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Executive Summary 
Instrumentation technologies to advance knowledge in fundamental aeronautics and develop 

technologies for safer, lighter, quieter, and more fuel efficient aircraft are being developed by the National 
Aeronautics and Space Administration (NASA) in support of its mission to pioneer the future in space 
exploration, scientific discovery, and aeronautics research. The Sensors and Electronics Branch of NASA 
Glenn Research Center (GRC) has an in-house effort to develop thin film sensors for surface 
measurement in propulsion system research. The sensors include those for strain, temperature, heat flux 
and surface flow which will enable critical vehicle health monitoring and characterization of components 
of future space and air vehicles. 

The use of sensors made of thin films has several advantages over wire or foil sensors. Thin film 
sensors do not require special machining of the components on which they are mounted, and, with 
thicknesses less than 10 μm, they are considerably thinner than wire or foils. Thin film sensors are thus 
much less disturbing to the operating environment, and have a minimal impact on the physical 
characteristics of the supporting components. 

The need to consider ceramic sensing elements is brought about by the temperature limits of metal 
thin film sensors in propulsion system applications. In order to have a more passive method of negating 
changes of resistance due to temperature, an effort is underway at NASA GRC to develop high 
temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan 
and compressor modules on blades. Other applications include on aircraft hot section structures and on 
thermal protection systems. 

The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor 
materials to test for viability and provide a list of possible thin film ceramic sensor materials and 
corresponding properties to test for viability. This goal was achieved by a thorough literature search for 
ceramics that have the potential for application as high temperature thin film strain gauges, reviewing 
potential candidate materials for chemical and physical compatibility with NASA GRC’s 
microfabrication procedures and substrates. 

Based on results of research given in this report, further efforts will focus on the application of 
zirconium nitride, titanium nitride, and titanium diboride strain gauges, doped with gold. The 
microfabricated thin film strain sensors will be developed using MEMS-based fabrication techniques in a 
class 1000 clean room at NASA GRC using physical vapor deposition and photolithography technologies. 
Technical metrics such as sensitivity, stability, repeatability, interference and durability will determine 
whether the sensor is ready for testbed qualifications for qualifying parts or structural elements and verify 
numerical codes, towards application in turbine engines.
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1. Introduction 

1.1 Overview 

To advance knowledge in fundamental aeronautics and develop technologies for safer, lighter, 
quieter, and more fuel efficient aircraft, instrumentation technologies are being developed by the National 
Aeronautics and Space Administration (NASA) in support of its mission to pioneer the future in space 
exploration, scientific discovery, and aeronautics research. These technologies also enable the capabilities 
for long duration, more distant human and robotic missions for the Vision for Space Exploration. 

The Sensors and Electronics Branch of NASA Glenn Research Center (GRC) has an in-house effort 
to develop thin film sensors for surface measurement in propulsion system research. The sensors include 
those for strain, temperature, heat flux and surface flow which will enable critical vehicle health 
monitoring and characterization of components of future space and air vehicles (ref. 1). 

The use of sensors made of thin films has several advantages over wire or foil sensors. Thin film 
sensors do not require special machining of the components on which they are mounted, and, with 
thicknesses less than 10 μm, they are considerably thinner than wire or foils. Thin film sensors are thus 
much less disturbing to the operating environment, and have a minimal impact on the physical 
characteristics of the supporting components. 

1.2 Technology Description 

The need to consider ceramic sensing elements is brought about by the temperature limits of metal 
thin film sensors in propulsion system applications. Longer-term stability of thin film sensors made of 
noble metals has been demonstrated at 1100 °C for 25 hours (ref. 2). The capability for thin film sensors 
to operate in 1500 °C environments for 25 hours or more is considered critical for ceramic turbine engine 
development (refs. 3 and 4). For future space transportation vehicles, temperatures of propulsion system 
components of at least 1650 to 3000 °C are expected (ref. 5). 

Since 1991, there have been many investigations into the application of ceramic thin films for use as 
high temperature thin film strain gauges. One important property to determine the appropriateness of a 
material’s application as a strain gauge is its gauge factor. The gauge factor (γ) of the strain gauge relates 
the sensitivity of the gauge to strain (ε = δl/l), as shown in equation (1). 
 

 γε=
δ

γ=
δ

l
l

R
R  (1) 

 

The apparent strain sensitivity to temperature (δεa/δT) is the temperature coefficient of resistance 
(TCR) divided by the gauge factor plus the difference in the substrate and the gauge material’s coefficient 
of thermal expansion (CTE), as shown in equation (2). The difference in the CTE’s is expected to be less 
than +5 ppm/°C based on the materials that we are exploring, and this will be left as an uncertainty in our 
apparent strain calculation.  
 

 CTETCR
Δ+

γ
=

δ
δε

T
a  (2) 

 

A limitation of thin films used as sensors to measure strain is that their resistance changes as the 
temperature changes. This “apparent strain” can be falsely interpreted as actual strain on the component 
being monitored. For static strain applications for use on gas turbine engines, the current required accuracy 
is ±200 μin/in (με), approximately ±10 percent of full scale, with the goal of ±1 percent accuracy (ref. 6). 
The thin film palladium-chromium alloy strain gauge, developed at NASA GRC for high temperature strain 
measurement application, is stable to 1100 °C, but has a TCR of +135 ppm/°C and an apparent strain 
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sensitivity (δεa/δT) of +85 με/°C, requiring temperature compensation for high temperature static strain 
measurements (refs. 2 and 6) Currently, this compensation is in the form of setting a “ballast” potentiometer 
in a bridge to perform first order elimination of the apparent strain at a particular temperature, but deviations 
from this matched temperature results in measured apparent strain (ref. 7). 

A thin film strain sensor with thermal stability over a wide range of temperatures would allow high 
temperature static measurements as a more passive method of eliminating apparent strain without the 
need for a completion bridge. Ultimately, the goal is to be able to achieve the desired ±20 με accuracy of 
measured applied static strain being no less than 0.1 percent of a total strain measurement (= applied + 
apparent + drift strain), or ±20,000 με. The apparent strain limit of less than ±20,000 με limits the 
temperature sensitivity to be less than ±20 με/°C over the current temperature range. As this goal is 
approached in research efforts, the drift strain (“creep”) will also need to be considered as part of the total 
strain measurement. 

1.3 GRC Research Effort Objective 

The objective of this task is to develop high temperature thin film ceramic sensors to allow the non-
intrusive in-situ measurement of static strain characteristics of engine components at high temperatures. 
These sensors will be applied using Micro-Electro-Mechanical Systems (MEMS) based sensor processing 
technology to allow miniaturized instrumentation and enhance sensor reproducibility and redundancy. 
This group has a deep history in developing sensor systems which can be applied directly on the 
component using MEMS-based techniques. Due to their thin film nature, the sensors have minimal affect 
on the operation of the part or the surrounding air flow. The thin film sensors can be embedded directly 
on the surface of components and thus provide detailed information on surface conditions. 

1.4 Milestones and Deliverables 

The schedule of milestones and deliverables are given in table 1. The dates of the milestones are set 
by resources available for the work involved. Fabrication process optimization for ceramic sensors is 
limited by the ongoing institutional construction in the same building as NASA GRC’s micofabrication 
facility and competition for resources with other projects utilizing the fabrication facility. 

 
TABLE 1.—MILESTONES AND DELIVERABLES 

Date Milestone Deliverable 
June 2006 Identify candidate thin film ceramic 

sensor materials to test for viability 
List of possible thin film ceramic sensor materials and 
corresponding properties to test for viability 

September 2006 Preliminary testing of candidate thin film 
materials for high temperature strain 
measurement applications 

Preliminary data on temperature and strain 
characteristics 

May 2007 Identify viable thin film ceramic sensors Demonstrate viable thin film ceramic sensors in low 
temperature tests 

September 2007 Preliminary high temperature cycling tests 
of viable thin film ceramic sensors  

Preliminary data on temperature and strain 
characteristics 

September 2008 Identify thin film ceramic sensor viability 
for component qualifications 

Demonstrate thin film ceramic sensors under high 
temperature cycling test 

1.5 Organizational Approach 

NASA GRC will lead the MEMS sensor system development, fabrication and characterization, 
interacting with outside centers and contractors as necessary. Responsible participants: 

 

Task Manager: Gustave Fralick (GRC), (216)–433–3645, Gustave.C.Fralick@nasa.gov 
Sensor Design and Testing: Gustave Fralick and John Wrbanek (GRC) 
Thin Film Sensor Fabrication (TFOME Service Pool): Charles Blaha (Jacobs Sverdrup), José Gonzalez 
(Gilcrest Electric) and Kimala Laster (Sierra Lobo) 
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2. Research Efforts and Results 
2.1 Overview 

The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor 
materials to test for viability and provide a list of possible thin film ceramic sensor materials and 
corresponding properties to test for viability. This goal was achieved by a thorough literature search for 
ceramics that have the potential for application as high temperature thin film strain gauges, reviewing 
potential candidate materials for chemical and physical compatibility with our microfabrication 
procedures and substrates. 

2.2 Potential Ceramics as Thin Film Sensors 

A summary of notable materials that have been applied by a variety of investigators as high 
temperature thin film strain gauges for use over 1100 °C (2000 °F) is given in table 2. Using the apparent 
strain sensitivity as a guide, aluminum nitride (AlN), indium-tin oxide (ITO), titanium boride (TiB2), and 
doped and undoped tantalum nitride (TaN) and titanium nitride (TiN) are obvious candidates for use for 
static strain measurements based on previous work reported in table 2. For zirconium nitride (ZrN) and 
hafnium nitride (HfN), no gauge factors were reported, but are attractive since the TCR can be modified 
through the reactive sputtering process. Also attractive for static strain measurements are materials that 
can have TCR modified that have not yet been tested as to their applicability as strain gauges. 

 
TABLE 2.—REVIEW OF HIGH TEMPERATURE THIN FILM STRAIN GAUGE APPLICATIONS 

Gauge 
material 

TCR 
(ppm/°C) 

Gauge factor 
(γ) (δR/R/ε) 

Apparent 
strain 

sensitivity 
(με/°C) 

Maximum 
use 

temperature 
Notes Reference 

Ni-20%Cr 290 2.5 116 700 °C COTS standard 8, 9 

Pd-13%Cr 135 2 to1.4 85 1100 °C NASA standard 2 

AlN –1281 to 109 3.72 to 15 –344 to 29 >1100 °C Al reacted with N 10 

ITO –469 to 230 –6.5 to –11.4 –35 to 72 >1100 °C Oxygen doping 11 

Al:ITO –1200 8 –150 1280 °C Aluminum doping 12 

TiN –143 to 588 --------------- ------------ <2930 °C Ti reacted with N 13 

TiB2 –50 1.4 –36 <2970 °C? Nitrogen doping w/ no 
effect 14 

TiB2 36 --------------- ------------ <2970 °C Ti reacted with B2H6 13 

ZrN 184 to 275 --------------- ------------ <2980 °C Zr reacted with N 13 

TaON –290 3.5 –83 <3000 °C? Ta reacted w/N;  
1% Oxygen 15 

TaN –80 3.5 –23 <3090 °C? Ta reacted with N 16 

Cu:TaN –800 to 200 2.3 to 5.1 –348 to 87 <3090 °C? Ta reacted w/N; Cu 
doping 17 

HfN 90 --------------- ------------ <3310 °C From COTS target 13 

HfC –426 to –110 --------------- ------------ <3890 °C Hf reacted with C2H3 13 

 
Table 3 gives a summary of ceramic mixes used in modifying the TCR in bulk, thick or thin films. 

Ruthenium oxide and derivatives are given for completeness sake, and sublime at too low of temperature 
for use as a high temperature strain gauge. Based on our experience, bulk material that can survive to 
~1650 °C (3000 °C) can survive in film form to ~1100 °C (2000 °F). Doped titanium oxide (TiO), zinc 
oxide (ZnO), antinomy-tin oxide (ATO) and chromium-silicon oxide (CrSiO) films are attractive as static 
strain candidates based on the table 3 summary. 
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TABLE 3.—CERAMIC MIXES USED TO MODIFY TCR IN BULK, THICK OR THIN FILMS 
Ceramic Base Dopant(s) Common name Melting point Reference 

RuO2 Ru O Ruthenium Oxide 1200 °C (s) 18 

M:RuO RuO2 Au, Pt, Pd Ruthenium Oxide Cermet  1200 °C (s) 19 

CuO:RuO RuO2 CuO Ruthenium Cupric Oxide 1200 °C (s) 20 

WAO WO3 AlOx Tungsten Aluminum Oxide 1470 °C 21, 22 

TiO Ti O Titanium Oxide 1750 °C 23 

ZAO ZnO AlOx Zinc Aluminum Oxide 1800 °C?(s) 24 

ZAON ZnO Al, N Zinc Aluminum Oxynitride 1800 °C?(s) 25 

CrSiO Cr Si,O Chromium Silicon Oxide 1800 °C? 26 

ATO SnO SbO Antimony Tin Oxide 1900 °C? 27 

N:ATO ATO N Nitrogen doped ATO 1900 °C? 28 

ITO InO Sn,O Indium Tin Oxide 1900 °C 11 

GITO ITO GaOx Gallium-ITO 1900 °C 29 

Al:ITO ITO AlOx Aluminum doped ITO 1900 °C 12 

CrTiN Ti Cr, N Chromium Titanium Nitride 2900 °C? 26 

AlN Al N Aluminum Nitride 3000 °C 10 

AuTaO Ta Au,O Gold-Tantalum Oxide 3000 °C? 26 

TaN Ta N Tantalum Nitride 3090 °C 30, 31, 32 

TaON Ta O,N Tantalum Oxynitride 3090 °C? 33 

2.3 Chemical and Physical Compatibility 

The candidate ceramic thin films given above have the ability to be reactively sputtered (except for 
TiB2) or co-sputtered to various doping levels as static strain gauges at NASA GRC. Because of the 
reactive nature of our fabrication processes, and the harsh chemical environments that the gauges are 
expected to be exposed to in operation, consideration of film hazards and stability is a concern. Table 4 
gives the results of a search of various components that would be expected to be present in the candidate 
materials in The Merck Index (ref. 34), a reference of chemicals and chemical compatibility. 
Unfortunately, no quantitative reactivity is given in the index, and the description “attacked” in the text is 
assumed to be reactive or very reactive. No information was given on CrSi, TaN, TiN, TiB2, or ZrN by 
Merck, but an extensive search indicates that these materials are believed to have substantial chemical 
resistance and do not pose a health hazard. {Aside: Conflicting MSDS information was found on TiB2, 
with one considering it “an industrial poison” and another as “not a toxic hazard.” Currently, boron 
compounds are considered an irritant to the eyes and throat, borates (derivatives of HBO2) are toxic to 
insects but not mammals, and boranes (borohydrides of (BH)nH4) are deadly (refs. 35 and 36) As a safety 
precaution, we will not reactively sputter borides to prevent the formation of borates.} 
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TABLE 4.—REACTIVITY OF POTENTIAL MATERIALS (REF. 34) 
Material Hazards Attacked by 

Al Powder Flammable HCl, H2SO4, KOH, NaOH 
AlN  water 
Au  A.R. 
Cr Skin and Nasal Irritant HCl, H2SO4 
Cu  HNO3, hot H2SO4, HBr 

In2O3  hot acids 
Pd  HNO3, H2SO4, HCl 

Sb2O3 Skin and Nasal Irritant HCl, H2SO4, HNO3 
Si  HF 

SnO2  hot acids 
Ta  HF 
Ti Flammable hot HNO3 (oxidizing) 

TiO2  hot H2SO4, HF 
W Powder Pyrophoric Steam (oxidizing), HNO3, A.R. 
Zn Flammable, Toxic Fumes HNO3 

ZnO Toxic Fumes KOH, mineral acids 
Zr Flammable HF, Aqua Regia (A.R.), hot KOH 

 
The ability to pattern fine line sensors would require the use of NASA GRC’s in-house sacrificial-

copper lift-off process, limiting for consideration non-toxic materials not reactive to HNO3 and water: Ta, 
Cr, Al, Au, TiO and ITO, as well as (it is assumed) CrSi, TaN, TiN, TiB2 and ZrN. Pure Zr was 
eliminated from consideration due to its reactivity in engine-like environments, and reactively sputtering 
Hf due to the expense compared to similar metals such as Zr. To limit the scope of this study, gold is 
apparently the most stable metal dopant, and nitrogen the most stabilizing gas dopant.  

Another characteristic to take in account in the application of thin film sensors is the coefficient of 
thermal expansion (CTE) and the matching of the film expansion to the substrate expansion due to 
temperature. The bulk properties of candidate materials and (for reference) alumina (Al2O3 - a common 
electrical insulator for superalloys) are given in table 5 (refs. 37 and 38). Though the properties of thin 
films may vary significantly from their bulk form, a general indication of relative properties of films can 
be gained from the bulk properties. Note the large bulk TCR for several of the materials compared to the 
thin film TCR reported in table 2. Also, no resistance data is given since in bulk the oxides are insulators. 
Of the ceramics identified, TiO, ITO, CrSiO, ZrN, TiB2 and TiN appear to have good thermal expansion 
matches for alumina, in the range of ±30 percent (5.6 to 10.7 ppm/°C) to be considered compatible 
(ref. 39). To leverage off of NASA GRC’s recent successes fabricating ceramic films by reactive 
sputtering (ref. 40), the ceramics TiB2, TiN and ZrN optimized with gold and nitrogen doping can be 
examined for application of static strain gauges for the purpose of further development in this AFRL task. 
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TABLE 5.—BULK PROPERTIES OF HIGH TEMPERATURE CONDUCTIVE 
CERAMICS FOR POSSIBLE USE AS STRAIN SENSORS 

(REFS. 37 AND 38) 
Ceramic Density 

(g/cc) 
Melting point 

(°C) 
Resistivity 
at 20 °C 
(µΩ-cm) 

TCR 
(ppm/°C) 

CTE 
(ppm/°C) 

TiO 4.0 1800 n/a n/a 7 to 8 

ITO 7.1 1900 n/a n/a 7 to 8 

CrSiO 3.7 2000 n/a n/a 5 to 8 

Al2O3 3.9 2100 n/a n/a 8 to 8.2 

ZrN 6.97 2980 21 4300 7.24 

TiB2 4.45 2980 14.4 2780 8.10 

TaN 13.8 3090 128 30 3.60 

TiN 5.20 3205 25 2480 9.35 

3. Research Lessons Learned 
3.1 Effectiveness of Research Techniques 

The techniques used to identify candidate thin film ceramic sensor materials in creating a list of 
possible thin film ceramic sensor materials achieved their stated objective. In the literature search, 
materials were identified that were previously both known (such as tantalum nitride) and unfamliar (such 
as titanium diboride) to the GRC researchers for this application. The review of the potential materials for 
chemical and physical compatibility revealed known issues such as gold’s susceptibility to attack by Aqua 
Regia, but also the susceptibility of aluminum nitride to attack by water. The lack of detailed information 
on the chemical resistance of several nitrides and titanium diboride was disappointing, and actual 
experience may result in a further down-select of ceramic sensor materials. We are confident that our 
technique has produced a valid list of thin film ceramics to investigate for the application as static strain 
gauges on turbine engine components. 

4. Summary and Future Efforts 
4.1 Results 

The need to consider ceramic sensing elements is brought about by the temperature limits of metal 
thin film sensors in propulsion system applications. In order to have a more passive method of negating 
changes of resistance due to temperature, an effort is underway at NASA GRC to develop high 
temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan 
and compressor modules on blades. Other applications can be on aircraft hot section structures and on 
thermal protection systems. 

The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor 
materials to test for viability and provide a list of possible thin film ceramic sensor materials and 
corresponding properties to test for viability. This goal was achieved by a thorough literature search for 
ceramics that have the potential for application as high temperature thin film strain gauges, reviewing 
potential candidate materials for chemical and physical compatibility with our microfabrication 
procedures and substrates. 

A variety of ceramics were identified as having potential as high temperature thin film static strain 
sensors that include aluminum nitride (AlN), titanium boride (TiB2), and doped and undoped tantalum 
nitride (TaN), titanium nitride (TiN) and zirconium nitride (ZrN), as well as some conductive oxides that 
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are being pursued for multifunctional sensor work under an internal NASA task. Considering the 
chemical and physical compatibility of the ceramics for microfabrication on alumina, a short list of TiB2, 
TiN, and ZrN was generated. Co-sputtering candidates were identified as including tantalum, chromium, 
aluminum, copper, and gold. Of these, gold is the least reactive to our microfabrication processes. 

4.2 Future Effort 

The various microfabricated thin film strain sensors will be developed using MEMS-based fabrication 
techniques in a class 1000 clean room at NASA GRC using physical vapor deposition and 
photolithography technologies. Surface analytical tools such as scanning electron microscope, auger 
electron spectrometer, and x-ray photoelectron spectrometer will be used to characterize these thin film 
ceramics. Based on results of research given in this report, this effort will focus on the application of ZrN, 
TiN, and TiB2 strain gauges, doped with gold. The fabrication matrix for the test sensors is identified in 
table 6. Each target/co-sputter group will be tested using variable gas mixtures. Testing the TCR at low 
temperatures to 200 °C on a hot plate will provide the first level of optimization for the sensors. The 
optimized candidate thin film ceramic sensors initially will be applied to alumina specimens and 
subjected to low temperature tests between 100 and 700 °C in a heater rig to determine the basic 
sensitivity to the thermal and mechanical characteristics to be measured. This test will identify those 
ceramic sensors that are viable for the high temperature cycling tests. Next, the thin film ceramic sensors 
will be applied to ceramic matrix composites specimens, and bench tested in a heater rig, cycling the 
temperature between 100 and 1300 °C for 200 cycles. This test is similar to what is run in validation of 
conventional flame spray instrumentation. Technical metrics such as sensitivity, stability, repeatability, 
interference and durability will determine whether the sensor is ready for testbed qualifications for 
qualifying parts or structural elements and verify numerical codes, towards application in turbine engines. 

 
TABLE 6.—FABRICATION MATRIX FOR STATIC STRAIN GAUGE FABRICATION 

USING VARIOUS MIXES OF ARGON AND NITROGEN SPUTTERING GASSES 
AND GOLD CO-SPUTTERING 

Target No Co-Sputter Gold (Au) Co-Sputter 
TiB2 Optimize Ar Pressure, Sputter Power Optimize Ar Pressure, Sputter Power 
Ti Optimize N2/Ar Mix, Pressure, Sputter Power Optimize N2/Ar Mix, Pressure, Sputter Power 
Zr Optimize N2/Ar Mix, Pressure, Sputter Power Optimize N2/Ar Mix, Pressure, Sputter Power 
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