rotator (also known as the “Visual and Vestibular Investigation System” or VVIS) developed by ESA 
for the Neurolab mission (STS-90). In this orientation, the axis of rotation was at hip level. During centrifugation on Earth, the 
subjects had the sensation of a head-down tilt of 27 deg (at 0.5 g) or 45 deg (at 1 g). In microgravity, the centripetal acceleration 
was the only acceleration stimulus and the subjects had the illusion of standing on their head. Photo courtesy of NASA. 
 

Although the threshold for perception of linear acceleration in humans is on the order of 0.007 g 
(Benson et al. 1986) the threshold for perception of artificial gravity by astronauts in space is, based on 



the data we have so far, somewhere3 between 0.22 and 0.5 g. Perhaps it is not necessary to perceive 
artificial gravity at the cognitive level for it to be effective as a countermeasure. However, for purposes of 
defining the comfort zone of astronauts in an artificial gravity environment (whether it’s a rotating 
spacecraft or on-board centrifuge), it would be extremely useful to determine the threshold value of 
perceived artificial gravity. Unfortunately, there are no plans to put a human centrifuge on board the ISS, 
at least in the near term.  

In fact, the astronauts who visited the lunar surface were exposed to a reduced gravity on the 
Moon (0.16 g) for several hours or days during their 12-day space missions. They reported having 
“difficulty in determining just what straight up and down was”. During Apollo-11, the lunar module floor 
on the Moon surface was tilted 4.5 deg from the horizontal, but the crew did not perceive this tilt. During 
their spacewalks on the Moon, the astronauts lost their balance several times, in most cases because they 
could not evaluate the slope of the terrain. They also reported this problem “caused our cameras and 
scientific experiments sometimes not maintaining a level attitude we expected”.  (Godwin 1999).  

Interestingly, less decrease in heart size and less increase in heart rate were found postflight in the 
Apollo astronauts compared with Skylab and Shuttle astronauts (Johnston et al. 1975, Johnston and 
Dietlein 1977, Nicogossian et al. 1994). Unfortunately, there was no comparison between the results 
obtained on those astronauts staying on the Moon and those who stayed in orbit around the Moon. So, it 
cannot be firmly concluded that the exposure to lunar gravity during the course of their exploration 
missions was helpful in reducing cardiovascular deconditioning. All of these astronauts were highly 
trained fighter jet pilots in exemplary physical condition. Their long hours flying high-g maneuvers in jet 
aircraft may have increased their orthostatic tolerance and promoted the development of adaptive 
protection in these individuals, as compared to other Skylab and Space Shuttle astronauts (Clément and 
Pavy-LeTraon 2004). 

Interestingly, the four subjects tested intermittently in the on-board centrifuge during the 
Neurolab Spacelab mission mentioned above, seemed to have achieved some measure of resistance to 
postflight orthostatic instability and did not show the usual decrease in vestibular sensitivity to tilt. The 
other three crewmembers on that mission had orthostatic intolerance. Based on the result that about 64% 
of astronauts experience profound postflight orthostatic intolerance (Buckey et al. 1996), the probability 
that four crewmembers on the same flight do not exhibit orthostatic intolerance by chance is 
approximately 1 in 60 (0.364) (Moore et al. 2000). During the flight, the centrifuge runs cumulated at 
about 10 minutes at 0.5 g or 1 g every other day, for a total duration ranging from 45-60 minutes during 
the 16-day mission. Obviously, more experiments are needed to validate these results. 

3 GROUND-BASED CENTRIFUGE EXPERIMENTS 
Despite the absence of flight-test opportunities, several laboratories worldwide have continued 

ground-based studies of the efficacy and acceptability of large scale rotating artificial gravity 
environment. Of course, all of these investigations are hampered by the presence of the steady 
gravitational pull. On Earth, gravity adds to the centrifugal force vectorially and produces a net specific 
gravito-inertial force (GIF) that is tilted relative to the horizontal. In weightlessness, the artificial gravity 
level is equivalent to the centrifugal force (Figure 3-18). 

Ground simulations have shown that humans are extremely sensitive to rotation. Although few 
adverse effects are present when rotation rate is less than 1 rpm, higher rates produce motion sickness 
(similar to that occurring during the acute period of adaptation to weightlessness) as a result of the 
unusual pattern of vestibular stimulation under these conditions. As a neurovestibular countermeasure 
could likely be used to pre-adapt the posture, locomotion, sensory-motor coordination, and motion 
perception of crewmembers for return to planetary gravity. However, the Coriolis effects on inner ear 
endolymph flow and on moving limbs create disorientation, nausea, vomiting, and loss of coordination. 

                                                      
3 It is interesting to note that the human factor design envelope derived from rotating studies also suggests a lower 
limit of 0.3 g (see Chapter 2, Section 3.4). 



Unless the head motion are restrained or a dual-adaptation to both microgravity and artificial gravity 
environment occurs, motion sickness can be a serious problem.  
 There is not a clear consensus in the definition of short- and long- radius centrifuges in the 
literature. Distinction can be made on radius length, gravity gradient, or subject mobility. The latter 
parameter will be used in this book. By long-radius centrifuge, we mean a device in which a subject is 
completely free to move about, whereas a short-radius centrifuge is one where the subject is immobile, 
i.e., either strapped in or otherwise constrained. 
 
Figure 3-18. Drawing illustrating the difference between the physical effects of centrifugation on Earth (A) and in space (B). On 
Earth, the gravito-inertial force (GIF), i.e., the resultant of gravitational and centrifugal forces, is tilted relative to the plane of 
rotation. In space, artificial gravity (AG) is aligned with the plane of rotation. Also shown is the gravity gradient in both 
conditions. For example, in this design and subject posture, the AG level is 1 g at the feet and 0.38 g at the head for a rotation 
rate of 20.8 rpm. 
 

3.1 Long-Radius Centrifugation 
The earliest of the extensive tests of sustained rotation were conducted in the Naval Medical 

Research Laboratory in Pensacola, beginning in 1958. The Slow Rotating Room (SRR) had a 5-m-radius 
with complete living facilities, in which subjects could live for periods ranging from 1 day to 3 weeks. 
Rotation rates ranged from 1 to 10 rpm, with the floor of the SRR staying horizontal. Initially, most 
subjects developed motion sickness symptoms when they made head movements at room rotation rates in 
excess of 3 rpm and, through that experience, learned to restrict them. Incremental increase in the speed 
of the room was employed. After several days, most subjects were able to make head movements without 
nausea at rotation rate up to 6 rpm. Only some of the subjects could go further to move comfortably at 10 
rpm.  

Research was also performed to examine the problem of adapting the postural system to a 3-rpm 
run. Like for motion sickness, their balance control was initially disrupted on entering the SRR, but it 
recovered within 3-4 days. Then, most subjects were able to walk on thin rails about as well as Earth-
normal, throw darts, and pour coffee without having to think about motor control. They also performed 
watch-keeping tasks within normal limits (Guedry et al. 1964).  

When the SRR was stopped after 12 days, subjects felt an after-effect and an erroneous motion 
sensation during head movements. Their balance control was again disrupted for 3-4 days. These effects 
were stronger after runs at 10 rpm than after runs at 3 rpm (Graybiel et al. 1965). 

The investigators concluded from these studies that humans can adapt to rotation rate of 3 rpm, 
and that a 14-day period of rotation at this velocity causes no significant changes in general condition or 
performance. In contrast, no adaptation took place when subjects were rotated at 10 rpm for 12 days, 
implying that a 10-rpm rotation rate is close to the upper threshold of endurance.  

As a next step, ways of adapting humans to rotation at 10 rpm were investigated through 
incremental increases in rotation speed over time. Symptoms of motion sickness at 10 rpm, as well as 
impaired balance, were prevented by increasing rotation rate in nine approximately 2-day stages over the 
course of 16 days (Graybiel et al. 1969). Results also indicated that the time needed to adapt can be 
shortened greatly by making many specific head movements. The higher rotation rate, the more difficult 
the adaptation, but adaptation to 10 rpm was possible as long as rate-increase increments were held to 1-2 
rpm with a period of 12-24 hour at each increment (Faget and Olling 1968). The time needed for this 
adaptation might therefore prove to be too long for practical use during spaceflight. However, anti-motion 
sickness drugs could then be used to attenue motion sickness while the terminal velocity is more rapidly 
achieved (Lackner and DiZio 2000b). 

Interestingly enough, during the long-duration SRR runs periodic 10-15 minutes stops were 
required for re-provisioning. Over time, the on-board experimenters who helped in this activity made 
transitions between the stationary and SRR rotation without experiencing motion sickness or disruptions 
of movement control. They showed perfect dual-adaptation (Cohn et al. 2000, Lackner and Graybiel 



1982), thus indicating that is is possible to be simultaneously adapted to rotating and non-rotating 
environments. Also, in all the subjects, there was retention of the adaptation to the SRR for several days, 
which implies that transitions from weightlessness to rotation should be acceptable under certain 
conditions (Graybiel and Knepton 1972).  

Beginning in the 1960s a major ground research program on artificial gravity was conducted at 
the Institute for Biomedical Problems in Moscow. Their earliest tests in the MVK-1 small rotating 
chamber at speeds up to 6.6 rpm allowed rotating one or two subjects for up to a week. It was followed by 
the roomier 10-m radius Orbita centrifuge, capable of rotating two to three people for several weeks at 
speeds up to 12 rpm. The longest tests were for 25 days at 6 rpm.  

The initial exposures produced the expected disturbance of dizziness, equilibrium, and 
coordination. Within an hour, the usual pattern of motion sickness symptoms occurred, including 
vomiting in some cases. In 4-5 hours, subjects also complained of drowsiness and headache. Three 
periods of vestibular adaptation were distinguished for these long-duration exposures. The first 1-2 days 
were characterized by severe motion sickness. This was followed by a week during which the nausea and 
related acute symptoms disappeared, but drowsiness and headache remained. Finally, after the first 7-10 
days, subjects showed immunity to motion sickness, even when additional vestibular stimulation was 
provided.  

As found in Graybiel’s SSR studies in Pensacola, the severity of motion sickness symptoms and 
the time to adapt to prolonged rotation on the Russian small rotating room MVK-1 were related mostly to 
rotation rate. There was an absence of any motion sickness symptoms at 1 rpm, moderate symptoms at 1.8 
rpm, and marked symptoms at 3.5 rpm. On the larger Orbita centrifuge, however, symptoms appeared 
only above 1.8 rpm. Head movements brought on discomfort in all cases (Kotovskaya et al. 1981).  

The authors also report the following: “cardiovascular function remained within normal limits, 
[…] no significant sleep disturbances were noted in the long-rotation environment, […] all assignments 
were completed even in the presence of pronounced illness, and no decline was noted in short-term verbal 
memory” (Shipov 1977). 

These experiments with long-radius centrifugation suggest that all of the unexpected sensations 
are proportional to the rotation rate. Almost all subjects can adapt quickly to work in a 3-rpm rotating 
environment. With higher rotation rate, however, the subjects will experience symptoms of motion 
sickness and disturbances in postural equilibrium, the extent of which are a function of the rotation rate. 
Nevertheless, adaptation can be achieved under these conditions in 6 to 8 days, and the remained of the 
stay in a rotating environment is characterized by normal health and performance.  

These studies in the 1960s were actually quite preliminary and involved a limited number of 
subjects (a total of only 30 subjects for the SRR in Pensacola). At the time, there was no attempt to 
identify optimum exposure and training strategies for adapting people to rotating environments. Also, 
subjects in the SRR tended to avoid moving, especially at higher rates of rotation. Recent experiments 
have demonstrated that complete adaptation to rotation rates as high as 10 rpm can be achieved within 
minutes if repeated voluntary movements are made, so that the central nervous system can anticipate the 
forthcoming Coriolis forces (see Lackner and DiZio 2000b for a review). The subjects in the SRR in the 
1960s did not make movements that would have provided experience with Coriolis forces. Consequently, 
it is not surprising that these subjects failed to fully adapt at high rotation rates. In fact, Lackner and 
DiZio (2000b) conclude their review by expressing a need for a reevaluation of these ealier SRR studies. 
In particular they state: “Concerns that it would be difficult if not impossible to adapt to Coriolis forces 
generated by movements made in a vehicle rotating at more than 3 or 4 rpm have turned out to be 
unfounded. Everyday reaching and walking movements typically involve simultaneous body turning and 
generate higher levels of Coriolis forces than would be elicited by body movements in an artificial gravity 
environment rotating at 10 rpm”. 



3.2 Short-Radius Centrifugation 
More recent investigations have assessed the ability of subjects to avoid motion sickness during 

head movements while rotating at the high velocities associated with short-radius centrifugation. 
Antonutto et al. (1993) in Udine found that subjects who were pedaling on a bicycle-powered short-arm 
centrifuge were able to make head movements without acute motion sickness while rotating at 19-21 rpm. 
Young, Hecht, and colleagues used the 2-m radius centrifuge at MIT (see Figure 3-01) to show that most 
subjects could adapt both their eye movements and motion sickness symptoms by rotating at 23 rpm 
(Young et al. 2001). Both the Udine and the MIT studies were conducted at rotation rate sufficient to 
produce 1 g of horizontal centrifugal force or a net GIF of 1.4 g. In the Udine centrifuge, the GIF was 
aligned with the subject’s, head-to-foot (Gz) axis, whereas in the more provocative MIT studies, the 
subject remained horizontal.  

The Coriolis forces associated with limb movements, head movements, and walking in a rotating 
environment are initially both surprising and disturbing. However, in almost all cases, appropriate new 
motor control strategies are developed, so that subjects can adapt to the new environment and no longer 
are even aware of the unusual forces. Extensive experiments in the Brandeis University rotating room 
demonstrated the remarkable ability to adapt to unusual environments (Lackner and DiZio 2000a). A 
measure of dual adaptation apparently exists, so that subjects can switch from the rotating to the non-
rotating environment with minimal relearning (see Chapter 4, section 5.2).  

The adequacy of artificial gravity in stimulating the cardiovascular system has been investigated 
in ground studies. In most studies, the detrimental effects of weightlessness are simulated by sustained 
bed rest, often at 6 deg of head-down tilt and occasionally by partial submersion in water to approximate 
the fluid shift better that occurs in space. In a pioneering study in 1966, White and his colleagues at 
Douglas (Figure 3-19) showed that intermittent exposure to 1 g or 4 g on a 1.8-m-radius centrifuge was 
effective in alleviating the usual decrease in tolerance to standing (orthostatic intolerance). Exercise 
produced little additional benefit (White et al. 1965). 
 
Figure 3-19. Short arm centrifuge utilized during the Douglas Aircraft Co.'s studies. Two subjects were tested at the same time. 
The subjects' head was very slightly off-center and they were lying on their side. Measurements are in inches (White et al. 1965). 
Photo courtesy of NASA. 
 

The principal cardiovascular reactions of interest for centrifugation are the venous tone, 
especially in the legs, and the baroreflex regulation of blood pressure. For a short-radius centrifuge small 
enough to accommodate a subject only in a squatting position, the centrifugation does little to encourage 
venous return by stimulating the muscles. However, the IBMP ground centrifuge tests (Shulzhenko et al. 
1979) demonstrated that subjects who were deconditioned by 2 weeks of water immersion could increase 
their post-immersion tolerance to 3 g (+Gz) by intermittent exposure to acceleration on a 7-m-radius 
centrifuge.  

For some time, it was debated whether the intermittent centrifugation conditioned only the 
passive motor tone or whether the body’s active baroreflex to counter the effects of gravity on blood 
pressure was also affected. Burton and Meeker (1992), using a 1.5-m-radius centrifuge intermittently, 
showed that the baroreceptors are adequately stimulated by the centrifugal force. Their slow 
compensation for the hydrostatic pressure drop during rotation permits the tolerance to gradual onset 
acceleration to exceed that to rapid onset acceleration.  

Beyond even the benefit of intermittent acceleration on cardiovascular responses is the effect on 
blood volume. Normally, weightlessness or head-down bed rest produces a fluid shift toward the head 
that in turn leads to fluid loss, including plasma, and a resulting increase in hematocrit. However, Yajima 
and his colleagues from Nihon University School of Medicine in Tokyo (Yajima et al. 2000) showed that 
1 hour per day of 2 g (+Gz) exposures of their subjects, using a 1.8-m-radius centrifuge, was sufficient to 
prevent hematocrit from increasing during a 4-day bed rest period. In other studies, they confirmed the 
effectiveness of intermittent centrifugation on maintaining baroreflex and parasympathetic activity 



(Iwasaki et al. 1998). To prevent motion sickness, the Nihon investigators stabilized the subjects’ head 
during these centrifuge runs.  

The interaction between the cardiovascular fitness enhancement of regular exercise and the 
tolerance built up during centrifugation has also been studied. For example, Katayama et al. (2004) 
showed that cardiovascular fitness could be protected by intermittent artificial gravity exposure in 
individuals exposed to 20 days of head down bed rest. More ground-based studies evaluating the efficacy 
and acceptability of human horizontal centrifugation on long-duration cardiovascular deconditioning are 
detailed in the following chapter. There is, however, a lack of studies on the cardiovascular implications 
of gravity gradient. 

3.3  Human Powered Centrifuge 
Only recently have several research groups begun to explore the potential benefits of artificial 

gravity generated by a human powered centrifuge. With respect to skeletal muscle, data suggest that 
muscles must be mechanically loaded to maintain or increase muscle mass. Similarly, mechanical loading 
(e.g., microstrain) of bone is essential for maintaining or increasing bone density (see Clément 2005 for 
review). Given these perspectives, several authors suggest that passive centrifugation on a short-radius 
centrifuge will not be effective in maintaining skeletal muscle mass and bone density during long 
exposures to microgravity. Hence, as a complement for passive centrifugation, they have pursued the 
development of active centrifugation, where the subjects exercise while being centrifuged, as potential 
multipurpose countermeasures to microgravity. This system has the capacity for studying the effects of 
centrifugation on muscle mass, bone density, and orthostatic tolerance. 

Currently, two general types of ground-based designs have been described in the literature. The 
first of these has been referred to as a human powered centrifuge. Both the NASA-Ames Research Center 
and the University of California Irvine groups have been actively pursuing research on this concept. The 
second approach has been described as a Twin Bike System, and was proposed by di Prampero and his 
colleagues at the University of Udine, Italy (see Chapter 5). 

The Human Powered Centrifuge developed by Greenleaf et al. (1996) at the NASA Ames 
Research Center is a 1.9-m-radius centrifuge fitted with two recumbent rider seats, and can carry one or 
two on-board subjects placed in the seated supine position with their heads near the centrifuge hub. The 
configuration allows for one active on-board subject to power the centrifuge using a modified cycle 
mechanism (Figure 3-20). The cycling activity of the rider is coupled to the rotation of the platform and, 
hence, the development of various gravity levels along the Gz axis. An additional passive on-board rider 
can be carried on the centrifuge at the same time. Alternatively, an off-board operator can power the 
centrifuge by using an upright off-centrifuge bicycle. Centrifugal force up to 5 g at the subject’s feet (Gz) 
is obtained during rotation at 50 rpm. 
 
Figure 3-20. In the Human Powered Centrifuge, the motion of the platform can be powered by the two supine subjects on the 
centrifuge using a cycle mechanism or by an off-board operator using an upright off-centrifuge bicycle. Adapted from Greenleaf 
et al. (1996). 
 

Similarly, in the Space Cycle concept, developed by the Irvine Medical Center at the University 
of California, subjects ride opposite one another: one on a bike and one on a platform (Caiozzo et al. 
2004). However, both the bike and the platform are free to tilt. As one individual pedals, the cycle moves 
in a circular motion around a centralized pole. The motion generates a gravito-inertial force aligned with 
the riders along their long body axis. The rider on the platform can perform various types of resistance-
training exercises, such as running on a treadmill or performing squats (Figure 3-21). Instruments on the 
device report the separate work rates of both subjects. 
 
Figure 3-21. The Space Cycle at UC Irvine generates levels of artificial gravity ranging from 1 to 5 g on both the rider who 
powers the cycle and the rider who performs the squats. Here, the riders are experiencing approximately 3 g. Photo courtesy of 
NASA. 



 
The Twin Bike System proposed by Antonutto and di Prampero (1994, 2000) envisions two 

bicycles mechanically coupled to one another in a counter-rotating fashion. Astronauts would ride the 
bicycles along the inner wall of a cylindrically shaped space module (see Figure 5-06). The angular 
velocity of cycling would then determine the amplitude of the centrifugal vector along the main body axis 
of the rider. Like the human powered centrifuge designs developed by Greenleaf and Caiozzo, the Twin 
Bike System approach also has the potential for overcoming the deconditioning effects of microgravity on 
the musculoskeletal and cardiovascular systems. 

In the past few years, following the impetus given by the new Vision for Space Exploration 
program, dedicated centrifuges for investigating the effects on centrifugation on physiological 
deconditioning during bed rest studies have been developed at NASA (Figure 3-22) and ESA (Figure 3-
23). The objective of these studies is to place test subjects in a 6-deg head-down bed-rest position for 
duration lasting up to 60 days, which simulates the long-term effects of weightlessness on the 
cardiovascular, muscle, and bone function. Typically, one group of test subjects is placed in the supine 
position on these 3-m-radius centrifuges and subjected to various g levels and duration along their 
longitudinal axis throughout the bed rest to periodically simulate a +Gz gravitational environment. 
Another group of subjects is not exposed to centrifugation. After the bed rest, comparison between the 
deconditioning of both subject groups allows to determine the effectiveness of centrifugation as a 
countermeasure. These studies help to develop appropriate prescriptions for using a centrifuge to protect 
crews and to understand the side effects of artificial gravity.  
 
Figure 3-22. The NASA/Wyle Laboratories bed rest centrifuge at the University of Texas Medical Branch in Galveston, Texas, 
USA. During the on-going initial study, 32 test subjects are placed in a six-degree, head-down, bed-rest position for 21 days to 
simulate the effects of microgravity on the body. Half that group spins once a day on the centrifuge to determine how much 
protection it provides from the bed-rest deconditioning. Subjects are oriented radially in the supine position so that the 
centrifugal force is aligned with their long body axis, and while spinning, they “stand” on a force plate, supporting the 
centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allows free translation over approximately 10 cm to 
ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects are positioned 
on the centrifuge but do not spin. Photo courtesy of NASA. 
 
Figure 3-23. The ESA bed rest centrifuge. The centrifuge has two arms with a radius of 2.9 m each. The centrifuge can 
accommodate one subject on each arm. The arms can be equipped with supine beds or recumbent seats. The seats allow placing 
the subjects in a semi-flexed position, a less cumbersome and a more natural position in weightlessness. Photo courtesy of ESA. 
 

Similar centrifuge designs are being used in Russia and Japan (Table 3-01). Other types of 
human-rated centrifuges, albeit with larger radius, are also utilized worldwide in aeronautics or clinical 
environments for aircrew training or for physiological and medical research  
 

Name ocation dius Max Axes L Ra g 
Unilateral Centrifuge Antwerp U, B 0.4 m 0.2 ±Gy g 
Unilateral Centrifuge ampus, 

rlin, D 
.4 m 0 ±Gy Charite C

Be
0 .2 g 

NASA JSC centrifuge A, Houston, US .5 m 1 –Gz NAS A 0 .0 g 
ESA Neurolab Off-Axis 

Rotator 
Toulouse, F 1.0 m 1.0 ±Gy, –Gz MEDES, g 

Short-Radius Centrifuge inai School of 
 York, USA 

.0 m 1 ±Gx, ±Mt S
Med, New

1 .0 g Gy 

Human Centrifuge eis U, Waltham, 
USA 

1.2 m 3.0 g ±Gy Brand

Short-Arm H
Centrifug

uman 
e 

U, Nishi-
i, Japan 

.8 m 3 +Gz Nihon 
Funabash

1 .0 g 

Artificial Gravity Sleeper   Cambridge, USA 2.0 m 1.8 g +Gz MIT
Short-Radius Human 
Centr

ya U, Japan 2.0 g +Gz 
ifuge 

Nago 2.0 m 

Short-Radius Centrifuge oscow, 2.0 m 2.0 +Gz IBMP, M
Russia 

g 



NASA A uman 
Powered uge 

ets Field, USA 2.0 m 5.0 g +Gz 
 

mes H
 Centrif

Moff
 

Space Cycle avis, USA 2.0 m 3.0 g +Gz UC D
ESA Short-Arm Centrifuge Toulouse F .9 m 3 +Gz  MEDES, 2 .5 g 
Twin-Bik em y Udine, I 3.0 m 1.0 +Gz e Syst Universit g 
NASA Short-Arm 
Centr

, Galveston, 3.0 m 3.5 g +Gz 
ifuge 

UTMB
USA 

TNO Desdemona rberg, NL 4.0 m 3.0 ±Gx, 
±Gy, ±Gz 

Soeste g 

Slow Rotation Room U, Waltham, 
USA 

6.7 m 4.0 g ±Gx, 
±Gy, ±Gz 

Brandeis 

Slow Ro oom NAMRL, Pensacola, 7.0 m 3.0 g ±Gx, 
±Gy, ±

tation R
USA Gz 

 
Table 3-01. Short-radius centrifuge facilities utilized worldwide in research projects on artificial gravity, with their radius, the 
maximum gravity level (usua e suject’s feet) and the direction in which this level is exerted. This list is not exhaustive. 
 

4  SUMMARY
While many studies have suggested the production of artificial gravity through rotation to 

counteract the detrimen fects of weightlessness, knowledge of the ability for humans to live and work 
in a large scale rotating artificial gravity environment is limited. The few observations conducted on 
humans in space sug of a centrifugal fo bove 0.3  perceived as 
artificial gravity by the crewmembers. , in these instances, the artificial gravity exposure was 
limited to a few minute  subjects we rom moving their head or body. 

Research conducted in slow rotating rooms on Earth has concluded that humans can adapt and 
live for extended p of time (u  days) to rotation rate as high as 10 rp daptation to 
continuous rotation has also been achiev h shorter exposure duration an igher rotation rates (up to 
23 rpm) by using short-radius centrifugation in which subjects are supine and only able to perform head 
movements.  

Several human centrifuges, with either long- or short-radii and either passive or human powered 
capabilities, are curren ing used to assess the sensory-motor, cardiovascular, and musculo-skeletal 
responses under hypergravity conditi practical objective of these studies is to determine the 
limits for centrifugat n effectiv rmeasure. It is important to stress, however, that ground-
based tests are made with the deficiencies associated with Earth-bound environment. In particular, there 
are notable differences f arth and in space. Both conditions generate a centrifugal 
force in the plane of rotation, but gravity is always present and perpendicular to the plane of rotation in 
the centrifuge on Earth, while the artificial gravity vector is in the plane of rotation in the centrifuge in 
space (see Figure 3- d and bo  will yield a different pattern of stimulation on Earth and 
in space. Given these differences, it is clear that the final assessment of artificial gravity prescription by 
centrifugation can only be carried out in space.  
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