NASA IN-SITU RESOURCE UTILIZATION PROJECT—AND SEAL CHALLENGES

Kurt Sacksteder and Diane Linne
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

NASA In-Situ Resource Utilization Project
– and Seals Challenges

Kurt Sacksteder and Diane Linne
NASA Glenn Research Center
2005 NASA Seal/Secondary Air System Workshop
November 8-9, 2005
New Space Exploration Vision

• On January 14, 2004, the President announced a new vision for NASA
 – Implement a *sustained and affordable* human and robotic program to explore the solar system and beyond;
 – Extend *human presence* across the solar system, starting with a human return to the Moon in preparation for human exploration of Mars and other destinations;
 – Develop the *innovative technologies*, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and
 – Promote *international and commercial participation* in exploration to further U.S. scientific, security, and economic interests.

“Making use of the Moon’s abundant resources…”
What Are Space Resources?

- **Traditional material resources including:**
 - Water from the soil or atmosphere
 - Atmospheric gases (CO₂, O₂, N₂, etc.)
 - Volatile species from the solar wind or comets (H₂, He, H₂O, CH₄, etc.)
 - Minerals/metals (Fe, Ti, Ni, Si, etc.)

- **Energy**
 - (Near) Continuous sunlight for electrical/thermal power and stable thermal control
 - (Near) Continuous Darkness for cryogenic fluid storage, scientific instruments and stable thermal control

- **Environment**
 - Vacuum/Dryness
 - Micro/Partial Gravity
 - High Thermal Gradients

- **Location**
 - Stable Locations for Earth/Sun/deep-space observations, mission staging
 - Isolation from Earth’s electromagnetic noise, storage of duplicate vital information
 - Isolation for Earth to conduct hazardous testing (nuclear, biological, etc.) and extraterrestrial sample curation & analysis, etc.

In-Situ Resource Utilization exploits these resources, creating products & services that significantly reduce the mass, cost, & risk of extended-duration space exploration
Space Resource Utilization for Exploration

Mission Consumable Production
- Propellants for Lander/Ascent Vehicles, Surface Hoppers, & Aerial Vehicles
- Fuel cell reagents for mobile (rovers, EVA) & stationary backup power
- Life support consumables (oxygen, water, buffer gases)
 - Gases for science equipment and drilling
 - Bio-support products (soil, fertilizers, etc.)
 - Feedstock for in-situ manufacturing & surface construction

Surface Construction
- Radiation shielding for habitat & nuclear reactors from in-situ resources or products (Berms, bricks, plates, water, hydrocarbons, etc.)
- Landing pad clearance, site preparation, roads, etc.
 - Shielding from micro-meteoroid and landing/ascent plume debris
 - Habitat and equipment protection

Manufacturing w/ Space Resources
- Spare parts manufacturing
 - Locally integrated systems & components (especially for increasing resource processing capabilities)
 - High-mass, simple items (chairs, tables, replaceable structure panels, wall units, wires, extruded pipes/structural members, etc.)

Space Utilities & Power
- Storage & distribution of mission consumables
- Thermal energy storage & use
- Solar energy (PV, concentrators, rectennas)
- Chemical energy (fuel cells, combustion, catalytic reactors, etc.)
ISRU Enables Affordable, Sustainable & Flexible Exploration

Mass Reduction
- Reduces Earth to orbit mass by 20 to 45% for Mars missions
- 3.5:1 to 4:1 mass savings leverage from Moon/Mars surface back to Low Earth Orbit

Cost Reduction
- Reduces number and size of Earth launch vehicles
- Allows reuse of transportation assets
- Minimizes DDT&E cost

Risk Reduction & Flexibility
- Fewer Earth launches & reduced mission operations
- Reduced dependence on Earth
- Common hardware & mission consumables
- In-situ fabrication of spare parts for sustainable self-sufficiency
- Dissimilar redundancy
- Radiation & Plume Shielding

Expands Human Presence
- Increase surface mobility and extend missions
- Habitat & infrastructure construction
- Consumables for propellant, life support, power, etc.
- Substitute infrastructure cargo for Earth-source propellant & consumables

Enables Space Commercialization
- Material handling and processing technologies
- Infrastructure for space commercialization
- Propellant/consumable depots at Earth-Moon L1 & Lunar Surface
Propellant from the Moon Could Revolutionize Space Transportation

Apollo missions utilized Earth-supplied propellant (Saturn V liftoff mass = 2,962 tons)

Refueling at L1 and on Moon reduces launch to 73% of Apollo mass (2,160 tons)

Refueling at Low Earth Orbit, L1 and on Moon reduces launch to 12% of Apollo mass (355 tons)

Lunar lander refueled on the Moon's surface reduces launch to 34% of Apollo mass (1,004 tons)

Add a reusable lunar lander reduces launch to 268 tons

Add a reusable upper stage & lander reduces launch to 119 tons

Note: Apollo stage height is scaled by estimated mass reduction due to ISRU refueling.
Timeline for ISRU Capability Implementation

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Early Robotic Exploration</td>
</tr>
<tr>
<td>2006</td>
<td>1st Robotic Landers</td>
</tr>
<tr>
<td>2007</td>
<td>2nd Robotic Landers</td>
</tr>
<tr>
<td>2008</td>
<td>Lunar Reconn Orbiter</td>
</tr>
<tr>
<td>2009</td>
<td>Commercial Robots</td>
</tr>
<tr>
<td>2010</td>
<td>Mars Sample Return</td>
</tr>
<tr>
<td>2011</td>
<td>ISRU Robotic Hopper</td>
</tr>
<tr>
<td>2012</td>
<td>ISRU Science Hopper</td>
</tr>
<tr>
<td>2013</td>
<td>ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2014</td>
<td>Mars Science Hopper Capability</td>
</tr>
<tr>
<td>2015</td>
<td>Mars ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2016</td>
<td>Mars Subscale Human Propellant Production & Storage Capability</td>
</tr>
<tr>
<td>2017</td>
<td>Mars ISRU Human Hopper Capability</td>
</tr>
<tr>
<td>2018</td>
<td>Mars Deep Drilling Capability</td>
</tr>
<tr>
<td>2019</td>
<td>Propellant Production & Delivery for Surface Access & Cislunar Transportation</td>
</tr>
<tr>
<td>2020</td>
<td>Mars Atmosphere Propellant Production & Storage Demonstrated</td>
</tr>
<tr>
<td>2021</td>
<td>Subscale Mars Regolith Excavation & H2O Extraction</td>
</tr>
<tr>
<td>2022</td>
<td>ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2023</td>
<td>Mars ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2024</td>
<td>Mars Subscale Human Propellant Production & Storage Capability</td>
</tr>
<tr>
<td>2025</td>
<td>Mars ISRU Human Hopper Capability</td>
</tr>
<tr>
<td>2026</td>
<td>Mars Deep Drilling Capability</td>
</tr>
<tr>
<td>2027</td>
<td>Propellant Production & Delivery for Surface Access & Cislunar Transportation</td>
</tr>
<tr>
<td>2028</td>
<td>Mars Atmosphere Propellant Production & Storage Demonstrated</td>
</tr>
<tr>
<td>2029</td>
<td>Subscale Mars Regolith Excavation & H2O Extraction</td>
</tr>
<tr>
<td>2030</td>
<td>ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2031</td>
<td>Mars ISRU Science Hopper Capability</td>
</tr>
<tr>
<td>2032</td>
<td>Mars Subscale Human Propellant Production & Storage Capability</td>
</tr>
<tr>
<td>2033</td>
<td>Mars ISRU Human Hopper Capability</td>
</tr>
<tr>
<td>2034</td>
<td>Mars Deep Drilling Capability</td>
</tr>
<tr>
<td>2035</td>
<td>Propellant Production & Delivery for Surface Access & Cislunar Transportation</td>
</tr>
</tbody>
</table>

In-Situ Resource Utilization must earn acceptance for mission critical roles in crewed missions through convincing demonstrations early in the Exploration timeline.
Lunar ISRU Implementation Approach

Lunar Mission Assumptions with ISRU (Lunar Exploration Analysis Group-LEAG)
- Robotic precursors identify resources and validate critical processes
- Early human missions (4 to 14 days) gain system & operational experience until a candidate long-term site is selected
 - Pre-deployed ISRU/mission assets before human missions
- Develop infrastructure at one base for Mars mission ‘dress rehearsals’ (90 day & 500 day) and sustained human presence in space
 - Traverse or hop to other locations for short term science mission objectives

Initial Capabilities
- Surface regolith excavation and manipulation
 - Excavation for volatile extraction and regolith processing
 - Berms and shielding for radiation and plume protection
 - Site/landing pad preparation and road/dust mitigation
- Extraction & recovery of useful volatiles from surface resources (H₂, CO, N₂, H₂O)
- Oxygen (O₂) production from regolith processing
- Production/regeneration of fuel cell reagents
- Cryogenic storage & transfer

Mid-Term ISRU Capabilities
- In-situ fabrication and repair
- Space Power
- Thermal energy storage & use

Long-Term Lunar Capabilities
- In-situ manufacturing of complex parts and equipment
- Habitat and infrastructure construction (surface & subsurface)
- Life Support System – bio support (soil, fertilizers, etc.)
- Helium-3 isotope (³He) mining
ISRU Technical-to-Mission Capability Roadmap

In-Situ Resource Determination & Engineering Data
- Prospecting Flight Experiments

Volatile Source Gases for Power, Propulsion, & Life Support

Regolith & Atmosphere Source Gases for Power, Propulsion & Life Support
- Lunar Polar Water Explorer
- Lunar Volatile Extraction
 - \(H_2, H_2O, He \) & \(He^3 \)
- Mars Polar Water Extraction Demo

Resource Excavation & Separation
- Regolith Excavation and Handling
- Regolith Beneficiation
- Thermal/Microwave Volatiles Extraction
- \(H_2O \) Separation
- \(CO_2 \) & \(N_2 \) Separation

Resource Processing
- Reduction of Metals & Silicon for Oxygen and Solid Fuel
- \(H_2O \) Separation for Oxygen and Fuel
- \(CO_2 \) Separation for Oxygen and Fuel

Consumable Storage & Distribution
- Liquefaction and Pressurization
- Storage and Distribution Logistics

In-Situ Manufacturing
- Metallic parts
- Polymer parts
- Solar cell production

In-Situ Construction
- Habitats
- Spaceport
- Surface Transportation

Solid Resource Utilization, Improved Logistics & Infrastructure Growth
- Lunar O\textsubscript{2} Pilot Plant
- Mars O\textsubscript{2} & Fuel Production Demo
- Micro-Gravity Manufacturing Demo on ISS
- Lunar Construction Demo
- ISRU-based Infrastructure

Mission Capabilities
- Lunar Fuel Production
- Lunar O\textsubscript{2} Production
- Mars O\textsubscript{2} & Fuel Production
- Solar Cell & Spare Parts Manufacturing Demo

Prospects
- Lunar Volatile Extraction (\(H_2, H_2O, He \) & \(He^3 \))
- Mars Polar Water Extraction Demo
- Lunar O\textsubscript{2} Pilot Plant
- Mars O\textsubscript{2} & Fuel Production Demo
- Micro-Gravity Manufacturing Demo on ISS
- Lunar Construction Demo
- ISRU-based Infrastructure

ISRU Technical Capabilities

ISRU Mission Capabilities
ISRU Resources & Products of Interest

LUNAR RESOURCES

MARE REGOLITH

Ilmenite - 15%
FeO·TiO₂ 98.5%

Pyroxene - 50%
CaO·SiO₂ 36.7%
MgO·SiO₂ 29.2%
FeO·SiO₂ 17.6%
Al₂O₃·SiO₂ 9.6%
TiO₂·SiO₂ 6.9%

Olivine - 15%
2MgO·SiO₂ 56.6%
2FeO·SiO₂ 42.7%

Anorthite - 20%
CaO·Al₂O₃·SiO₂ 97.7%

VOLATILES (Solar Wind & Polar Ice/H₂)

Hydrogen (H₂) 50 - 150 ppm
Helium (He) 3 - 50 ppm
Helium-3 (³He) 10⁻² ppm
Carbon (C) 100 - 150 ppm
Polar Water (H₂O)/H₂ 1 - 10%

Thermal Volatile Extraction

Hydrogen Reduction of Ilmenite/glass

Sulfuric Acid Reduction

Methane Reduction (Carbothermal)

Molten Electrolysis

Vapor Pyrolysis

Fluidized Bed Reactor

2FeTiO₃ + 2H₂ 900°C 2H₂O + 2Fe + 2TiO₂
Water electrolysis
O₂ + 2H₂ 2H₂O

Desolve/Digest Reactor

2FeTiO₃ + 2H₂SO₄ 2H₂O + 2FeSO₄ + 2TiO₂
Electrolysis bed
O₂ + 2Fe + 2H₂SO₄ 2H₂O + 2FeSO₄

Methane Reduction Furnace

Pyrolysis Reactor/Condenser

2SiO₂ 2SiO + O₂
2FeTiO₃ 2FeO + 2TiO₂ + O₂
2FeO 2FeO + O₂
2Al₂O₃ 4AlO + O₂
2CaAl₂SiO₆ 2CaO + 4AlO + 2SiO + O₂
2MgO 2MgO + O₂
2CaO 2CaO + O₂
2CaAl₂SiO₆ 2Ca + 2AlO + 2SiO + O₂
5O₂, 2Al, 2Ca

Pyrolysis Reactor/Condenser

2SiO₂ 2SiO + O₂
2FeTiO₃ 2FeO + 2TiO₂ + O₂
2FeO 2FeO + O₂
2Al₂O₃ 4AlO + O₂
2CaAl₂SiO₆ 2CaO + 4AlO + 2SiO + O₂
2MgO 2MgO + O₂
2CaO 2CaO + O₂
2CaAl₂SiO₆ 2Ca + 2AlO + 2SiO + O₂
5O₂, 2Al, 2Ca

Vapor Pyrolysis

Molten Electrolysis Reactor

2FeTiO₃ 2FeO + 2TiO₂ + O₂
2FeO 2FeO + O₂
2Al₂O₃ 4AlO + O₂
2CaAl₂SiO₆ 2CaO + 4AlO + 2SiO + O₂
2MgO 2MgO + O₂
2CaO 2CaO + O₂
2CaAl₂SiO₆ 2Ca + 2AlO + 2SiO + O₂
5O₂, 2Al, 2Ca

Methane Reduction (Carbothermal)

Molten Electrolysis Reactor

2FeTiO₃ 2FeO + 2TiO₂ + O₂
2FeO 2FeO + O₂
2Al₂O₃ 4AlO + O₂
2CaAl₂SiO₆ 2CaO + 4AlO + 2SiO + O₂
2MgO 2MgO + O₂
2CaO 2CaO + O₂
2CaAl₂SiO₆ 2Ca + 2AlO + 2SiO + O₂
5O₂, 2Al, 2Ca

Methane Reduction (Carbothermal)
Challenging Seals Requirements for ISRU

The Moon is a Harsh Environment

- Temperatures from 40K (-230°C) to 450K (150°C)
- High Vacuum, 10^-10 mm Hg
- Dust: abrasive, static cling, etc.
- Partial gravity

Initial ISRU Capabilities

- Surface regolith excavation and manipulation – mechanism bearings and regolith abrasion
 - Excavation for volatile extraction and regolith processing
 - Berms and shielding for radiation and plume protection
 - Site/landing pad preparation and road/dust mitigation
- Extraction & recovery of useful volatiles from surface resources (H₂, CO, N₂, H₂O) – encapsulate regolith during excavation and heating
- Oxygen (O₂) production from regolith processing – high temperature reactors and reagent recovery systems
- Production/regeneration of fuel cell reagents – fuel transfer operations
- Cryogenic storage & transfer – valves and other plumbing issues