OVERVIEW OF NASA’S PROPULSION 21 EFFORT

Mary Jo Long-Davis
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

Overview of NASA’s Propulsion 21 Effort

Mary Jo Long-Davis
NASA
(216) 433-8708
Mary.J.Long-Davis@nasa.gov
State-wide coalition focused on research and development aimed at three aircraft engine-related goals:

• more energy efficient
• quieter
• more reliable
Management Structure

Executive Board
NASA/GE/OSU

Contract

NASA

Co-operative Agreement

Data Control Plans

Ohio State University

Associate Contractor Agreements

General Electric Aircraft Engines

GMI

Argo-Tech

Transmet

Timken

Webcore

Parker-Hannifin

University of Akron

University of Cincinnati

University of Dayton

Case Western Reserve University
Propulsion 21 Technologies

Turbine Engine Prognostics
- Disk Life Meter
- Sub-System Health Management

Active Controls for Emissions and Noise reduction
- Intelligent Combustor
- Active Noise Reduction

Active Structural Control
- Turbine Cooling Control
- Smart Containment System
- High Pressure Turbine Clearance Control

Modeling, Analysis and System Studies
- System Studies
**Objective:**
Develop materials models and sensors to measure remaining life in turbine disk materials at sustained high operating temperatures.

---

**Pit Formation and Growth Now Need to Be Understood**
Sub System Health Management

**Objective:**
Develop bearing diagnostics and health monitoring system for inter-shaft bearings to provide early detection of impending bearing failure. Demonstrate a conceptual monitoring system for a differential roller bearing.
Intelligent Combustor

**Objective:**
Develop a combustor incorporating advanced diagnostics and active combustor control to reduce NOx emissions by 85% relative to 1996 ICAO standards, while retaining the performance of existing combustors.

- Lean blow-out precursor identification
- New swirler concepts
Active Noise Control

Objective:
Use fluidic injection, shape memory alloys, and/or plasma actuators to enhance exhaust nozzle jet mixing to actively reduce jet engine noise. Incorporate active/smart concepts into acoustic liner design to increase liner acoustic performance.
**Objective:**
Develop and demonstrate innovative turbine system and component cooling technologies with active flow and temperature control, including prognostic / diagnostic sensors, for improved engine fuel burn and emissions.

**Advanced Cooling Concepts**
Cooled Cooling Air, Active Flow Control, Next-Gen Airfoil Cooling

**Thermal Management & 3D System Simulation**

**Sensors for Active Control & Prognostics**
Smart Containment System

**Objective:**
Develop an innovative “smart” softwall containment system that capitalizes on the anisotropic nature of composites.

Conceptual design of smart containment system

Nanofiber circuit diagnostic grid
High Pressure Turbine (HPT) Clearance Control

**Objective:**
Develop an HPT clearance control system that can adapt to changing environment/requirements.

![Diagram of clearance control system](image)
Objective:
Perform technology assessment and identify needed modeling improvements to handle adaptive technologies.

CO₂ Reduction (Fuel Burn)
(Baseline Engine is 2015 QAT/UEET)

Noise Reduction
(Baseline Engine is 2015 QAT/UEET)

NOx Reduction
(Baseline Engine is 2015 QAT/UEET)
Summary

- Propulsion 21 technologies contribute to reducing CO$_2$ and NO$_x$ emissions and noise
- Integrated Government/Industry/University research efforts have produced promising initial technical results
- Graduate students from 5 partnering universities will benefit from this collaborative research--> educating the future engineering workforce
- Phase 2 Efforts scheduled to be completed 3QFY06