ELASTOMERIC SEAL DEVELOPMENT FOR ADVANCED DOCKING/BERTHING SYSTEM

Christopher Daniels
University of Akron
Akron, Ohio

Jay Oswald
J&J Technical Solutions, Inc.
Cleveland, Ohio

Patrick Dunlap and Bruce Steinetz
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

Elastomeric Seal Development for
Advanced Docking / Berthing System

C. Daniels
University of Akron
Akron, OH 44325

J. Oswald
J&J Technical Solutions
Middleburg Heights, OH 44130

P. Dunlap and B. Steinetz
NASA John H. Glenn Research Center
Cleveland, OH 44135

2005 NASA Seal/Secondary Air System Workshop
November 8-9, 2005
Presentation Overview

• ADBS Overview
 → Seal evaluation criteria
 → Candidate seals
 → Environments
 → Historical data
 → Elastomers

• Test Fixtures and Results
 → Compression set
 → Adhesion testing
 → Small-scale flow test
 → Full-scale flow test

• Numerical Simulation

• Summary

• Future Work
What is the ADBS?
System under development by Johnson Space Center (JSC) to:

- Provide androgynous pressurized interface permitting autonomous docking/berthing between space vehicles and structures.
- Reduce impact loads between two mating space craft.
- Become new Agency standard for docking/berthing systems.

What are the Sealing Challenges?
- Androgynous configuration requires seal-on-seal mating at the interface between systems.
- Seals must survive exposure to space environment.
Criteria for evaluating candidate seals

- Environmental and operating temperature compatibility
 - Environment: -100 to 100°C
 - Operation: -50 to 50°C

- Compatibility to vacuum environment (low outgassing)
 - Total mass loss (TML): <1%
 - Collected volatile condensable materials (CVCM): <0.1%

- Material stability when exposed to Atomic Oxygen (AO) and Ultraviolet radiation (UV)

- Compression force required to produce adequate seal
 - Less than 100 lbf / linear inch

- Leak rate
 - Less than 0.044 lbm / day

- Resistance to mechanical damage / ability to seal after damage
 - Debris
 - Micrometeoroids
Types of Candidate Seals

Two types of seals are being considered:

<table>
<thead>
<tr>
<th></th>
<th>Elastomeric Seals</th>
<th>Metallic Seals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to form adequate seal</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Long term resistivity to space environments</td>
<td>TBD</td>
<td>Excellent</td>
</tr>
<tr>
<td>AO / UV Micrometeoroids</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Compression load required</td>
<td>TBD: initially low / expected to rise</td>
<td>TBD</td>
</tr>
<tr>
<td>Ability to perform under gapping / misalignment</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Space application experience</td>
<td><30 days on Shuttle / ISS</td>
<td>None known</td>
</tr>
<tr>
<td>Adhesion</td>
<td>Slight expected</td>
<td>None expected</td>
</tr>
</tbody>
</table>

NASA/CP—2006-214383/VOL1
Environmental Exposures

- As the Agency standard for docking systems, the ADBS is expected to operate:
 - In low Earth orbit (LEO)
 - On Moon
 - On Mars

<table>
<thead>
<tr>
<th>Low Earth Orbit</th>
<th>Moon</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Oxygen</td>
<td>Ultraviolet radiation</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>Ultraviolet radiation</td>
<td>Vacuum</td>
<td>Vacuum</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Micrometeoroids</td>
<td>Micrometeoroids</td>
</tr>
<tr>
<td>Micrometeoroids</td>
<td>Dust</td>
<td>Dust</td>
</tr>
<tr>
<td></td>
<td>Temperature (-253 to 123°C)</td>
<td>Temperature (27 to -128°C)</td>
</tr>
</tbody>
</table>

- To determine the effects of AO and UV, elastomer samples will be tested:
 - As-received
 - After AO exposure
 - After AO + UV exposure
Historical Data

- Material evaluation completed for the Common Berthing Mechanism (CBM) / International Space Station (ISS)

- Fluorocarbon elastomers are unacceptable for use in environments where Atomic Oxygen (AO) and Ultraviolet radiation (UV) are present.

- Leakage from silicone elastomer seals increased linearly when exposed for up to 181 hours of AO and UV.

- Leakage increased up to 3200% for Silicone seals exposed to 181 equivalent hours.

Note: The chart shows the leak rate (atm cc / sec He) as a function of Equivalent hours for different materials and compression levels.
Three candidate elastomers are under consideration:
• Parker Hannifin S383-70
• Parker Hannifin S899-50
• Esterline Kirkhill TA XELA-SA-401

All three are silicone rubber. The PH S383-70 has a durometer of 70; the PH S899-50 has a durometer of 50; the EK is the softest material having a durometer of 38.
Compression Set Testing

- Determines the ability of elastomeric compounds to retain elastic properties after prolonged compression.

- Testing per ASTM Standards D395 (Test Method B) and D1414.

- Tests to be completed
 - As-received ✔
 - After exposure to AO
 - After exposure to AO + UV

Photo of the Compression Set Fixture
Compression Set Results

- O-ring specimens have been tested per ASTM Standards D395 (Test Method B) and D1414:
 - Parker-Hannifin silicone S0383-70
 - Parker-Hannifin silicone S0899-50
 - Esterline Kirkhill silicone XELA-SA-401

- The specimen were tested in the as-received condition and have not been exposed to atomic oxygen nor ultra-violet radiation.

- Test conditions:
 - 25% Compression
 - 70 hours at room temperature
 - Surfaces were unlubricated

- Compression set results (median):
 - S0383-70: $C_B = 9.7\%$
 - S0899-50: $C_B = 7.8\%$
 - XELA-SA-401: $C_B = 13.9\%$

Compression set test results of o-ring specimen (AS 568A size 309) manufactured from Parker-Hannifin S0383-70, Parker-Hannifin S0899-50, and Esterline Kirkhill XELA-SA-401 compounds.
Adhesion Testing

- Quantify adhesion between two elastomeric samples before and after exposure to Atomic Oxygen and Ultraviolet radiation.

- Measures compression and adhesion forces as a function of displacement at a given compression / decompression rate.
Sample Adhesion Test Results

Adhesion test results showing effects of compression / decompression rate on adhesion for XELA-SA-401.

• Adhesion increases with increased compression / decompression rate.

Adhesion test results showing effects of contact period on adhesion for XELA-SA-401.

• Adhesion increases with increased contact duration, but levels off.
Small Scale Flow Testing

- **Quantify seal performance**
 - Of 2-309 size o-rings
 - Leakage
 - Before and after exposure to AO and UV

- **Configuration**
 - Seal against flat metal plate

- **Pressure boundary conditions**
 - Internal pressure
 - External vacuum

- **Temperature conditions**
 - Room temperature

Photo of the Small-scale Flow Fixture with sample o-ring installed.
Full Scale Flow Testing

- Quantify seal performance
 - Leakage
 - Compressive load required
 - Separation force required
- Under representative conditions
 - Full-scale (φ54") seal-on-seal configuration
 - Pressure boundary conditions
 - Internal pressure
 - External vacuum
 - Temperature conditions
 - Minimum temperature: -50C
 - Maximum temperature: 50C
 - Temperature gradients
 - Seal-to-seal alignment
 - Up to 0.050 inch axial misalignment
 - Angular misalignment (gapping)

Full-scale Flow Fixture.
Numerical Modeling

- Preliminary model of contact pressure generated as the seal interacts with its replicate
 - Model includes
 - Properties obtained using adhesion test fixture
 - Friction
 - Misalignment of seals

- Many alternate configurations can be modeled as processing is fast (<60s) for 2-D cases
 - Seal geometry
 - Axial misalignments

- Model is linear elastic, not hyperelastic
 - Does not support true incompressibility
 - Difficult to converge
 - Hyperelasticity most closely models rubber material
 - Close to ideally elastic
 - Strongly resists volume changes
 - Very compliant in shear
 - Shear response is strongly temperature dependent

- Planning to switch to hyperelastic model after obtaining needed material properties
Common Berthing Mechanism: Numerical Simulation

- **Configuration:**
 - Parker-Hannifin
 - Gask-O-Seal

- **Aligned**

- **Linear elastic model**
 - $E = 230$ psi
 - $\nu = 0.4999$
 - $\mu_s = 0.8$

\[\text{Aligned Force-Potential View}^{\text{fig:aligned}}\]
Common Berthing Mechanism: Numerical Simulation

- Configuration: Parker-Hannifin Gask-O-Seal
- Misaligned 0.025 inch
- Linear elastic model
 - $E = 230$ psi
 - $v = 0.4999$
 - $\mu_s = 0.8$
Common Berthing Mechanism: Numerical Simulation

- Configuration: Parker-Hannifin Gask-O-Seal
- Misaligned 0.050 inch
- Linear elastic model
 - $E = 230$ psi
 - $\nu = 0.4999$
 - $\mu_s = 0.8$
Summary

- Elastomeric seals are being considered for application to the Advanced Docking / Berthing System.

- Currently, three candidate elastomers are being evaluated.

- To meet the unique requirements of the ADBS, several test fixtures have been built to determine each elastomer’s:
 - Environmental and operating temperature compatibility
 - Material stability when exposed to Atomic Oxygen and Ultraviolet radiation
 - Adhesion force required to separate
 - Compression set
 - Leak rate

- These results will be compared with those from the metallic seal development to determine the final seal design.
Future Work

• Complete compression set, adhesion, and small-scale flow tests
 → Baseline
 → After Atomic Oxygen (AO) exposure
 → After AO + Ultraviolet radiation (UV) exposure

• Down-select between competing concepts and materials based on requirements.

• Perform full-scale flow tests to assess:
 → Full scale seal-on-seal leakage
 → Temperature effects
 → Effects of axial offset
 → Effects of seal-to-seal gapping (angular misalignment)

• Perform numerical simulations to predict seal leakage
 → Seal geometries
 → Misalignments