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Abstract 

 
In this paper, a uniquely structured Kalman filter is 

developed for its application to in-flight diagnostics of aircraft 
gas turbine engines.  The Kalman filter is a hybrid of a 
nonlinear on-board engine model (OBEM) and piecewise linear 
models.  The utilization of the nonlinear OBEM allows the 
reference health baseline of the in-flight diagnostic system to be 
updated to the degraded health condition of the engines through 
a relatively simple process.  Through this health baseline 
update, the effectiveness of the in-flight diagnostic algorithm 
can be maintained as the health of the engine degrades over 
time.  Another significant aspect of the “hybrid” Kalman filter 
methodology is its capability to take advantage of conventional 
linear and nonlinear Kalman filter approaches.  Based on the 
hybrid Kalman filter, an in-flight fault detection system is 
developed, and its diagnostic capability is evaluated in a 
simulation environment.  Through the evaluation, the suitability 
of the hybrid Kalman filter technique for aircraft engine in-
flight diagnostics is demonstrated. 

 
 

Introduction 
 
In-flight diagnostics of aircraft gas turbine engines is a 

critical task for improving engine operation.  The capability to 
detect and/or isolate any faults can not only improve the safety 
and efficiency of engine operation during flight but also 
facilitate better maintenance planning.  Since diagnostic system 
results can influence the follow-on actions taken by the 
maintenance crew, flight crew, or control system, it is critical 
that they be highly reliable.  In-flight diagnostic systems, 
therefore, must be designed with robustness to non-fault-related 
factors which exist in the real environment and can potentially 
mislead diagnostic systems to generate incorrect results. 

In-flight diagnostic systems are, in general, designed at a 
nominal health, or non-degraded, condition.  This design 
condition becomes a reference health baseline for diagnostics; 
any observed deviations in engine outputs from their reference 
condition values may indicate the presence of a fault.  In-flight 
diagnostic systems can perform effectively as long as the health 

of the real engine remains in the vicinity of the reference health 
baseline, thereby making engine output deviations prominent 
when a fault takes place. 

As the real engine degrades over time, in-flight diagnostic 
systems may lose their effectiveness.  Engine health 
degradation is a normal aging process that occurs in all aircraft 
engines due to usage and therefore is not considered as a fault.  
However, similar to various faults, degradation causes the 
engine outputs to deviate from their reference condition values.  
When engine output deviations eventually exceed a certain 
level, the diagnostic system may misinterpret the health 
degradation as a fault and consequently generate a false alarm. 

One approach to maintaining the effectiveness of in-flight 
diagnostic algorithms, when applied to degraded engines, is to 
periodically update or re-design the diagnostic algorithms based 
on the estimated amount of health degradation.  Health 
degradation can be estimated by trend monitoring systems 
using post-flight data [1-3].  Through the update based on the 
estimated health degradation, the health baseline of an in-flight 
diagnostic system can be shifted to the vicinity of the degraded 
engine, and thereby the system is able to effectively diagnose 
the presence of a fault.  One issue with this approach is its 
practicality.  Depending on the complexity of the diagnostic 
algorithms, the update process may take too much time and 
thus may be impractical. 

To address the above issue, a uniquely structured Kalman 
filter was developed in Reference [4] for application to in-flight 
diagnostics of aircraft gas turbine engines.  This Kalman filter 
is called a “hybrid” Kalman filter (HKF) because of its hybrid 
structure; it is composed of a nonlinear on-board engine model 
(OBEM) and piecewise linear state-space models which include 
Kalman gain matrices.  With this architecture, the system 
update to account for engine health degradation is achieved 
through a relatively simple process: by feeding the estimated 
health degradation values into the OBEM.  The linear 
component of the hybrid Kalman filter, namely the linear 
engine models and associated Kalman gains, does not need to 
be updated though the degradation of the real engine progresses 
with time. 

In the following sections of this paper, the problem setup 
for in-flight diagnostics and the design approach of the HKF, 
described in Reference [4], are given.  Then the design 
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methodology is applied to a large commercial aircraft engine 
model, and the functionality of the HKF is investigated.  Based 
on the HKF, an in-flight fault detection system is developed.  
Its performance at detecting faults in sensors, actuators, and 
component while avoiding false alarms is evaluated in a 
simulation environment. 

 
 

Problem Setup for In-Flight Diagnostics 
 

The primary objective of an in-flight diagnostic system is 
to detect faults as early as possible from the observed engine 
outputs while avoiding false alarms and missed detections.   
After the detection of a fault, the identity or severity of the 
detected fault must be classified through the fault isolation 
process.  False alarms can misguide the maintenance crew, 
flight crew, or control system into taking inappropriate actions; 
therefore it is critical to avoid them.  Since false alarms are the 
result of misinterpretation of non-fault-related factors, it is 
important to understand the influence of such factors on engine 
outputs.   

Engine health degradation is one of the non-fault-related 
factors that can cause false alarms.  As shown in Figure 1, 
engine health degradation is described as the gradual deviation 
of health parameters from the initial healthy baseline.  Health 
parameters are efficiencies and flow capacities of engine 
components such as compressors and turbines, and they 
indicate the health of such components.  As they deviate from 
the initial healthy baseline, engine outputs will also deviate 
from their nominal condition values.  Since degradation is a 
normal aging process that all aircraft engines will experience 
due to usage, it is not considered as a fault, whereas an 
abnormal and unexpected event is a fault.  However, as the 
engine output deviations increase due to the gradual 
progression of health degradation, it becomes difficult to 
distinguish the presence of faults from health degradation 
through the observation of engine outputs.  As a result, an in-
flight diagnostic system loses its effectiveness as the engine 
degrades over its lifetime.  An example of such loss of 
diagnostic effectiveness due to health degradation is shown in 
References [5,6] for the case of sensor fault diagnostics based 
on Neural Networks. 

To reduce the influence of health degradation on in-flight 
diagnostic performance, the diagnostic system needs to be 

updated periodically based on the estimated amount of health 
degradation, as shown in Figure 2.  Health degradation can be 
estimated by trend monitoring systems using post-flight data 
[1-3].  Since the progression of health degradation is gradual, it 
is expected that the actual change in health parameters is small 
over a number of flights.  Therefore, the process of estimating 
health degradation and updating the in-flight diagnostic system 
needs to be accomplished once per a number of flights.  When 
the updating process is complete, the estimated health condition 
becomes the new reference baseline for the in-flight diagnostic 
system, as shown in Figure 3, until the next update process is 
completed.  Through this periodic baseline update, the in-flight 
diagnostic system can operate in the vicinity of the degraded 
engine and thus maintain its diagnostic effectiveness. 
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Figure 2.–Process of Health Baseline Update. 
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Figure 3.–Baseline Update Using Estimated 
Health Degradation. 
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Figure 1.–Engine 

In this paper, it is assumed that a trend monitoring system, 
which is capable of estimating engine health degradation 
(health parameters), is available.  Moreover, it is assumed that 
this trend monitoring system will achieve a certain level of 
precision in its estimation performance.  The rest of the paper 
focuses on the development, application, and evaluation of the 
hybrid Kalman filter for in-flight diagnostics.  
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Development of the Hybrid Kalman Filter 
for In-Flight Diagnostics 
 

The Kalman filter described in this section has a unique 
hybrid architecture; it is composed of a nonlinear on-board 
engine model (OBEM) and piecewise linear state-space models 
which include Kalman gain matrices.  The OBEM is a physics-
based model designed to run in real time, while the piecewise 
linear state-space models are derived off-line from the OBEM 
at the nominal health baseline.  These two main components are 
merged together to form the “hybrid” Kalman filter (HKF).   
Based on the residuals generated by the HKF, a fault indicator 
signal is constructed for diagnostics. 

 
 
Hybrid Kalman Filter Design 
 

The design steps for the HKF are exactly the same as those 
for the general linear Kalman filter.  First, a nonlinear plant 
model is linearized at a number of operating points.  Then, 
Kalman gains are computed based on the linear representations 
of the plant model.  When implemented, however, linear 
models and associated Kalman gains are integrated with the 
nonlinear plant model.  An aircraft gas turbine engine under 
consideration is represented by a nonlinear model of the 
following form: 
 

( )
( veuhxgy

euhxfx

cmd

cmd

+=
=

,,,
,,,&

)    (1) 

 
 
where x, h, ucmd, and e represent the vectors of state variables, 
health parameters, control command inputs, and environmental 
parameters, respectively.  For given input values, the nonlinear 
functions f and g generate the vectors of state derivatives  and 
sensor outputs y.  The sensor outputs are corrupted by the white 
noise vector v.  By linearizing the engine model at a reference 
health baseline (e.g., nominal health condition) and also at a 
specific environmental condition, the following state-space 
equations are obtained: 

x&
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where A, B, C, D, L and M are the state-space matrices with 
appropriate dimensions.  The vectors xss, yss, and uss contain the 
steady-state values at which the nonlinear engine model is 
trimmed for linearization.  The vector href represents a reference 
health baseline.  The Kalman gain is computed based on the 
matrix pair [A, C], and the linear Kalman filter equation is 
given as follows: 
 

( ) ( ) ( )
( ) ( )sscmdssss

sscmdss

uuDxxCyy
yyKuuBxxAx

−+−=−
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ˆˆ

ˆˆ&̂
 (3) 

 
 
The vectors  and  represent the estimates of the state 
variables and sensor outputs, respectively.  The matrix K 
represents the Kalman gain.  In order for the Kalman gain to 
converge, the matrix pair [A, C] must be observable. 

x̂ ŷ

It should be noted that the linear Kalman filter in Equation 
(3) does not account for the influence of health parameter 
deviations from the reference health baseline in Equation (2).  
Since the Kalman filter is designed with some robustness to 
system uncertainty in the form of process noise, it has 
robustness to health parameter deviations to some extent.  
However, the Kalman filter does not have the level of 
robustness which can handle the full health deterioration that an 
engine will experience over its lifetime. 

One approach to make a Kalman filter robust to health 
degradation is to estimate the health parameter vector h as done 
in References [7,8].  If a Kalman filter is able to accurately 
estimate all of the health parameters in real time, the Kalman 
filter can adapt itself to operate in the vicinity of the degraded 
engine.  This approach, however, requires the following 
condition: the number of sensors must be at least equal to the 
number of health parameters [8].  In general, this requirement is 
not met for aircraft engines.  Moreover, even if this requirement 
is met and thus all health parameters are estimated, there are 
various factors that can cause some problem in estimating 
health parameters with high accuracy.  Examples of such 
factors are improper sensor location for health parameter 
estimation, existence of biases in sensors and actuators, and 
inherent model-plant mismatch.  Therefore, the adaptation of 
the Kalman filter to the degraded engine through the real-time 
estimation of health parameters is a challenging problem. 

Because of the necessity to account for health degradation 
of a real engine, and because of the difficulty in achieving in-
flight, real-time adaptation of the Kalman filter through health 
parameter estimation, an alternative approach must be 
considered.  One approach discussed in References [9,10] is to 
periodically update the Kalman filter based on the health 
condition estimated by some other means.  Through the health 
baseline update, the performance of the Kalman filter can be 
maintained in the presence of health degradation. 

The process of health baseline update for the general linear 
Kalman filter is described in the following four steps: 1) 
estimate the health degradation, 2) trim the closed-loop engine 
model at the new reference health baseline (estimated health 
condition), which should be close to the actual health condition, 
and generate the steady-state vectors, 3) linearize the open-loop 
engine model and generate state-space matrices, and then 4) 
compute the Kalman gain.  Step 1 can be done off-line by a 
trend monitoring system which monitors the engine health 
degradation over time.  Steps 3 and 4 may not be necessary 
according to Reference [9], but step 2 alone can be a time-
consuming, troublesome process, especially when many 
operating points must be accounted for over the flight envelope.  
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Thus, it is desirable to simplify the update process in order to 
make it feasible in the real application environment. 

Insight on simplifying the health baseline update process 
can be found from past studies.  Reference [9] indicated that the 
performance of the linear Kalman filter, when applied to 
degraded engines, can be improved significantly just by 
updating the steady-state vectors (xss, yss, uss) to the new values 
derived at degraded conditions.  Moreover, Reference [11] 
demonstrated that the constant gain extended Kalman filter can 
operate over a wide operating range despite its simple 
architecture, which basically combines a nonlinear engine 
model with a single Kalman gain matrix computed at a single 
operating point.  These studies indicate that the Kalman gain 
itself is not of primary importance to operate the Kalman filter 
in the environment where various elements, such as health or 
flight condition, are changing.  Rather, the accuracy of the plant 
model is of primary importance. 

Based on the above knowledge, the HKF is developed by 
replacing the steady-state vectors of Equation (3) with the 
following nonlinear OBEM: 
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( )zuhxgy

zuhxfx

cmdrefOBEMOBEM
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where the vector  represents the health condition estimated 
by a trend monitoring system, which is updated once per a 
number of flights.  The vector z represents the measured 
parameters which define the flight condition.  By integrating 
the OBEM and linear state-space matrices, the following hybrid 
Kalman filter is formed: 

refĥ
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In Equation (5), the steady-state vectors which appeared in 

Equation (3) are replaced by the state variables and engine 
outputs generated by the OBEM.  Furthermore, the control 
command inputs and associated matrices B and D in Equation 
(3) do not appear in Equation (5) since the effect of control 
command inputs is accounted for by the OBEM as seen in 
Equation (4).  The structures of the linear Kalman filter in 
Equation (3) and the HKF in Equation (5) are shown in Figures 
4 and 5, respectively, for a visual comparison.   Although the 
vector z which indicates the flight condition does not appear in 
Figure 4, this vector will be needed to interpolate the piecewise 
linear Kalman filters designed over the flight envelope. 

There are a few things which should be noted about the 
hybrid structure.  First, the HKF depends on the OBEM but not 
vice versa.   The OBEM runs in parallel with the actual engine 
at the estimated health condition without receiving any 
feedback signals from the HKF.  Therefore, the numerical 

stability of the OBEM is not influenced by the performance of 
the HKF.  The objective of the OBEM is to generate simulated 
state variables and sensor outputs at the estimated health 
condition.  By updating the health condition of the OBEM, its 
state variables and sensor outputs can be brought close to the 
values of the degraded engine.  Since health condition 
mismatches still exist between the OBEM and the degraded 
engine due to estimation errors, sensor output mismatches also 
exist between them.  The objective of the HKF, or specifically 
its linear component, is to further improve the sensor output 
matching between its estimates and the measured values 
through the tuning of the state variable estimates.  As long as 
the OBEM operates in the vicinity of the degraded engine (i.e., 
health condition estimation errors are small), the HKF will 
maintain its accurate sensor output estimation performance. 

 
 

Construction of Fault Indicator Signals  
 

The validation of the Kalman filter estimation performance 
is generally done by evaluating residuals, or the differences 
between the measured and estimated sensor output values.  If 
residuals are large, it can be considered that the Kalman filter is 
generating inaccurate sensor output estimates due to the 
presence of an anomaly, such as a sensor fault, that was not 
accounted for in the Kalman filter design.  To indicate the 
presence of a fault, a weighted sum of squared residuals 
(WSSR) is computed as follows: 
 
 

( ) ( )yyyyWSSR T
HKF ˆˆ 1 −Σ−= −   (6) 

 
where 

[ ]2σdiag=Σ  
 
The vector σ  represents the standard deviation of the sensor 
measurements.  The square matrix  normalizes the residual 
vector 

Σ
( )yy ˆ− .  Since the HKF design discussed in the previous 

section does not account for the presence of a fault, the value of 
the fault indicator signal, WSSRHKF, should increase when a 
fault occurs in the system. 

In addition to the fault indicator signal generated by the 
HKF, another signal is generated for diagnosis: 

 
 

( ) ( OBEM
T

OBEMOBEM yyyyWSSR −Σ−= −1 ) (7) 
 
 
The above signal also indicates the existence of a fault; its 

value will increase when the engine experiences a fault.  This 
signal, however, will be sensitive to not only faults but also 
anything that causes output mismatches between the engine and 
the OBEM.  Any uncertainty that exists in the real 
environment, such as unknown dynamic elements and 
modeling errors, will cause this signal to increase.  In contrast, 
the fault indicator signal generated by the HKF is less sensitive 
to uncertainty.  This is due to the fact that the Kalman filter, in 
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general, possesses inherent robustness to uncertainty; the 
process noise used to compute the Kalman gain makes the 
Kalman filter robust, to some extent.  Because of this 
robustness, the fault indicator signal generated by the HKF may 
not increase by a significant amount when the engine 
experiences a fault.  The sensitivity of the Kalman filter to 
faults depends on the sensors being used and also the types of 
faults.  Since the two signals in Equations (6) and (7) have 
different sensitivity characteristics, both of them are utilized for 
diagnosis.  By using both of them, the effectiveness of engine 
diagnostics can be improved. 

The fault indicator signals are a key element in the in-flight 
diagnostic process.  The first step of the process, the detection 
of a fault, can be accomplished by comparing the fault indicator 
signals to a pre-established detection threshold.  The 
establishment of a detection threshold can be based on statistics 
or achieved through analytical study as was done in Reference 

[4].  When a fault indicator signal exceeds the detection 
threshold, it is considered that a fault indeed exists in the 
system.  Fault detection only reveals the existence of a fault 
without identifying the specific cause of the detected fault.  
After fault detection comes fault isolation [9,10] and then fault 
accommodation [12,13].  
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yy ˆ−

 
 
 

Figure 4.–Structure of the Linear Kalman Filter. 
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yy ˆ−

OBEM

1
s

A

C

K

xOBEM

yOBEM

y

x̂x&̂ ŷ
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Figure 5.–Structure of the Hybrid Kalman Filter. 

 
 

Application of the Hybrid Kalman Filter 
Design Methodology to an Aircraft Engine 
Model 
 

In this section, the hybrid Kalman filter design technique is 
applied to an aircraft engine model.  Descriptions of the engine 
model and the engine control are given first, followed by a 
discussion of the piecewise linear models. 
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Engine Model 
 

The engine model used in this paper is a nonlinear 
simulation of an advanced high-bypass turbofan engine, a 
typical power plant for a large commercial aircraft.  This engine 
model has been constructed as a Component Level Model 
(CLM), which consists of the major components of an aircraft 
engine.  The CLM represents highly complex engine physics 
while being designed to run in real time.  Engine performance 
deviations from the nominal health baseline are modeled by 
adjustments to efficiency and flow capacity scalars of the 
following five components: Fan (FAN), Booster (BST), High-
Pressure Compressor (HPC), High-Pressure Turbine (HPT), 
and Low-Pressure Turbine (LPT).  There are a total of 10 
adjustments that are called health parameters.  The engine state 
variables, health parameters, actuator variables, and 
environmental parameters are shown in Table 1. 

There are a total of 11 measured parameters (y and z in 
Figure 5) that are available to the digital engine control unit of 
this engine.  Table 2 shows seven sensors (y) along with their 
standard deviations given in percent of steady-state values at 
the ground maximum power condition.  The control actions and 
diagnostics are based on those sensed variables.  Table 3 shows 
four additional measured parameters (z) along with their 
standard deviations given in their actual engineering units.  
These four parameters indicate the ambient and engine inlet 
conditions.  The measurements of the inlet condition, T2 and 
P2, are used for parameter corrections [14]. 

The sensor dynamics are currently not modeled; a delay of 
a single time step is used to represent process delay for each 
sensor.  Similarly, a single-time-step delay is used for the 
variable geometry actuators (VBV and VSV).  For the fuel flow 
actuator (WF36), a second order dynamic model is used. 

The nonlinear engine model is used to represent both the 
actual engine and the OBEM in the subsequent sections.  The 
engine model representing the actual engine operates at given 
health conditions, and its flight condition is specified by the 
three environmental parameters listed in Table 1.  The OBEM 
operates at estimated health conditions, and its flight condition 
is specified by three measured parameters: Tamb, Pamb, and T2.  
From these three measurements, the OBEM calculates the 
altitude, Mach number, and the temperature deviation from the 
standard day condition.   The actual engine and the OBEM 
receive the same three control commands (Table 1).   However, 
the WF36 actuator used by the OBEM is represented by a 
single-time-step delay, whereas a second order dynamic model 
is used for the engine’s WF36 actuator.  Typically, there will be 
a mismatch between the model and the actual engine due to 
modeling errors and un-modeled elements.  The influence of 
such a mismatch will be assessed in a later section. 

 
 

Engine Control 
 
The fuel flow controller used in this study has a structure 

similar to the one described in Reference [15].  It is composed 
of multiple sub-controllers, each of which computes the rate of 
change of the fuel flow command based on a specific control 

objective.  The fuel flow rate commands generated by the 
multiple sub-controllers are processed through the 
minimum/maximum selection logic.  Then, a single control 
command selected by this logic is fed into a common 
integrator.  The common integrator generates a total fuel flow 
command input to the WF36 actuator.  The current control 
design is composed of the following sub-controllers: 

TABLE 1.–ENGINE MODEL VARIABLES
State 

Variables 
XNL, XNH, TMHS23, TMHS3 
TMHSBL, TMHSBC, TMHS41 
TMHS42, TMHS5 
 

Health 
Parameters 

FAN efficiency, FAN flow capacity 
BST efficiency, BST flow capacity 
HPC efficiency, HPC flow capacity 
HPT efficiency, HPT flow capacity 
LPT efficiency, LPT flow capacity 
 

Actuators WF36, VBV, VSV 
 

Environmental 
Parameters 

Altitude, Mach Number,  
Ambient Temperature 

 
 

TABLE 2.–STANDARD DEVIATIONS OF 
CONTROLS AND DIAGNOSTICS SENSORS 

(σ IN PERCENT OF STEADY-STATE VALUES AT 
GROUND MAXIMUM POWER CONDITION) 

Sensors (y) σ (%) 
XN12 0.25 
XN25 0.25 
P25 0.50 
T25 0.75 
PS3 0.50 
T3 0.75 

T49 0.75 
 
 

TABLE 3.–STANDARD DEVIATIONS OF 
AMBIENT AND ENGINE INLET SENSORS 

(σ IN ACTUAL UNITS) 
Sensors  (z) σ 

Tamb 5.0 °F 
Pamb 0.1 psi 
T2 5.0 °F 
P2 0.1 psi 

 
 
 

 
1) FAN speed control 
2) Acceleration and deceleration schedule control 
3) Ratio unit (WF36/PS3) control 
4) Maximum fan/core speed control 
5) Idle control 
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The positions of the variable geometry actuators (VBV and 
VSV) are scheduled based on the feedback sensor 
measurements.  In the current control architecture, the power 
lever angle (PLA) is converted to desired corrected fan speed 
(an indicator of thrust).  The control system adjusts three 
actuation variables to cause the corrected, measured fan speed 
to match the desired value.  The control system runs with a 
0.02-second time step.  
 
 
Piecewise Linear Model Design 
 

The linear component of the hybrid Kalman filter (A, C, K 
in Equation 5 and Figure 5) is designed using the nonlinear 
engine model through the following steps.  The nonlinear 
engine model is first linearized at a number of operating 
conditions.  For each of the linear engine models, a Kalman 
gain is computed.  Then, the piecewise linear models are saved 
in table lookup form.  As the operating condition changes, the 
piecewise linear models are interpolated based on a scheduling 
parameter as shown in Figure 6. 

The unique aspect of the HKF design is that the piecewise 
linear models are integrated with the OBEM, instead of the 
steady-state vectors (xss, yss, uss in Equation 3 and Figure 4) as 
in the case of a pure piecewise linear Kalman filter design 
[7,10].  As discussed earlier, having an accurate plant 
representation is of primary importance in the Kalman filter 
operation.  Because of the use of the nonlinear OBEM which is 
a good representation of an actual engine, the number of 
operating conditions at which the piecewise linear models are 
derived does not have to be as great as for the pure piecewise 
linear Kalman filter design.  In this paper, the piecewise linear 
models are generated along the steady-state power setting line 
at a cruise condition.  For the interpolation of the piecewise 
linear models, the estimated corrected fan speed is used as the 
scheduling parameter.  A preliminary study indicated that this 

specific HKF design maintains its accurate estimation 
performance over a wide operating range.  When a similar 
study was done for the HKF using piecewise linear models 
generated at sea level static condition, the estimation 
performance was not as good as for the case of cruise condition 
design.  Better estimation performance may be achieved by 
linking linear models generated at multiple flight conditions, 
such as climb and cruise.  However, it is desirable to keep the 
dimension of the table lookup as small as possible, since a 
lesser dimension reduces implementation complexity and also 
improves execution speed. 

When the HKF was implemented in a simulation 
environment, the system was discretized to run at the frequency 
of 50 Hz.  The parameters used by the HKF algorithm are 
corrected based on the engine inlet condition T2 and P2.   

 
 

Evaluation of the Hybrid Kalman Filter 
 
In this section, the functionality of the HKF is investigated 

using simulation examples.  The engine and the HKF are run 
through a typical flight trajectory which starts from ground idle 
and continues to takeoff, climb, and cruise.  The duration of 
this flight example is 2500 seconds, and the time histories of 
three inputs (altitude, Mach number, PLA) are shown in Figure 
7. 

The estimation accuracy of the HKF is assessed by its 
residuals ( yy ˆ−   in Equation 5) and the fault indicator signal 
(Equation 6).  In addition, the performance of the OBEM is 
assessed by its residuals and the fault indicator signal (Equation 
7).  Through the comparison of responses between the HKF and 
the OBEM itself, the significant contribution made by the linear 
component of the HKF can be demonstrated. 

In the following examples, the health conditions of the 
engine and the OBEM are set to nominal or degraded 
conditions.  Table 4 shows the degraded health conditions for 
the engine and the OBEM used in the following examples.  
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Figure 6.–Implementation of the Hybrid Kalman Filter. 

 
 
Case 1: Nominal Health Condition 

 
In the first case, both the engine and the OBEM are set to 

the nominal health condition.  This case represents an ideal 
scenario where no health mismatch exists between the engine 
and the OBEM.  Figure 8 shows the residual responses of the 
HKF and the OBEM.  The residuals shown in the figure have 
been processed by a low-pass filter with a cutoff frequency of 
0.1 rad/sec and also have been normalized by the sensor 
standard deviations in Table 2.  The HKF response is indicated 
by the solid line while the OBEM response is indicated by the 
dashed line.  Since no health mismatch exists in this case, the 
outputs of the OBEM match well with the engine outputs.  
Figure 9 shows the WSSR responses of the HKF (Equation 6) 
and OBEM (Equation 7).  These fault indicator signals have 
been scaled and also processed by a low pass filter with a cutoff 
frequency of 0.1 rad/sec.  The fault indicator signals are nearly 
constant throughout the flight except during takeoff.  Although 
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the engine and the OBEM are set to the nominal health 
condition, different WF36 actuator models are used to represent 
actuator modeling errors as discussed earlier: a second order 
dynamic model for the engine and a single-time-step delay for 
the OBEM.  This difference causes the spike in WSSROBEM.  
The spike in WSSRHKF is caused by the delay in the estimation; 

 in Equation (6) lags behind y during major transients such as 
takeoff. 
ŷ
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Figure 7.–Time Histories of Flight Trajectory Inputs. 
 
 
 

TABLE 4.–ENGINE HEALTH PARAMETER 
DEVIATIONS FROM THE NOMINAL CONDITION 

(CASES 2~4) 
 Engine 

(%) 
OBEM 

(%) 
Absolute 
difference 

FAN efficiency -4.18 -3.72 0.46 
FAN flow -3.09 -2.71 0.38 
BST efficiency -1.69 -1.21 0.48 
BST flow -2.09 -2.33 0.24 
HPC efficiency -4.50 -4.27 0.23 
HPC flow -1.55 -2.03 0.48 
HPT efficiency -4.58 -4.88 0.30 
HPT flow 2.19 2.36 0.17 
LPT efficiency -2.14 -2.17 0.03 
LPT flow 1.26 1.75 0.49 

 
 
 

0   1000 2000
−2

0

2

X
N

12
 e

rr
or

 

 

Hybrid KF

OBEM

0   1000 2000
−1

0

1

X
N

25
 e

rr
or

0   1000 2000
−1

0

1

P
25

 e
rr

or

0   1000 2000
−1

0

1

T
25

 e
rr

or

0   1000 2000
−1

0

1

T
3 

er
ro

r

Time (sec)

0   1000 2000
−1

0

1

T
49

 e
rr

or

Time (sec)

0   1000 2000
−1

0

1

P
S

3 
er

ro
r

 
 

Figure 8.–Normalized Residuals of HKF and OBEM at 
Nominal Health Condition (Case 1). 

 
 
 
 

0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

W
S

S
R

 H
K

F

Time (sec)

0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

W
S

S
R

 O
B

E
M

Time (sec)  
 

Figure 9.–WSSR Responses of HKF and OBEM at 
Nominal Health Condition (Case 1). 
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Case 2: Degraded Engine and Nominal OBEM 
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Figure 10.–Normalized Residuals of HKF and OBEM 
Applied to Degraded Engine (Case 2). 

 
 
 
 

 
The second case shows what happens to the estimation 

performance when the engine is set to the degraded condition 
shown in Table 4, while the OBEM is set to the nominal health 
condition.  Figure 10 shows the residual responses of the HKF 
and the OBEM.  Because of the large health condition 
mismatch between the engine and OBEM, the output 
differences between them are quite large compared to case 1.  
Moreover, the values of output differences vary along the flight 
trajectory, whereas they were almost constant in the previous 
case.  However, by comparing the responses of the HKF and 
the OBEM, it is obvious that the residuals of the HKF are much 
smaller than the residuals of the OBEM.  This is due to the 
inherent robustness of the Kalman filter technique to 
uncertainty.  The uncertainty in this case is the model-plant 
mismatch due to health degradation.  In the HKF approach, the 
outputs from the engine and the OBEM are processed with the 
linear state-space matrices through the Kalman filter algorithm 
(Equation 5).  Through this process, the HKF achieves much 
better sensor output matching (smaller residuals) than the 
OBEM.  The result of the smaller residuals can be seen in the 
WSSR responses of the HKF and the OBEM in Figure 11.  The 
WSSR value of the HKF is much smaller than that of the 
OBEM.  It is obvious that the linear component of the HKF 
plays a significant role in improving the sensor output matching 
and thus reducing the WSSR value. 

Although this improvement is significant, the output 
differences between the engine and the OBEM are too large in 
this example; the HKF is unable to maintain its WSSR value at 
a level comparable to case 1 where both the engine and the 
OBEM are set to the nominal health condition.  Since the linear 
component of the HKF can only improve the sensor output 
matching to a limited extent, the health condition mismatch 
which results in output mismatch between the engine and the 
OBEM must be maintained within some range.  Otherwise, the 
HKF will generate a large WSSR value, and the degradation 
will be misinterpreted as a fault. 
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Case 3: Degraded Engine and Updated OBEM 
 
The previous case showed that a large health condition 

mismatch between the engine and the OBEM can corrupt the 
estimation accuracy of the HKF.  Thus, the level of such 
mismatches must be kept within some range so that the HKF 
will be able to maintain relatively small WSSR values 
compared to the nominal health case.  In this section, the health 
conditions of the engine and the OBEM are set to the values 
shown in Table 4.  The health condition mismatch between the 
engine and the OBEM is also shown in the table. The health 
parameter values of the OBEM were obtained by adding health 
parameter estimation errors to the health condition of the 
engine.  As discussed earlier, it is assumed that the health 
condition of the degraded engine is estimated by a trend 
monitoring system.  Its estimation accuracy is assumed to be 
within ±0.5% from the actual value.  The estimation errors 

 
 
Figure 11.–WSSR Responses of HKF and OBEM Applied 

to Degraded Engine (Case 2). 
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were generated by a random number generator with uniform 
distribution over the range of ±0.5%. 
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Figure 12.–Normalized Residuals of Updated HKF and 
OBEM Applied to Degraded Engine (Case 3). 
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Figure 13.–WSSR Responses of Updated HKF and OBEM 
Applied to Degraded Engine (Case 3). 

Figure 12 shows the residual responses of the HKF and the 
OBEM.  Because of the small health condition mismatch 
between the engine and the OBEM, the output differences 
between them are much smaller in this case than the previous 
one.  As was exhibited in the previous case, the HKF performs 
better than the OBEM; the residuals of the HKF are smaller 
than those of the OBEM.  Figure 13 shows the WSSR 
responses of the HKF and the OBEM.  The WSSR value of the 
OBEM is still large relative to the value in case 1.  However, 
the WSSR value of the HKF is small and at a level comparable 
to case 1.  Therefore, as long as the health condition mismatch 
is kept relatively small, the HKF is able to generate accurate 
sensor output estimates (small residuals), and thus the 
likelihood of misinterpreting health degradation as a fault can 
be reduced. 

 
 

Case 4: Degraded Engine with Unknown Dynamics 
 
In a real implementation, it is unlikely that the real engine 

is perfectly modeled by the OBEM.  Therefore, model 
mismatch other than a health condition mismatch will exist 
between the real engine and the OBEM.  In this section, the 
engine and the OBEM are again set to the health conditions in 
Table 4.  In addition to the health condition mismatch, a turbine 
clearance model, which represents the turbine clearance 
dynamics with high fidelity, is added only to the engine model 
representing the real engine in order to introduce unknown 
dynamics.  The presence of the turbine clearance model 
introduces sensor output mismatches between the engine and 
the OBEM at steady-state conditions and during transients.  
Moreover, the level of sensor output mismatches can be varied 
by setting the turbine clearance condition to specific values.   

Figure 14 shows the WSSR responses of the HKF and the 
OBEM.  In this case, the turbine clearance condition is set to 
nominal.  At the nominal clearance condition, sensor output 
mismatches between the engine and the OBEM are relatively 
small at steady-state conditions, but they become large during 
transient operations.  Because of the presence of the unknown 
dynamics in addition to health condition mismatch, the 
WSSROBEM value is larger in this case than that of case 3 where 
there was no turbine clearance model.  The WSSRHKF value 
appears larger than the previous case, especially during takeoff.  
However, the WSSRHKF value is still relatively small and in the 
range comparable to case 1.  This example shows that the HKF 
is able to handle not only health condition mismatches but also 
unknown dynamics such as those introduced through the 
turbine clearance model. 

In the next two examples, the turbine clearance model is 
operated at off-nominal clearance conditions; sensor output 
mismatches between the engine and OBEM will be large at 
steady-state conditions and during transient operations.  Figures 
15 and 16 show the cases for moderate and large off-nominal 
clearance conditions, respectively.  In Figure 15, it appears the 
WSSROBEM value is larger than case 3 (Figure 13) across the 
flight trajectory.  In Figure 16, the WSSROBEM value is 
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significantly larger than case 3 at the ground-idle condition, and 
there is no sharp rise during takeoff.  However, in the rest of the 
flight trajectory, the WSSROBEM value remains at a similar level 
to case 3.  Moreover, it can be noticed that the WSSROBEM 
value appears smaller than case 3 at the steady-state cruise 
condition (2000~2500 seconds).  It is suspected that, in this 
specific case, the presence of unknown dynamics counteracts 

the health condition mismatch, resulting in better sensor output 
matching between the engine and the OBEM.     

Although some variations can be seen during the takeoff 
segment, the WSSR value generated by the HKF is very 
consistent throughout the flight trajectory.  The WSSRHKF value 
is also at a level comparable to case 1.  Again, these examples 
show that the linear component of the HKF plays a significant 
role in the estimation process.    
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Figure 14.–WSSR Responses of Updated HKF and OBEM 
Applied to Degraded Engine with Turbine Clearance Model 

(Case 4 with Nominal Clearance Condition). 
 
 
 
 

0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

3

W
S

S
R

 H
K

F

Time (sec)

0 500 1000 1500 2000 2500
0

2

4

6

8

W
S

S
R

 O
B

E
M

Time (sec)  
 

Figure 15.–WSSR Response of Updated HKF and OBEM 
Applied to Degraded Engine with Turbine Clearance Model 
(Case 4 with Moderate Off-Nominal Clearance Condition). 

 

 
 

Evaluation Summary 
 
The case studies in this section demonstrate the robustness 

of the HKF to steady-state and dynamic model-plant mismatch 
introduced through health degradation and the turbine clearance 
model.  As long as the health condition mismatch between the 
engine and the OBEM is relatively small compared to the full 
deterioration range, the HKF is able to generate accurate sensor 
output estimates, thus maintaining the variation of the 
WSSRHKF value within a reasonable range.  This robustness 
aspect of the HKF, however, calls into question what will 
happen to WSSRHKF when the engine experiences a fault.  In 
that case, WSSRHKF must increase by a significant amount to 
indicate the existence of a fault.  Because of the HKF’s 
robustness, it is possible that such a significant increase will not 
occur, and therefore a missed detection may result.  To 
investigate this issue, the HKF is applied to a fault detection 
problem in the following section.  Two fault indicator signals, 
one generated by the HKF (WSSRHKF) and another generated 
by the OBEM (WSSROBEM), are utilized to detect faults in 
sensors, actuators, and components.  
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Applied to Degraded Engine

(Case 4 with Large Off-No
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Application of the Hybrid Kalman Filter 
for In-Flight Fault Detection  
 

The detection of a fault can be accomplished through the 
following two steps: 1) generate a fault indicator signal and 2) 
compare the fault indicator signal to a pre-established detection 
threshold.  When a fault indicator signal exceeds a threshold, it 
is considered that a fault exists.  In the current approach, two 
fault indicator signals are generated: one from the HKF and one 
from the OBEM.  To detect a fault utilizing these fault indicator 
signals, the detection threshold must be determined.  In this 
section, the detection threshold is selected for detecting faults at 
multiple operating points over the flight envelope. 
 
 
Selection of the Detection Threshold 
 

The selection of the detection threshold value is a critical 
part in the diagnostic system design.  Setting the threshold at a 
low value increases the chance of detecting faults but also 
increases the chance of generating false alarms.  Conversely, 
setting the threshold at a high value decreases the chance of 
generating false alarms but also decreases the chance of 
detecting faults.  As such, the balance between true positive 
(fault detection) and false positive (false alarms) is adjusted by 
the threshold.  It is statistically impossible to achieve zero false 
alarm rates while detecting any faults, but the false alarm rate 
should be maintained acceptably low.  Keeping that in mind, 
the threshold is determined in this section. 

A false alarm is the result of misinterpretation of non-fault-
related factors which exist in various forms to various degrees.  
If the influence of such factors on the fault indicator signals is 
known, a threshold can be derived from that knowledge.  
Similar to the approach taken in Reference [4], health condition 
mismatches between the engine and the OBEM are used as an 
example of non-fault-related factors in order to determine the 
detection thresholds. 

As discussed earlier and demonstrated in the case studies 
of the previous section, the health baseline of the OBEM must 
be updated periodically as the health of the real engine 
degrades gradually with time.  However, the health baseline 
update will never be exact in the real applications, and 
therefore, health condition mismatch will always exist between 
the OBEM and the real engine.  This mismatch can cause the 
fault indicator signals to increase.  If the threshold is set to 
higher than the maximum value the fault indicator signals can 
reach due to health condition mismatch, false alarms can be 
avoided at least for the case of health condition mismatch. 

To investigate the influence of health condition mismatch 
on the fault indicator signal, 300 cases of health degradation 
and associated health condition estimates were first generated.  
Three hundred cases of health degradation were created by 
randomly shifting all 10 health parameters shown in Table 1.  
The deviation values were uniformly distributed over the range 
from 1% to 5%, and this level of deviation is beyond the typical 
level of engine-to-engine variation due to manufacturing 
tolerance.  Estimated health conditions were created by adding 

estimation errors to the 300 cases of health degradation.  The 
estimation error for each health parameter was a random 
number with uniform distribution over the range of ±0.5%.  As 
mentioned earlier, it is assumed that a trend monitoring system 
is available, and its estimation accuracy is within ±0.5% from 
the actual values. 

Using the above 300 health condition mismatch cases, the 
engine and the HKF were run for 100 seconds at a steady state 
operating point defined by the flight condition and the power 
setting.  For each mismatch case, the HKF and the OBEM 
generated a time history of the fault indicator signals.  Then, the 
maximum value that each of the two fault indicator signals 
reached during the 100-second steady-state run was saved for 
each of the 300 cases.  Based on the maximum WSSR values 
for the 300 cases, a histogram was generated to investigate the 
variation of the fault indicator signals due to health condition 
mismatch.  This process was then carried out at various flight 
conditions with various power settings.  Examples of the 
histograms generated at three power settings (PLA=65, 70, 75) 
at a cruise condition are shown in Figures 17 and 18 for the 
fault indicator signals generated by the HKF and the OBEM.  
In the current implementation, the fault indicator signals have 
been scaled and also processed by a low pass filter with a cutoff 
frequency of 0.1 rad/sec.  The arrows in the figures indicate the 
largest maximum WSSR value among the 300 cases. 

From the histograms generated at various operating 
conditions, it was found that as the power setting increases, the 
largest maximum WSSR value moves farther to the right in the 
distribution.  This tendency can be seen in Figures 17 and 18.  
This is due to the fact that, at high power settings, health 
condition mismatch (as large as ±0.5%) can result in quite large 
mismatches between the engine and the OBEM state variables 
and sensor outputs.  Under the presence of such large mismatch 
in sensor outputs, the HKF performs poorly since its linear 
component can improve the sensor output matching only to a 
limited extent. 

From the above observation, it would be a reasonable 
approach to use different threshold values at different power 
settings in order to achieve effective fault detection 
performance.  Therefore, the different threshold values were 
determined using the histograms generated at various power 
settings and various flight conditions.  For instance, at the 
cruise condition where the nominal power setting is in the 
range of 60 to 65 degrees PLA, the threshold values for 
WSSRHKF and WSSROEBM are set to 1.6 and 8.0, respectively.  
At higher power conditions, such as takeoff and climb, larger 
threshold values are used.  It should be noted that the threshold 
values for WSSROBEM is set much higher than the threshold 
values for WSSRHKF.  This is due to the fact that, as seen in 
Figures 17 and 18, the WSSROBEM value is very sensitive to 
health condition mismatch, resulting in much larger variations 
than the WSSRHKF value.  The threshold values determined at 
multiple operating conditions are saved in table lookup format 
and interpolated based on the PLA and altitude. 
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Figure 18.–Histograms of Maximum WSSROBEM Values for 

300 Health Condition Mismatch Cases at Cruise. 
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re 17.–Histograms of Maximum WSSRHKF Values for 
300 Health Condition Mismatch Cases at Cruise. 
ive Threshold 

 the earlier section, the influence of unknown dynamics 
fault indicator signals was investigated using the turbine 
ce model.  By comparing Figures 14 through 16 against 

 13, it is obvious that the values of the fault indicator 
 increase, especially during the rapid transient of takeoff.  
h, transient modeling error (unknown dynamics) can 
n increase in the fault indicator signals during transient 
ons.  To ensure that transient modeling error will not 
a threshold violation, an adaptive threshold, which is 
 to the one used in References [16,17], is incorporated 
e fault detection system.  The adaptive threshold used in 
dy is defined as follows: 

trantrantran

transs

M=+
+=
γγτ

γγγ
&

  (8) 

aptive threshold is indicated by γ, whereas the threshold 
 in the previous section at various steady-state operating 
ons is indicated by γss.  Another threshold whose value 
es during transient operations is indicated by γtran.  This 
nt threshold is triggered by a parameter Mtran which is an 
or of transient operation.  When the power setting is at 

steady-state, Mtran is set to the value of 0, and thus the value of 
the transient threshold remains at 0.  When the power setting is 
moved from one condition to another, Mtran is set to a non-zero 
value.  In the current design, the value of the Mtran is set to 2.0 
for WSSRHKF (Equation 6) and 5.0 for WSSROBEM (Equation 
7).  The time constant τ is set to 5.0.  These values were 
determined by running some transient scenarios. 

 
 

 
 
Persistency Test 
 

To further ensure that the threshold violation is due to the 
existence of a fault, the persistency of threshold violation is 
checked before declaring the fault.  It was determined that the 
threshold must be violated 25 consecutive time steps (0.5 
seconds) to declare fault detection.  The steady-state threshold 
values, adaptive threshold parameters, and persistency test are 
adjusted based on the engineering judgment of the designer, 
and the performance of the fault detection system will vary 
with those design factors. 
 
 
Overall Architecture of the In-Flight Fault Detection 
System 
 

The overall architecture of the in-flight fault detection 
system is shown in Figure 19.  The fault detection system is 
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composed of the HKF and the detection threshold.  The HKF 
receives the measured variables (y and z) and control 
commands (ucmd) from the on-board digital engine control unit, 
while receiving a periodically updated health baseline ( ) 
from the trend monitoring system.  From the HKF and the 
OBEM, two fault indicator signals, WSSR

refĥ

HKF and WSSROBEM, 
are generated.  Then the two fault indicator signals are 
compared against the detection thresholds.  When at least one 
of these signals exceeds the threshold for 25 consecutive time 
steps, the fault detection system declares that a fault exists.  It 
should be remembered that the fault detection system reveals 
only the existence of a fault, not its identity or severity. 

 
 
Performance Evaluation of the In-Flight 
Fault Detection System 
 

In this section, the performance of the fault detection 
system is evaluated from two aspects: false alarm generation 
and fault detection.  The false alarm aspect is evaluated by 
running the engine and the fault detection system over a typical 
fight trajectory in the presence of model-plant mismatch 
between the engine and the OBEM.  The fault detection aspect 
is evaluated using faults in sensors, actuators, and components. 

 
 

False Alarm Test 
 
When the fault detection system declares that a fault exists 

in the absence of actual fault, a false alarm is generated.  To 
investigate the robustness of the system in terms of avoiding 
false alarms, the fault detection system is run over a typical 
flight trajectory shown in Figure 7 in the presence of model-
plant mismatch. 

As shown in Table 5, four scenarios are used in this 
evaluation.  Scenario #1 contains 300 cases of health condition 
mismatches between the engine and the OBEM.  These 300 
cases were generated in the earlier section for deriving the 
detection threshold values.  For each case, the health condition 

mismatch values are held constant as the engine operates along 
the typical flight trajectory.  In Scenarios #2~4, the same health 
condition mismatches of Scenario #1 are used.  In addition, 
unknown dynamics (transient modeling error) are introduced in 
these scenarios through the utilization of the turbine clearance 
model.  In scenario #2, the turbine clearance model is operated 
at the nominal clearance condition (Figure 14).  In scenarios #3 
and 4, the turbine clearance model is operated at moderate 
(Figure 15) and large (Figure 16) clearance conditions, 
respectively. 

OBEM
Kalman Filter

Equation
(A, C, K)

z ucmd y
refĥ

Compare
WSSRs
with 

Threshold

• Fault exists, or
• Fault does not exist

Compute
WSSRHKF &
WSSROBEM   

Hybrid Kalman Filter

OBEM
Kalman Filter

Equation
(A, C, K)

z ucmd y
refĥ

Compare
WSSRs
with 

Threshold

• Fault exists, or
• Fault does not exist

Compute
WSSRHKF &
WSSROBEM   

Hybrid Kalman Filter  
 
 

Figure 19.–Overall Architecture of the In-Flight Fault Detection System. 

Table 5 shows the number of cases for which the fault 
detection system generated false alarms in each scenario.  As 
can be seen in the table, the turbine clearance model has an 
obvious impact on the performance of the fault detection 
system.  In a total of 10 cases where false alarms were 
generated, both fault indicator signals, WSSRHKF and 
WSSROBEM, exceeded the threshold in two cases.  In the rest of 
the cases, only WSSROBEM exceeded the threshold.  This 
indicates that the sensitivity of WSSROBEM to the unknown 
dynamics is the major contributor to false alarms.  To avoid 
false alarms, the threshold for WSSROBEM must be set to higher 
values.  

 
 

TABLE 5.–FALSE ALARM TEST RESULT 
Scenario # # of Cases # of False Alarm Cases 

1 300 0 
2 300 3 
3 300 2 
4 300 5 

 
Scenario 1: Health condition mismatches. 
Scenario 2: Health condition mismatches plus turbine clearance 
model at nominal clearance condition. 
Scenario 3: Health condition mismatches plus turbine clearance 
model at moderate clearance condition. 
Scenario 4: Health condition mismatches plus turbine clearance 
model at large clearance condition. 
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Sensor and Actuator Fault Detection 
 
The diagnostic system’s ability to detect faults in sensors 

and actuators is evaluated in this section.  A sensor or actuator 
fault is represented by a bias, and the minimum bias value that 
can be detected for individual sensors and actuators is 
determined.  This evaluation is conducted at the cruise flight 
condition, and the PLA is set to 65 degrees.  Moreover, the 
health conditions of both the engine and the OBEM are set to 
the nominal condition; therefore, there is no health condition 
mismatch.  The engine and the fault detection system are run 
for 100 seconds at steady-state in the presence of a bias in a 
single sensor or actuator. 

As discussed earlier, a fault is detected when one of the 
two fault indicator signals exceeds the threshold for 25 
consecutive time steps.  However, to evaluate the fault 
detection performance in a relative sense, the following two 
cases are investigated: 1) fault detection using WSSRHKF alone 
and 2) fault detection using WSSROBEM alone.  For each case, 
fault detection is declared when a fault indicator signal exceeds 
the threshold for 25 consecutive time steps.  There are a 
number of diagnostic approaches for which the OBEM can be 
utilized.  A simplistic approach is to compare the outputs of the 
engine and the OBEM as done in Reference [18].  The fault 
detection using WSSROBEM alone represents this simplistic 
approach and thus provides a reference performance level that 
can be achieved when the OBEM is utilized without any 
estimation algorithm.  Relative to this reference performance 
level, the fault detection using WSSRHKF alone can reveal the 
performance improvement that can be achieved through the 
HKF algorithm. 

Table 6 shows the minimum bias (both positive and 
negative) detected for each sensor.  The bias values are given in 
terms of measurement standard deviations.  The table indicates 
that a bias in the P2 sensor is not detected.  This sensor is used 
for the correction of pressure measurements.  Since both 
measured and estimated pressure values are corrected by the P2 
value, a bias in this sensor does not increase the residuals. 

As can be seen in the table, sensor biases of smaller 
magnitude can be detected by utilizing WSSRHKF alone.  This 
may appear contradictory to the case studies in the earlier 
section where the HKF demonstrated its robustness.  The 
Kalman filter is, in general, robust to model-plant mismatch 
which results in shifts in multiple sensor measurements.  
However, the Kalman filter is not robust to a sensor bias since 
it assumes that no bias exists in the system.  Conversely, a 
sensor bias has less influence on the WSSROBEM value than 
model-plant mismatch does.  When a single sensor is biased, 
the outputs of the engine and the OBEM remain well-matched, 
except for only one sensor measurement.  A bias in a single 
measurement is averaged out among the good-matching 
measurements when WSSROBEM is computed.  As a result, the 
value of WSSROBEM is influenced less by a single sensor bias 
than by model-plant mismatch. 

The result in Table 6 reveals the advantage of the HKF 
algorithm in terms of detecting sensor biases of smaller 
magnitude; WSSRHKF exceeds the threshold before WSSROBEM 
does.  When both WSSRHKF and WSSROBEM are used for fault 

detection as intended, the smaller magnitude biases in Table 6 
are detected since only one of the two fault indicator signals 
needs to exceed the threshold to declare fault detection. 

TABLE 6.–MINIMUM SENSOR BIAS DETECTED 
USING WSSRHKF AND WSSROBEM INDIVIDUALL 

AT CRUISE WITH 65 DEGREES PLA  
(NUMBERS IN TERMS OF STANDARD DEVIATIONS) 

 WSSRHKF

(σ) 
WSSROBEM

(σ) 
XN12 6.2 / -6.3 6.9 / -6.9 
XN25 5.4 / -5.3 6.9 / -6.9 
P25 1.8 / -1.8 7.0 / -7.0 
T25 2.8 / -2.9 6.9 / -7.0 
PS3 2.3 / -2.3 6.9 / -7.0 
T3 3.6 / -3.6 6.9 / -7.0 

T49 4.4 / -4.4 6.9 / -6.9 
   

Tamb 0.4 / -0.5 0.9 / -1.1 
Pamb 0.7 / -0.6 1.7 / -1.3 
T2 0.6 / -0.6 2.0 / -1.5 
P2 --- / --- --- / --- 

 
 
 
 
TABLE 7.–MINIMUM ACTUATOR BIAS DETECTED 

USING WSSRHKF AND WSSROBEM INDIVIDUALLY 
AT CRUISE WITH 65 DEGREES PLA 

(NUMBERS IN % OF FULL-RANGE VALUE) 

 WSSRHKF
(%) 

WSSROBEM
(%) 

WF36 2.4 / -2.3 1.3 / -1.1 
VBV 8.9 / --- 22.6 / -- 
VSV 4.0 / -2.5 3.8 / -2.6 

 
 
 

The reader should be reminded that the biases in Table 6 
were detected without any health condition mismatch between 
the engine and the OBEM.  As shown in Reference [4], the 
detected bias values will change when health condition 
mismatch is introduced. 

Table 7 shows the minimum bias detected for each 
actuator.  The bias values are given in terms of percent of the 
full-range value.  As can be seen in the table, the negative bias 
in the VBV actuator is not detected since this actuator is nearly 
closed at the cruise condition.  The benefit of utilizing 
WSSROBEM appears in the case of WF36 bias.  Unlike a sensor 
bias, a WF36 bias results in shifts in multiple sensor 
measurements.  Therefore, through the utilization of 
WSSROBEM, in addition to WSSRHKF, actuator biases of smaller 
magnitudes can be detected. 
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Component Fault Detection 
 
The diagnostic system’s ability to detect faults in the 

engine’s rotating components is evaluated in this section.  A 
component fault is represented by an abrupt shift in a health 
parameter.  Unlike the sensor/actuator bias case where the 
engine operates at steady-state in the presence of a bias, the 
closed-loop engine will undergo transient operation when 
health parameters are shifted abruptly.  After the injection of a 
component fault, the engine and the fault detection system are 
run for 100 seconds.  When one of the fault indicator signals 
exceeds the threshold for 25 consecutive time steps, a fault is 
detected.  The evaluation is conducted at the cruise flight 
condition, and the PLA is set to 65 degrees.  Moreover, the 
health conditions of both the engine and the OBEM are set to 
the nominal condition. 

Table 8 shows the component fault scenarios used to 
evaluate the fault detection system.  There are nine component 
fault scenarios.  Fault scenarios 1 through 5 represent single-
component fault cases while fault scenarios 6 through 9 
represent multiple-component fault cases.  For each fault 
scenario, four levels of component damage are considered for 
evaluation.  At each damage level, both efficiency and flow 
capacity of each component are shifted randomly within the 
range shown in the table.  This range is considered to 
encompass reasonable failure scenarios.  All component shifts 
are made in the negative direction, except for HPT and LPT 
flow capacities which are shifted in the positive direction.  At 
each damage level of each fault scenario, 100 fault cases are 
generated by randomly shifting health parameters, thus a total 
of 3600 component fault cases are used in the evaluation. 

Table 9 shows the number of component fault cases 
detected by the fault detection system.  From the table, it can be 
observed that the performance of the fault detection system 
varies with the types of component faults.  The detection of 
FAN faults (scenario 1) fails at all damage levels while HPT 
faults (scenario 4) are detected consistently.   This difference is 
mainly due to the observability of faults through the available 
sensor measurements.  For the FAN component, the shifts in 
efficiency and flow capacity cause sensor measurement shifts 
in opposite directions.  Thus, when both of them are shifted, the 

net shift in the sensor measurements remains small.  This 
indicates a different sensor set is needed to successfully detect 
FAN faults. 

The situation where the fault signature (sensor 
measurement shifts) induced by a health parameter counteracts 
the fault signature induced by another health parameter seems 
to occur not only within a single component but also among 
multiple components.  At damage level 1, 98 cases of HPT 
faults (scenario 4) are detected while 51 fault cases are detected 
when both HPT and LPT are faulty (scenario 9).  At damage 
level 4, 49 cases of BST faults (scenario 2) are detected, but 
faults are not detected at all when both FAN and BST are faulty 
(scenario 6).  Successful detection of component faults heavily 
depends on the available sensors.  If different sensor sets are 
used, different results will be obtained. 

It should be noted that different results will also be 
obtained when the component faults are modeled differently.  
In the current study, efficiency and flow capacity of each 
component are shifted randomly within a given damage range, 
and their shifts are maintained within 1% of each other as 
shown in Table 8.  At the current research level, however, it is 
not certain how real component faults manifest in the efficiency 
and flow capacity shifts.  It is possible to encounter a 
component fault of 5% efficiency shift and 1% flow capacity 
shift.  Thus, the result in Table 9 only captures component 
faults modeled in the described manner. 

In this section, both fault indicator signals were used to 
detect component faults as described earlier.  Although the 
benefit of using WSSROBEM was not prominent in the sensor 
fault detection case, an obvious benefit was observed in the 
component fault case.  At damage level 1, all successful fault 
detection cases of scenarios 4 and 9 in Table 9 were 
accomplished by WSSROBEM; WSSROBEM exceeded the 
threshold while WSSRHKF did not.  At damage level 2, 
WSSROBEM exceeded the threshold in all successful fault 
detection cases while WSSRHKF exceeded the threshold only 19 
times (all in scenario 4).  At damage levels 3 and 4, there were 
cases where WSSRHKF exceeded the threshold while 
WSSROBEM did not.  However, it is obvious that the utilization 
of WSSROBEM, in addition to WSSRHKF, results in a benefit of 
detecting component faults at a higher rate.  Again, these fault 

TABLE 8.–COMPONE
  

Fault 
Scenario # 

Faulty 
Components Level 1

1 FAN [1%, 2%
2 BST [1%, 2%
3 HPC [1%, 2%
4 HPT [1%, 2%
5 LPT [1%, 2%
6 FAN & BST [1%, 2%
7 BST & HPC [1%, 2%
8 FAN &BST & HPC [1%, 2%
9 HPT &LPT [1%, 2%
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NT FAULT SCENARIOS 

Range of Component Damage 

 Level 2 Level 3 Level 4 

] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
] [2%, 3%] [3%, 4%] [4%, 5%] 
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indicator signals have different sensitivities to faults; 
WSSROBEM is sensitive to shifts in multiple sensor 
measurements whereas WSSRHKF is sensitive to shifts in a 
single sensor measurement.  Thus, the benefit of using 
WSSROBEM becomes prominent in the component fault case 
where shifts in multiple sensor measurements are induced.  The 
reader should be reminded again that the fault detection system 
will not identify the type and severity of a fault; it only 
indicates that a fault exists. 

 
 

Remarks on the Hybrid Kalman Filter 
 
The hybrid Kalman filter described in this paper has a 

unique structure which takes advantage of utilizing the 
nonlinear OBEM.  Because of this structure, the HKF possesses 
advantages over conventional Kalman filter approaches and is 
well suited for application to in-flight diagnostics.  In this 
section, some benefits of the hybrid architecture are discussed. 

One obvious benefit of the hybrid architecture is that the 
reference health baseline of the HKF can be updated to the 
degraded health condition of the engine in a relatively simple 
manner: by feeding the estimated health condition values to the 
OBEM.  This update process is much simpler than for the case 
of the pure piecewise linear Kalman filter (PLKF) approach.  
Without the health baseline update, any in-flight diagnostic 
system will lose its diagnostic effectiveness as the real engine 
degrades over its lifetime. 

Another benefit is that, in the hybrid architecture, the 
advantages of the constant gain extended Kalman filter 
(CGEKF) approach [11,19] and the PLKF approach [10] are 
combined.  The structure of the CGEKF is shown in Figure 20.  
The advantage of the CGEKF over the PLKF is its capability to 
capture nonlinear, off-design closed-loop engine operation.  
Such operation can be described using an example shown in 
Figure 21.  In this figure, the thick solid line indicates the 
steady-state relationship between the fan speed and the fuel 
flow.  An engine is expected to operate along this steady-state 
line.  Point 1 indicates an “on-design” operating condition at a 

commanded fan speed.  Assume that, at the same fuel flow 
condition as point 1, the real engine runs at a lower fan speed 
indicated by point 2.  A cause of such deviation from the on-
design condition can be a fault, health condition mismatch 
between the real engine and the expected condition, or other 
non-fault-related factors (e. g., customer bleeds, horsepower 
extractions, dirt washout from fan and compressors).  If the 
control objective is to maintain the fan speed at the commanded 
value, the control system adjusts the fuel flow so that the 
engine moves to point 3.  Depending on the nonlinearity of the 
closed-loop system, the new operating condition indicated by 
point 3 may be significantly away from point 1 which is the on-
design operating condition at the commanded fan speed.  For 
the case of the PLKF, the steady-state relationships between the 
parameters are fixed in the steady-state vectors (xss, uss, yss).  
Therefore, the variation of the steady-state relationships is not 
captured by the PLKF.  On the other hand, the CGEKF and the 
HKF utilize the nonlinear OBEM in which the nonlinear 
steady-state relationships between the parameters are 
embedded.  Therefore, the variation of these relationships can 
be captured by the CGEKF and the HKF. 

TABLE 9.–THE NUMBER OF TRUE-POSITIVE
(FAULT DETECTED) CASES AT CRUISE  

WITH 65 DEGREES PLA 
Fault 

Scenario # Level 1 Level 2 Level 3 Level 4 

1 0 0 0 0 
2 0 0 0 49 
3 0 0 11 100 
4 98 100 100 100 
5 0 7 100 100 
6 0 0 0 0 
7 0 0 7 100 
8 0 0 4 99 
9 51 100 100 100 
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Figure 20.–Structure of the CGEKF. 
 
 

Although the CGEKF approach has an advantage over the 
PLKF approach as discussed above, it also has disadvantages in 
other areas.  As noted in Reference [19], the numerical stability 
of the CGEKF may not be as robust as the PLKF.  Since the 
nonlinear OBEM used in the CGEKF approach receives 
feedback signals as shown in Figure 20, large residuals may 
drive the nonlinear OBEM out of the range that the model was 
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Figure 21.–Nonlinear Engine Operation. 
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designed for.  If this happens even for a short period, the 
numerical stability of the CGEKF may be lost.  On the other 
hand, in the HKF approach, the numerical stability of the 
nonlinear OBEM is not influenced by the estimation process 
since the OBEM does not receive any feedback signals (Figure 
6).  The OBEM runs as a stand-alone engine simulation, 
generating state variables and sensor outputs at a given health 
baseline.  Based on the information provided by the OBEM, the 
Kalman filter algorithm is processed using the piecewise linear 
state-space models.  As such, the HKF possesses the numerical 
robustness of the PLKF approach and also the nonlinear 
estimation capability of the CGEKF approach. 

Finally, the HKF approach can be easily expanded to a 
bank of Kalman filters for its application to fault isolation 
[9,10].  In the hybrid architecture, only the linear component of 
the filter (A, C, K) must be expanded while using only one 
OBEM.  By combining one OBEM and multiple sets of 
piecewise linear models, each set being designed based on a 
unique fault hypothesis, a bank of hybrid Kalman filters can be 
formed.  Therefore, the level of such expansion is similar to the 
case of the pure PLKF approach. 

 
 

Conclusion 
 
The hybrid Kalman filter (HKF) approach was developed 

for its utilization as the core of an aircraft engine in-flight 
diagnostic system.  The HKF has a unique architecture which is 
composed of a nonlinear on-board engine model (OBEM) and 
piecewise linear state-space models.  In this hybrid architecture, 
the OBEM functions as an integral part between off-line (non 
real-time) and in-flight (real-time) diagnostic systems; it 
operates at a reference health baseline specified by an off-line 
trend monitoring system, while providing information needed 
to process the Kalman filter algorithm for in-flight diagnostics.  
Because of this integration, the in-flight diagnostic system does 
not need to deal with engine health degradation by itself. 

To investigate its capability, the HKF-based fault detection 
system was evaluated in a simulation environment in the 
following areas: 1) capability to avoid false alarms and 2) 
capability to detect faults in sensors, actuators, and 
components.  In the false alarm test, the fault detection system 
was run over a typical flight trajectory which covered ground-
idle, takeoff, climb, and cruise.  In this test, the fault detection 
system demonstrated its robustness in terms of avoiding false 
alarms in the presence of model-plant health condition 
mismatch and unknown dynamics.  The capability to detect 
faults in sensors, actuators, and components was demonstrated 
at a cruise flight condition.  The fault detection system was able 
to detect sensor and actuator biases, but it failed to detect some 
of the component faults.  This shortcoming is mainly due to the 
limitation imposed by the available sensors, from which fault 
occurrences are observed.  Although fault detection 
performance can be improved by setting the threshold at a 
lower value, the false alarm rate will also increase by doing so. 

The HKF possesses the combined strength of the 
conventional linear and nonlinear Kalman filter approaches.  
The extensive evaluation presented in this paper reveals that the 

HKF approach is a promising way of implementing the OBEM 
and the Kalman filter algorithm for real-time, in-flight 
diagnostics of aircraft gas turbine engines. 

 
 

Nomenclature 
 
BST Booster 
CGEKF Constant Gain Extended Kalman Filter 
HKF Hybrid Kalman Filter 
HPC High Pressure Compressor 
HPT High Pressure Turbine 
LPT  Low Pressure Turbine 
OBEM On-Board Engine Model 
P2  Engine inlet pressure 
P25  HPC inlet pressure 
Pamb  Ambient pressure 
PLA Power Lever Angle 
PLKF Piecewise Linear Kalman Filter 
PS3  Combustor inlet static pressure 
T2  Engine inlet temperature 
T3  Combustor inlet temperature 
T49  LPT inlet temperature 
Tamb  Ambient temperature 
TMHS23 BST metal temperature 
TMHS3 HPC metal temperature 
TMHS41 HPT nozzle metal temperature 
TMHS42 HPT metal temperature 
TMHS5 LPT metal temperature 
TMSHBC Combustor case metal temperature 
TMHSBL Combustor liner metal temperature 
VBV Variable bleed valve 
VSV Variable stator vane 
WF36 Fuel flow 
WSSR Weighted Sum of Squared Residuals 
XN12 Fan speed, measured 
XN25 Core speed, measured 
XNH Core speed, actual 
XNL Fan speed, actual 
e  Environmental parameter vector 
h  Health parameter vector 
href  Reference health condition vector 
ucmd  Control command vector 
v  Sensor noise vector 
x  State variable vector 
y  Sensor output vector (controls/diagnostics) 
z  Sensor output vector (ambient/engine inlet) 
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