OVERVIEW OF NASA’S PROPULSION 21 EFFORT

Mary Jo Long-Davis
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

Overview of NASA’s Propulsion 21 Effort

Mary Jo Long-Davis
NASA
(216) 433-8708
Mary.J.Long-Davis@nasa.gov
State-wide coalition focused on research and development aimed at three aircraft engine-related goals:

- more energy efficient
- quieter
- more reliable
Management Structure

Executive Board
NASA/GE/OSU

NASA

Co-operative Agreement
Data Control Plans

Ohio State University

Contract

General Electric Aircraft Engines

GMI
Argo-Tech
Transmet

Timken
Webcore
Parker-Hannifin

University of Akron
University of Cincinnati
University of Dayton
Case Western Reserve University

Associate Contractor Agreements

NASA Seals Workshop November 8-9, 2005
Propulsion 21 Technologies

- Turbine Engine Prognostics
 - Disk Life Meter
 - Sub-System Health Management

Active Controls for Emissions and Noise reduction
- Intelligent Combustor
- Active Noise Reduction

Active Structural Control
- Turbine Cooling Control
- Smart Containment System
- High Pressure Turbine Clearance Control

Modeling, Analysis and System Studies
- System Studies
Disk Life Meter

Objective:
Develop materials models and sensors to measure remaining life in turbine disk materials at sustained high operating temperatures.

Pit Formation and Growth Now Need to Be Understood
Objective:

Develop bearing diagnostics and health monitoring system for inter-shaft bearings to provide early detection of impending bearing failure. Demonstrate a conceptual monitoring system for a differential roller bearing.
Intelligent Combustor

Objective:
Develop a combustor incorporating advanced diagnostics and active combustor control to reduce NOx emissions by 85% relative to 1996 ICAO standards, while retaining the performance of existing combustors.
Objective:
Use fluidic injection, shape memory alloys, and/or plasma actuators to enhance exhaust nozzle jet mixing to actively reduce jet engine noise. Incorporate active/smart concepts into acoustic liner design to increase liner acoustic performance.
Turbine Cooling Control

Objective:
Develop and demonstrate innovative turbine system and component cooling technologies with active flow and temperature control, including prognostic / diagnostic sensors, for improved engine fuel burn and emissions.

Advanced Cooling Concepts
- Cooled Cooling Air, Active Flow Control, Next-Gen Airfoil Cooling

Thermal Management & 3D System Simulation

Sensors for Active Control & Prognostics

NASA Seals Workshop November 8-9, 2005
Smart Containment System

Objective:
Develop an innovative “smart” softwall containment system that capitalizes on the anisotropic nature of composites.

Conceptual design of smart containment system

Nanofiber circuit diagnostic grid
High Pressure Turbine (HPT) Clearance Control

Objective:
Develop an HPT clearance control system that can adapt to changing environment/requirements.

Active clearance control rig
tests advanced concepts

Heat inputs:
- radiant heater
- supply air

Actuators:
- servo-hydraulic “smart” (SMA, piezo)

Shroud moved in to compensate for blade tip rub
Objective: Perform technology assessment and identify needed modeling improvements to handle adaptive technologies.

CO₂ Reduction (Fuel Burn)
(Baseline Engine is 2015 QAT/UEET)

Noise Reduction
(Baseline Engine is 2015 QAT/UEET)

NOx Reduction
(Baseline Engine is 2015 QAT/UEET)
Summary

• Propulsion 21 technologies contribute to reducing CO₂ and NOₓ emissions and noise

• Integrated Government/Industry/University research efforts have produced promising initial technical results

• Graduate students from 5 partnering universities will benefit from this collaborative research--> educating the future engineering workforce

• Phase 2 Efforts scheduled to be completed 3QFY06