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This paper reports a comparison of two experiment design methods applied in the 
calibration of a strain-gage balance. One features a 734-point test matrix in which loads are 
varied systematically according to a method commonly applied in aerospace research and 
known in the literature of experiment design as One Factor At a Time (OFAT) testing. Two 
variations of an alternative experiment design were also executed on the same balance, each 
with different features of an MDOE experiment design. The Modern Design of Experiments 
(MDOE) is an integrated process of experiment design, execution, and analysis applied at 
NASA’s Langley Research Center to achieve significant reductions in cycle time, direct 
operating cost, and experimental uncertainty in aerospace research generally and in balance 
calibration experiments specifically. Personnel in the Instrumentation and Controls 
Department of the German Dutch Wind Tunnels (DNW) have applied MDOE methods to 
evaluate them in the calibration of a balance using an automated calibration machine. The 
data have been sent to Langley Research Center for analysis and comparison. This paper 
reports key findings from this analysis. The chief result is that a 100-point calibration 
exploiting MDOE principles delivered quality comparable to a 700+ point OFAT calibration 
with significantly reduced cycle time and attendant savings in direct and indirect costs. 
While the DNW test matrices implemented key MDOE principles and produced excellent 
results, additional MDOE concepts implemented in balance calibrations at Langley 
Research Center are also identified and described. 

Nomenclature 
DNW  = German-Dutch Wind Tunnels  
   (Duits-Nederlandse Windtunnels/Deutsch-Niederländische Windkanäle) 
SVS  = Single Vector System 
BCM  = Balance Calibration Machine 
MDOE  = Modern Design of Experiments 
OFAT  = One Factor At a Time 
AoA  = angle of attack 
95% CIHW = 95% confidence interval half width 
ai  = accuracy coefficient of the ith component 
Fi  = maximum load of ith component 
Fn  = actual load acting on nth component  
Fn, max  = maximum load of nth component 
δI  = tolerated root mean square averaged error of ith component 
LLF  = Large Low-Speed Facility, a DNW wind tunnel 
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ANOVA  = analysis of variance 
LSD   = least significant difference 

I. Introduction 
ersonnel in the Instrumentation and Controls Department of the German Dutch Wind Tunnels (DNW) have been 
involved in the efforts to improve the calibration methods for internal strain-gauge balances. They have recently 

investigated the application of MDOE methods for this purpose. The Modern Design of Experiments (MDOE) is an 
integrated process of experiment design, execution, and analysis proposed at NASA’s Langley Research Center to 
improve quality and productivity in aerospace research.1 MDOE methods have been applied successfully in 
numerous disciplines at Langley and elsewhere, including balance calibration. The innovation of a practical single-
vector system2 (SVS) for applying compound calibration loads was an essential enabling technology to permit 
MDOE test matrices to be executed with dead-weight loading, which features simplicity and low cost per load point. 
Relative to traditional dead-weight calibration methods that utilize a One Factor At a Time (OFAT) systematic 
loading schedule, MDOE loading schedules implemented via the Langley Single Vector System have lead to a 
substantial reduction in cycle time (from three-to-four weeks to two-to-three days) with attendant savings in direct 
operating costs, as well as improvements in calibration quality. 

DNW personnel have now applied MDOE principles to the design and execution of a balance calibration 
experiment utilizing a different loading system—an automated balance calibration machine. Just as the Langley 
Single Vector System is able to do, this machine, designated the QinetiQ Balance Calibration Machine (BCM), is 
capable of applying the combinations of force and moment calibration loads that are required to implement an 
MDOE balance calibration. It is obviously also capable of executing conventional, non-MDOE loading schedules. 
As noted above, such conventional test matrices are generally the product of a class of experiment designs known in 
the testing technology literature as One Factor at a Time (OFAT) designs, because they tend to hold all variables 
constant except one and vary that one systematically, usually in convenient increments from smallest to largest value 
in a structured pattern. 

DNW personnel recently executed a 734-point conventional OFAT balance calibration experiment using the 
QinetiQ BCM. They repeated the calibration on the same balance using a loading schedule that featured some of the 
key aspects of an MDOE calibration design. As this was an initial foray by DNW into MDOE calibration methods 
and essentially a learning experience, not all of the features of a full MDOE calibration were included in this first 
effort. The DNW MDOE design focused primarily on the MDOE imperative to minimize data volume as a means of 
reducing cycle time and direct operating costs. The selection of independent variable combinations that minimize 
uncertainty in the balance calibration math models was not attempted in this initial experiment, although a key 
quality assurance tactic in MDOE operations was investigated; namely, the act of randomizing the loading order of 
the test matrix. 

MDOE practitioners randomize the set-point order of their test matrices to defend against slow, systematic 
variations that may be in play during an experiment.3,4 Such variations can be due to any number of factors, but 
among the most common are instrument drift, warm-up effects, thermal expansion, and even operator fatigue (or 
operator learning effects, by which the operator’s performance improves after an initial acclimation period). These 
variations have in common the fact that they are not random, so that ordinary replication will do little to cancel them 
out. They are troublesome because if the independent variables are also changed systematically over time, there is 
no way to separate the effects of independent variable changes from the effect of the systematic error source. We say 
in such circumstances that the independent variable effects are “confounded” by systematic error. Furthermore, they 
are “stealthy,” in that they are difficult to detect because of their gradual nature. 

Experience at Langley Research Center suggests that no matter how carefully a test is conducted, systematic 
long-term variations are not unlikely to occur in a given experiment. The systematic component they generate in the 
unexplained variance of an ensemble of test data invariably dominates the random component for any test that takes 
place over a sufficiently long period of time for these effects to come into play. Because systematic errors are so 
difficult to detect, and because they can have such a serious impact on the reproducibility of experimental results 
when they are in play, MDOE practitioners proactively defend against them by randomizing the set-point order of 
the test matrix. This makes each independent variable level is equally likely to be set early as late. When systematic 
changes are in play, the error at each such point is then equally likely to be positive as negative relative to the mean 
of all the data. Randomizing the set-point order therefore has the effect of converting systematic variations into 
simply another component of random error, which is easy to detect and easy to minimize by replication. 

There is generally some extra work associated with randomizing a test matrix, in that the operator must pay 
closer attention if the next increment and direction of change for a variable can be either up or down, and can be of 
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differing increments. However, MDOE practitioners regard randomization as necessary insurance against systematic 
effects that may be in play, and which can be quite serious if they are. The peace of mind that is achieved by the 
knowledge that one is defended against such effects is generally regarded as worth the small additional effort of 
executing the test matrix in a non-systematic way. 

There are practical restrictions on randomizing certain variables. For example, Reynolds number in a cryogenic 
wind tunnel is not practical to randomize because of the long time required to transition from warm to cold operating 
temperatures, not to mention the high cost of the liquid nitrogen used to achieve these transitions. When there are 
such practical restrictions on randomization, a special class of experiment designs is usually invoked to defend 
against systematic unexplained variance. This class of designs includes “Split Plot Designs” and other design types. 
The subject of tactical quality assurance under restrictions on randomization is beyond the scope of this paper, 
however this is not an issue for balance calibrations with a BCM, for which one loading sequence is generally as 
easy to implement as another. 

On the other hand, it can be argued that over a sufficiently short period of time, systematic effects may be 
negligible simply because there is insufficient time for substantive changes to develop. Indeed, this is the basis for 
another MDOE quality assurance tactic called “blocking,” in which the system is assumed to be stable over short 
“blocks” of time. An MDOE analysis can remove “block effects”—changes in mean system response from one 
block of time to another—which significantly reduces the unexplained variance and therefore improves resolution. 
Blocking is beyond the scope of the current paper as it was not implemented in this MDOE design, but it is 
discussed elsewhere in the context of aerospace ground testing.5,6 

From a practical implementation perspective, the question then becomes, “How short a time interval is short 
enough to safely abstain from randomization?” It is considered good experimental practice to circumvent this 
question by simply randomizing whenever it is practical to do so. This insures the experiment against potentially 
serious systematic effects that may or may not be present, and which may or may not be large enough to be of 
concern if they are. However, for the purpose of examining MDOE methods, the DNW instrumentation engineers 
executed the load schedule of their initial MDOE experiment both in random order and in sequential or systematic 
order. 

Thus, for this study there were three calibrations performed on the same balance using the same loading 
hardware. The balance calibrated in this study is a six-component moment type balance pictured in Fig. (1). The first 
of the three calibrations was a 734-point conventional OFAT calibration, which was followed by a series of 
simulated polars and other loadings in a 114-point series of confirmation points that could be used to test the results 
of the balance calibration. (The balance calibration math models should be able to predict these confirmation points 
within acceptable error limits.) This was followed by a loading schedule with a significantly smaller data volume—
101 points—to test the MDOE hypothesis that conventional load schedules contain substantially more data than are 
necessary to achieve acceptable results. To assess the effects of randomization in this experiment, his smaller load 
schedule was executed twice, once in a systematic, sequential order and once in a randomized order. Certain other 
differences in the two smaller load schedules will be discussed. 

The four sets of data—the OFAT data, the confirmation point data, and the two MDOE data sets—were all 
transmitted to Langley Research Center for analysis using MDOE response surface modeling techniques to define 
optimum calibration math models for each data set and to compare the results of the three experiment designs on the 
basis of accuracy and precision. A total of 18 calibration models were developed, one for each of the six balance 
outputs, with each of the three sets of calibration data. Each data set was used as confirmation points to evaluate the 
other two, in addition to the 114 confirmation points. A formal analysis of variance was performed to test for 
significant differences in accuracy and precision from one experiment design to the next, and from one balance 
component to the next. 

The next section provides some tutorial background on the mechanisms by which MDOE experiment designs 
achieve improvements in quality and productivity. The balance used to acquire all three data sets is then discussed as 
is an overview of the balance calibration machine used to apply the loads. The test schedules are further discussed, 
as is the data analysis method employed. A brief summary and concluding remarks follows a discussion of the 
results. 

II. Role of the Design Matrix in the Modern Design of Experiments 
MDOE methods achieve productivity and quality improvements by optimizing an experiment’s design matrix. 

The design matrix plays such a critical role in the MDOE method that this section will describe it in some detail, and 
will discuss its relationship to quality and productivity. 
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The design matrix is an extension of the familiar test matrix that adds columns corresponding to terms in a math 
model used to predict responses as a function of independent variable levels. For example, consider a simple 
experiment in which some response, y, is a function of two independent variables, ξ1 and ξ2. This might be a wind 
tunnel experiment, for example, for which y is lift, say, and ξ1 and ξ2 are angle of attack (AoA) and Mach number. 
Under mild conditions that hold under a wide range of practical circumstances, the unknown lift function can be 
represented by a Taylor series expansion about some reference Mach number and angle of attack; cruise Mach and 
AoA, say. Let ξ01 and ξ02 represent these reference levels. Theoretically, all the terms in an infinite Taylor series 
would be required to represent the lift function exactly, but if the expansion is carried out within a sufficiently small 
neighborhood of ξ01 and ξ02, the lift function might be adequately represented by only the first few terms in such a 
series. In Eq. (1), all terms of order 3 and higher in such a Taylor series are represented by R3, which we assume are 
small enough to drop. 
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All derivatives in Eq. (1) are evaluated at ξ01 and ξ02. Consider now a simplifying change of variables: 

 ( )iiii kx 0ξξ −=  (2) 

where the ki are scaling constants introduced to circumvent certain practical problems in floating-point electronic 
computations and for other reasons. Neglecting third-order terms and higher, Eq. (1) can then be expressed as a 
simple polynomial function: 

 2
222

2
111211222110 xbxbxxbxbxbby +++++=  (3) 

where b0 is the value of y when all xi = 0 and the other b values are constants that depend on the derivatives of y‡. 
We typically estimate the b values by measuring y at a number of combinations of ξ1 and ξ2. After performing 

the transformations indicated in Eq. (2), we then use regression methods to fit the math model in Eq. (3) to the data. 
The ξ1 and ξ2 combinations comprise the test matrix familiar to all experimentalists. The design matrix is a 
straightforward extension of the test matrix in which additional columns are added so that there is one column 
corresponding to each term in the math model that is proposed to represent the response function of interest, y. 

To illustrate, assume that we have the simple nine-row by two-column test matrix that consists of the shaded 
entries in Table 1, where the scaling transformation of Eq. (2) has been applied to produce the array of values 
indicated. A column of 1s is added to the left of the test matrix under the Intercept column header and additional 
columns in Table 1 are derived from the x1 and x2 columns of the test matrix by performing the operations indicated 
in the column headers. The entries in Table 1 comprise a nine-row by six-column matrix we will designate by X, 
and call the design matrix. The design matrix depends on the schedule of independent variables selected for the test 
matrix, and it also depends on the math model chosen to represent the response as a function of the independent 
variables. While Table 1 is based on a nine-point test matrix used to fit a second-order polynomial in two variables, 
the design matrix can be generalized in a straightforward way to accommodate any number of data points, any order 
of math model, and any number of independent variables, so quite a wide array of practical experimental 
circumstances can be represented in this way. For example, consider the design matrix for a conventional 734-point 
OFAT balance calibration experiment intended to generate second-order calibration models in six load variables. It 
will have 734 rows and 28 columns, one row for each data point and one column for each term in the proposed math 
model. 
                                                           
‡ Note that in balance calibration experiments, this polynomial would be a 28-term function of the six loading 
variables and b0 would require certain additional iterative procedures to account for the fact that an unloaded balance 
still experiences applied forces due to the weight of the loading hardware and the balance itself. These procedures 
are beyond the scope of the current paper, but are addressed in detail in the current AIAA Recommended Practice on 
balance calibration.7 
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When it is expressed matrix-vector form, the polynomial response function math model is a function of the 

design matrix, X, and has the same form regardless of the order of the model or the number of independent 
variables. 

 Xby =ˆ  (4) 

where “y-hat” is a vector of predicted response values, b is a vector of model coefficients, and X is the design matrix 
as in Table 1. 

For a given vector of measured response measurements, y, the vector of regression coefficients, b, depends only 
on the design matrix: 

 ( ) yXXXb ′′= −1  (5) 

From Eqs. (4) and (5), we have 

 ( ) yXXXXy ′′= −1ˆ  (6) 

 
Predictions made by a model developed from experimental data will have uncertainty that reflects the 

experimental error in the data. For a model developed from a set of data with an intrinsic variance, σ 2, the resulting 
variance in model predictions depends, again, entirely on the design matrix: 
 

 ( ) -1 2Var ˆ σ= ′ ′y X(X X) X  (7) 

Equations (6) and (7) reveal the central role of the design matrix in determining the quality of experimental 
results obtained from a given sample of data. Equation (6) shows that the accuracy of response model predictions 
depends entirely on the design matrix, while Eq. (7) indicates that the precision of those predictions is likewise 
determined by the design matrix. 

The details of the design matrix can also impact the quality of research results in other ways. For example, there 
is theoretically an infinite degree of uncertainty in estimating the regression coefficients when any two or more 
columns in the design matrix are linearly dependent.8 In such a case, the regression coefficients quite literally can 
each be “anything,” and the regression model is meaningless. While perfect linear dependencies are rare, in practical 
circumstances there can be some degree of dependence that degrades the quality of model predictions. 

The uncertainty in estimating model coefficients is minimized when each column in the design matrix is 
orthogonal to all others. Perfect orthogonality between two columns is achieved when the products of corresponding 

Table 1. Design matrix for second order function of two variables, generated from the test matrix. 

Intercept 1x  2x  21xx  2
1x  2

2x  
1 0 0 0 0 0 
1 -1 1 -1 1 1 
1 -1 -1 1 1 1 
1 1 -1 -1 1 1 
1 1 1 1 1 1 
1 0 √2 0 0 2 
1 √2 0 0 2 0 
1 0 -√2 0 0 2 
1 -√2 0 0 2 0 
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terms in each column sum to zero.§ Note that the design matrix in Table 1 is perfectly orthogonal—the sum of 
products of corresponding terms from every pair of columns is zero. This is by design. (Table 1 represents a special 
class of experiment designs called Central Composite Designs, which for two independent variables and a second-
order model feature this perfect orthogonality.) The uncertainties in estimates of the regression coefficients of a 
fitted model are as small as possible under these conditions. That is, any departure from orthogonality among the 
columns would result in an inflation of the variance in coefficient estimates relative to the orthogonal case. While 
perfect column orthogonality is often elusive in design matrices that must satisfy multiple practical constraints, it is 
regarded as a highly desirable trait of a good experiment design. 

The design matrix also influences the productivity of experimental research, as well as the quality. The number 
of rows defines the volume of data to be acquired, which influences direct operating costs and what is often more 
important, cycle time. 

The Modern Design of Experiments focuses on optimizing the design matrix for two important reasons: 1) the 
design matrix the central determinant of both quality and productivity in a response modeling experiment as noted 
above; and 2) the details of the design matrix are entirely within the researcher’s control. For calibration data 
acquired in a given measurement environment, the productivity and quality of a strain gage balance calibration 
depends on four factors, all of which are reflected in the design matrix and all of which are under the control of the 
researcher. These factors are as follows: 

1) The number of calibration points. A minimum of one data point is required for every term in the 
calibration math model of a given balance component, but the more points there are beyond this minimum, 
the higher the quality of the calibration. That is, the precision of a calibration model prediction tends to 
increase with the volume of data fitted to produce the model. There is a tradeoff between cost and benefit, 
however, as each additional point requires additional time to acquire and analyze, and entails additional 
direct operating costs as well. Furthermore, it can be shown that the incremental value of each additional 
data point is a monotonically decreasing function of the volume of data already in hand—a data point is 
much more valuable when little is known about a system than when much is already known. While the 
value of each new point declines as more data are acquired, the cost of acquiring each point remains about 
the same (discounting the amortization of set-up costs, which are often negligible compared to cycle-time 
costs). This means that there is a point of diminishing returns beyond which the value added by the next 
new point falls below the cost of acquiring it, so that there is an upper limit on the volume of data that 
optimizes the cost/benefit ratio of experimental research. We wish to optimize the design matrix by 
specifying an ample number of rows to meet precision requirements, but no more than that in order to 
preserve resources.  

2) The selection of calibration points. There can be constraints on the combination of loads that it is possible 
to set simultaneously. For example, there may some maximum total load that cannot be exceeded due to a 
limitation in the loading system. In the case of a single vector loading system using dead weights,2 the total 
force vector and total moment vector are orthogonal9 so that the dot product of these two vectors is zero. 
This results in a constraint on three force-moment products consisting of a force and the moment about the 
force axis. All three such pairs must sum to zero, meaning that only five loads can be set independently 
with such a system. One degree of freedom is lost to the constraint so that the sixth load is determined 
when any five of the other loads are set. Within such constraints, however, the calibration engineer has 
considerable latitude in selecting load combinations once the total number of points has been determined. 
The uncertainty in estimating math model coefficients depends on the selection of load combinations in the 
calibration data set. This means that for a given calibration model, the elements of the design matrix can be 
specified to minimize prediction uncertainty. 

3) The order in which the data are acquired. Randomizing the set-point order of a test matrix has been 
discussed as a quality assurance tactic when systematic (non-random) variations in response measurements 
may be in play. Slowly varying, persisting effects—instrument drift, thermal changes, and the like—cause 
such systematic errors, which cannot be distinguished from legitimate independent variable effects. 
Randomizing the set point order ensures that all measurements in a time series are statistically independent, 
a condition for obtaining meaningful results by regression analysis. This implies that the order of the rows 
in the design matrix will affect the quality of the experimental result. 

                                                           
§ Recall from vector algebra that the dot product of two vectors is proportional to the cosine of the angle between 
them, and equal to the sum of products of corresponding elements. When this sum is zero, the vectors are at right 
angles and are therefore orthogonal. 
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4) The math model to which the data are fitted. There is a tradeoff in accuracy vs. precision that is driven 
by the number of terms retained in the math model, and therefore the number of columns in the design 
matrix. As noted earlier, the response of a given system can be represented by an infinite Taylor series. For 
balance calibrations, this is usually truncated to second order. Retaining higher order terms may increase 
the accuracy of the math model, but since each term carries with it some uncertainty, the total uncertainty 
degrades with the number of terms in the model. In fact, it can be shown that the prediction variance 
described in Eq. (7), averaged over all points used to fit the math model, is directly proportional to the 
number of terms in the model.10 Therefore, the fewer terms in the math model the better, as long as there 
are an adequate number of terms of sufficient order to predict responses within specified requirements. 

We have seen that an experienced MDOE practitioner can adjust the rows, columns, and cells of the design 
matrix, as well as the order of the rows, to maximize quality and productivity in a response modeling experiment 
such as a balance calibration. By contrast, the number of columns in the design matrix of a typical OFAT balance 
calibration experiment is often fixed by historical convention at 28—the maximum number necessary to fit a full 
second order model in six load variables. The possibility of reducing the number of columns in the design matrix of 
a balance calibration experiment has only recently been introduced at Langley Research Center through the 
application of MDOE methods, and independently at Ames Research Center with the introduction of new methods 
for automatically selecting math models.11-13 

Likewise, the number of rows and the cell contents of a typical OFAT balance calibration design matrix tend to 
be dictated by other considerations besides productivity and prediction quality. For example, the OFAT design 
developed at Langley Research Center in the mid-1950s and used since then with very little change, was originally 
created to facilitate graphical estimates of the response model coefficients. This technique simply reflects the 
computational state of the art of that era.14 The design matrix for this calibration features 729 rows to accommodate 
81 load sequences executed systematically over time. Each sequence consists of a tare point, four increments, three 
decrements, and a return tare point, for a total of nine data points per sequence. No thought is given in this design 
matrix to the possibility of systematic, slowly varying effects of the kind that MDOE randomization defends against. 

As noted earlier, this was an initial exploratory examination of MDOE design principles by DNW and a 
comprehensive optimization of the design matrix was not attempted. DNW compared a 734-point OFAT design 
with an MDOE design that differed primarily in the number of rows. Also, an MDOE-related analysis was 
performed at Langley Research Center, in which insignificant terms in the math models for the six balance outputs 
were deleted. This resulted in an ex post facto optimization of the number of columns. While both the OFAT and the 
MDOE results met quality standards quantified a priori, even better results might be achievable in future calibrations 
if the response models developed in this exercise are used from the beginning to design future calibrations of this 
balance. The DNW MDOE design did incorporate randomization as a quality assurance tactic, but not blocking. The 
design was also executed in standard (non-randomized) order for comparison. 

III. Accuracy and Precision Requirements 
There were quantitative accuracy and precision requirements established a priori for the calibration of this 

balance. These will be described here, as well as the criteria used for assessing the quality of the calibration. 

A. Accuracy 
The accuracy requirement of this balance is defined by the following formula15,16 
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Where 
 

δI  = tolerated root mean square averaged error of ith component 
Fi  = maximum load of ith component 
ai  = accuracy coefficient of the ith component (1 for all i in this study) 
Fn  = actual load acting on nth component 
Fn, max = maximum load of nth component 
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This same accuracy requirement was adopted for the response models in this study. That is, Eq. (8) is assumed to 
describe the largest permitted departure of predicted response measurements from measured responses. An 
independent estimate of the absolute accuracy of individual measured responses is beyond the scope of this paper, 
which focuses on the ability of math models developed from physical measurements acquired with different 
experiment designs to adequately predict those measurements. That is, we assess accuracy in terms of our ability to 
reproduce the data, and assume for the purposes of this study that there is no difference between the measured and 
true responses. We therefore neglect any bias errors that may exist in the calibration machine. 

B. Precision 
There is a repeatability requirement for the balance defined as “about 1/3 of its accuracy.” In this study we assess 

repeatability, or precision, by quantifying the widths of the 95% confidence intervals associated with each 
prediction, based on Eq. (7). The 95% confidence interval half-width (95% CIHW) at points used to fit the model is 
the product of the standard error in the prediction (the square root of the prediction variance in Eq. (7)) and a t-
statistic reflecting the number of degrees of freedom used to assess the unexplained variance: 

 ( ) σXXXX 1 ′′= −
− 025.0,CIHW%95 pnt  (9) 

where n is the number of data points used to fit a given model, p is the number of terms in the math model, σ is the 
standard deviation of the fitted data, and X is the design matrix. Note that for a “statistically significant” number of 
degrees of freedom (say, n - p > ∼20), the t-statistic has a value of about 2, so that the 95% CIHW is interpreted in 
the familiar “2σ” sense, with “σ” modified for the case of response predictions by a factor of the square root term in 
Eq. (9). The influence of this term is illustrated in Fig. 2. Here, a response surface plot shows how standard 
prediction errors are distributed when σ = 1. For any combination of the two independent variables plotted, the 
actual confidence interval half width can be obtained by multiplying the z-axis by the product of the standard 
deviation in the response data and the t-statistic from Eq. (9). (Figure 2 shows the unit standard errors plotted as a 
function of Fx and Fy, but by symmetry the error distribution would be similar for any other combination of load 
variables). This figure illustrates how the square root term in Eq. (9) is responsible for a multidimensional “bow tie” 
effect, in which the standard errors are smaller near the center of the design and larger near the boundaries. Outside 
of the boundaries is an extrapolation region where the prediction uncertainty continues to grow rapidly. Only the 
area within the original range of fitted variables is the model considered valid. 

Note also that Eq. (9) applies to the points used to fit the model. We can generalize that to other load 
combinations as follows: 

 σ00 xX)X(x ′′= −
−

1
025.0,CIHW%95 pnt  (10) 

where x0 is a vector corresponding to any row in the design matrix but with a specified combination of loading 
levels that may be different than any of the points used to fit the model. 

IV. Calibration Experiment Designs 
Three calibrations were performed in succession. The first one can best be described as a One Factor A Time 

(OFAT) load table with additional independent data to check the validity of the calibration. The second and third are 
designated as MDOE sequential (or structured) and MDOE randomized.  

A. The OFAT Load Table 
The OFAT load table begins with a first order calibration of pure loads, followed by a second-order calibration 

using the following procedure: Combined loads were applied for all 15 combinations of two loads. First, one load 
component was held constant at +75% of its load range and the other load component was varied from 0 to +75% 
and from 0 to –75% of its load range. Then the one load component was held constant at –75% of its load range and 
the other load component was varied from 0 to +75% and from 0 to –75% of its load range. After this the second 
load component was held constant at +75% and –75% of its load range and the first load component was varied 
from 0 to +75% and from 0 to –75% of its load range. The first order calibration required 253 load points (about a 
third of the total) and the second order calibration took 481 load points (about two-thirds). 
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Since the BCM allows simultaneous application of six load components, it was used to simulate a wind tunnel 
measurement of a typical DNW-LLF model. The simulated conditions represented a weight polar, a pitch polar, a 
yaw polar, the maximum load condition, and a repeat of the yaw polar. The load table was finally ended with a 
single component first-order calibration repeat of the axial component. The maximum load point is the maximum 
simultaneous load condition, 90% of the FS load range on all six components. 

B. The MDOE Sequential (Structured) Load Table 
The MDOE sequential (structured) load table consists of 101 points. The selection of loading combinations was 

not designed to exploit any of the MDOE techniques for minimizing uncertainty, but focused instead on reducing 
data volume significantly relative to the OFAT load table, with attendant reductions in cycle time and direct 
operating costs. The load table was derived from the OFAT load table out of convenience, and simply exploited the 
fact that to fit a pure second order model it should be sufficient to use only three load points for each component out 
the OFAT load table.16 The maximum positive and negative loads on each component were chosen, as well as the 
zero load for that component, in order to minimize the influence of load errors on the slope fits. In addition, extra 
zero load points were measured to quantify repeatability. 

Only one pair of loadings is necessary to fit each two-way interaction term in a full second-order model, but 
there are several reasons to acquire more data. The behavior of a moment type of balance is not always consistent in 
all four quadrants, for example, so it is prudent to acquire compound loads in each quadrant. If this compound 
loading consisted of the maximum of the two component loads, the resulting total load might exceed the load limit 
of the balance. Selecting component loads equal to ½√2 of the single load would ensure that the total compound 
load vector had the same magnitude as the pure single loads that were applied, but using load points that are part of 
the OFAT calibration load makes it easier to compare results of the calibration. Therefore, the same 75% load levels 
used in the OFAT compound loadings were also used in the structured MDOE load sequence. The total volume of 
data was the smallest that could fit pure quadratic loads and all two-way interactions, subject to constraints imposed 
by the need to measure compound loads in every quadrant and also to provide sufficient replicates to assess the 
combined effects of random error in the data and any hysteresis there might be. 

C. MDOE Randomized 
The MDOE randomized load table is essentially the same as the MDOE structured load table except that the 

loading sequence is randomized. Unfortunately, during the randomization process a number of load points were 
omitted and replaced with a zero load point. The -100% load points of the single components were replaced by a 
zero load point for all but the Fz component. An unambiguous assessment of the effect of randomization was 
therefore not possible, as the comparison of the two MDOE calibrations reflect the combined effects of load-point 
sequencing differences and the asymmetry induced in the randomized load schedule by the omission of five of the 
six maximum negative pure loads. 

V. Data Reduction and Analysis 
Some preprocessing of the data performed prior to analysis will be described here, as will the general plan for 

analyzing the data. The results of this analysis are presented in the next section. 

A. Data Reduction 
Prior to analysis, loads applied to the balance were corrected for tare-forces due to the weight of the loading 

hardware. Two inclinometers measured the roll and pitch angles of the metric side of the balance. The weight tares 
are rotated over roll and then pitch to the metric axis system. 

The zero signals of the balance are recorded before the balance is mounted to the BCM. This zero represents a 
situation where the balance mounted to a sting and no loads are applied to the balance (only the weighted part of the 
balance, the adapters, the BCM mounting block and the electronic offset is measured by the gauges). The balance is 
mounted in the BCM in such away that the signals of the balance correspond to the previously recorded zero. This 
zero is then subtracted from all further recorded signals. 

The supply voltage is measured for each data point. The balance output signals are corrected for deviations to the 
nominal supply voltage of 10V. This is done for each output signal individually. The output signals are made “non-
dimensional” with the nominal supply voltage of 10V. 

The objective of a balance calibration experiment is to produce a math model by which loads applied to the 
balance and resulting electrical signals can be properly mapped. This experiment differs from a typical calibration, 
however, in that the development of the math model is not the ultimate objective, but is, rather, an element of the 
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approach to achieving the objective. The objective of this study is to compare the calibration results obtained from a 
734-point OFAT data set with results obtained from another data set based on the MDOE imperative to acquire the 
smallest volume of data necessary to achieve all technical objectives subject to known constraints. A secondary 
objective was to assess the effects of randomization by comparing calibration models based on a randomized and 
sequential version of the same MDOE model. Unfortunately, this objective could not be entirely achieved for 
reasons outlined in the description of experiment designs presented in the previous section. 

The development of the calibration math models, which represents the chief analysis thrust of a calibration 
experiment, is for this experiment simply a preliminary (albeit crucial) step. We therefore regard the estimation of 
the calibration coefficients as an element of data reduction in the current experiment, with the central analysis to 
consist of subsequent comparisons of the math models. 

A reduced third-order model was fit to each of the six balance responses using standard stepwise regression 
methods17 implemented in a commercial data analysis software package.18 The stepwise regression method identifies 
a subset of significant regression coefficients from those in a relatively large initial model believed to be of 
sufficiently high order to capture the most important behavior of a response of interest. 

A full 84-term cubic model in six independent variables was chosen as the initial model, since few terms if any 
that are greater than second order are expected to be significant in a modern strain gage balance calibration, and no 
significant terms of order four or higher are anticipated. The stepwise regression process identified a subset of these 
84 terms with the property that adding the strongest term from the remaining pool of candidates would reduce the 
unexplained variance by an amount too small to resolve with a specified level of confidence (99% in this study). 
Likewise, removing the weakest term in the currently selected subset would increase the unexplained variance by an 
amount that can be detected with— in this case— 99% confidence. While results varied from response to response 
and depended on the experiment design, the stepwise regression process produced response models with as few as 
nine and as many as 16 terms, meaning that 68–75 candidate terms from the full 84-term cubic model (80–89%) 
were rejected as statistically insignificant. A total of 18 response models were developed, one for each of the six 
balance outputs and three experiment designs. Figure 3 shows which terms were retained as significant in each of 
these 18 models. 

B. Data Analysis 
With the 18 models in hand, it is possible to perform the analyses necessary to objectively compare the OFAT 

and MDOE experiment designs on a cost/benefit basis. The cost comparisons are trivial, as the data volume serves 
as a surrogate for cycle time and direct operating costs. Clearly the conventional OFAT experiment design is much 
more time-consuming, requiring over seven times as many load-point settings as the MDOE experiment designs, 
which extends cycle time and direct operating costs correspondingly. The key question then becomes, “What 
benefits do we realize from this seven-fold increase in resource expenditure?” Benefits were assessed by quantifying 
model accuracy and precision, and comparing to accuracy and precision requirements described earlier. 

The accuracy requirement is load dependent so Eq. (8) was used to compute an accuracy requirement 
individually for each of the 734 OFAT points, 103 MDOE points, and 114 independent confirmation points. For this 
comparative study, the balance models were not inverted to produce models of forces and moments as a function of 
electrical output signals. Rather, for the purposes of this study, calibration models were developed that describe the 
electrical responses in microvolts per volt as a function of applied load. The accuracy requirement is expressed in 
newtons and newton-meters when Fi, the maximum load component of the ith component, is expressed in physical 
units. But because the summation term in Eq. (8) involves dimensionless ratios, the accuracy requirement was 
translated into electrical terms by replacing maximum loads with electrical signals corresponding to those loads. 

The residual for each data point was used as a measure of accuracy. This is simply the difference between 
measured and predicted responses for a given load combination. A ratio was then computed by dividing the absolute 
value of the residual by the accuracy requirement for that specific loading combination as computed by Eq. (8). This 
ratio formed an error index with a value between 0 and 1 for all points that met the accuracy specification. The index 
represents the fraction of the accuracy error budget that is consumed. Any point that failed to meet the accuracy 
specification would have an error index value greater than 1. 

The precision of the models developed from each experiment design was assessed by using Eq. (10) to compute 
95% confidence interval half-widths for model predictions at each point. As noted earlier, the precision requirement 
was specified as “about 1/3 of its accuracy.” An error index for precision was therefore created analogous to the 
accuracy error index by dividing the prediction 95% confidence interval half-width for each point by one third of the 
accuracy specification computed for that point using Eq. (8). Similar to the accuracy error index, the precision error 
index represents the fraction of the precision error budget that is consumed, with any point that failed to meet the 
precision specification having an error index value greater than 1. 
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For this study, average accuracy and precision error index values were computed for each experiment design and 
each balance component. Using the models developed for each balance output and from each experiment design, 
these error index values were calculated for two types of calibration loads, the original loads used to generate the 
data from which the models were developed, and a set of 114 independent loads that were not used in the model 
development. It is useful to compare model performance at the original calibration points and at independent points 
not used to create the models because the regression algorithms used to estimate model coefficients do so in such a 
way as to minimize residuals (in a least squares sense) at the calibration load points. We therefore expect reasonably 
good accuracy at the points used to fit the model. The confirmation points help determine how transferable the 
model predictions are to general loading combinations. 

There were 36 average accuracy error index values and 36 average precision error index values computed, one 
for each combination of six balance components by three experiment designs by two point types—model calibration 
points and independent confirmation points. Table 2 lists them. 

 
It is difficult to see patterns in a table of numbers such as in Table 2. Furthermore, there is obviously some 

uncertainty in each of these numbers since they are all rooted in experimental data. It is therefore difficult to answer 
with high confidence such fundamental questions in this study as these: 

 “Which experiment design yields higher precision math models, OFAT or MDOE?” “Which yields the 
higher accuracy models?” 

 “Do the models predict responses at confirmation points as well as they do at model calibration points?” 
 “Do all the balance outputs feature the same levels of precision and accuracy?” 
 “Are there interactions; that is, are differences from one balance output to another dependent on experiment 

design or on point type, for example?” 
An analysis of variance (ANOVA) was performed to reconcile the 72 numbers in Table 2 in such a way as to 

provide objective answers to these and other questions. The ANOVA was organized in terms of three factors: 

Table 2. Average Error Index Values for Calibration Model Points and Confirmation Points. 
Index values less than 1 imply accuracy/precision is within specifications. 

Average Accuracy Error 
Index 

Average Precision Error 
Index Experiment Design 

(Data Volume) Output Cal Model 
Pts 

Confirmation 
Pts 

Cal Model 
Pts 

Confirmation 
Pts 

R1 0.254 0.419 0.264 0.155 
R2 0.131 0.145 0.206 0.077 
R3 0.115 0.163 0.174 0.055 
R4 0.079 0.078 0.123 0.042 
R5 0.142 0.160 0.204 0.081 

OFAT (734 Pts) 

R6 0.136 0.110 0.152 0.047 
R1 0.349 0.598 0.292 0.345 
R2 0.171 0.116 0.214 0.121 
R3 0.094 0.143 0.184 0.102 
R4 0.079 0.073 0.133 0.107 
R5 0.278 0.223 0.214 0.188 

Sequential MDOE 
(101 Pts) 

R6 0.144 0.180 0.158 0.121 
R1 0.124 0.406 0.285 0.201 
R2 0.122 0.142 0.208 0.156 
R3 0.094 0.166 0.179 0.131 
R4 0.066 0.076 0.130 0.090 
R5 0.127 0.144 0.209 0.153 

Randomized MDOE 
(103 Pts) 

R6 0.087 0.136 0.154 0.117 
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Output (six levels corresponding to the outputs of the balance), Point Type (two levels—Calibration Model Point 
and Confirmation Point), and Experiment Design (three levels—OFAT, MDOE Sequential, and MDOE 
Randomized). It is convenient to assign Latin letters to these factors, as in Table 3. 

 
Table 3 allows us to use rather compact notation to describe the effects that interest us. We would say there is no 

significant “C” effect for precision, for example, if all three experiment designs generated models with comparable 
precision index values. If there is a difference in the precision of at least one of the experiment designs from the 
other two, or if all three differ from each other, we would say that there is a significant C effect and we would 
conclude that experiment design matters for precision. 

In formal terms, we wish to test a null hypothesis, H0, which can be expressed with our condensed notation as 
follows: 

 H0: C=0 

We will reject this hypothesis if we are able to detect some difference in the prediction precision of models 
developed from one experiment design to another. 

There is corresponding alternative hypothesis, H1, expressed as follows: 

 H1: C≠0, 

which we will reject if we cannot detect any differences among the prediction precision index values for models 
developed from one experiment design to another. There are analogous pairs of null and alternative hypotheses for 
the “A” and “B” effects as well. 

The three factors in this study can interact with each other, and we can use the same notation to describe these 
interactions. We say there is a significant “AB” interaction for accuracy, for example, when accuracy differences 
from one balance component to another are different when assessed at model calibration points than at independent 
confirmation points. Likewise, there are AC and BC interactions that may or may not be significant. Theoretically, 
there is also a three-way ABC interaction that is possible, but for technical reasons it would have been necessary to 
replicate this experiment to detect the three-way interaction as well as the three main effects and three two-way 
interactions. That is, it would have been necessary to have two or more independent estimates of each error index for 
every unique combination of balance output, experiment design, and point type. For practical purposes, very little is 
lost by not evaluating the three-way interaction, as the main effects and two-way interactions are generally the 
dominant effects in such experiments. 

With the analysis cast in this form, it is possible to make inferences about six specific hypotheses by rejecting 
either the null hypothesis or the alternative hypothesis associated with the three main effects of this study and the 
three two-way interactions. These hypothesis pairs are numbered for convenience and summarized here: 
 

H01: A=0  No significant difference in a specified quality metric from one balance output to another. 
H11: A≠0  At least one balance output differs in quality from the rest. 
 
H02: B=0 No significant difference in a specified quality metric between calibration model points and 

independent confirmation points. 
H12: B≠0 The quality assessed at confirmation load points differs from the quality assessed at model 

calibration points. 
 
H03: C=0 No significant difference in a specified quality metric when models are developed drom data 

acquired in one experiment design or another. 
H13: C≠0 The quality of models developed from one experiment design differs from the quality of models 

developed from another experiment design. 
 

Table 3. Experimental factors. 
Factor Name Levels 

A Output 6 
B Point Type 2 
C Experiment Design 3 
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H04: AB=0 Quality differences from one balance component to another are the same for model calibration 
points as for independent confirmation points. 

H14: AB≠0 Quality differences from one balance component to another are different for model calibration 
points and confirmation points. 

 
H05: AC=0 Quality differences from one balance component to another are independent of which experiment 

design was executed to produce the model. 
H15: AC≠0 Quality differences from one balance component to another depend on which experiment design 

was executed to produce the model. 
 
H06: BC=0 Any quality differences from one experiment design to another are independent of whether the 

quality is assessed at a model calibration point or an independent confirmation point. 
H16: BC≠0 Quality differences from one experiment design to another depend on whether the quality is 

assessed at a model calibration point or an independent confirmation point. 
 
For each model quality metric examined in this study, one hypothesis is rejected for each hypothesis pair. The 

analysis of variance to which we alluded at the start of this section provides an objective means for selecting which 
hypothesis to reject. Tables 4 and 5 present the ANOVA results for the accuracy and precision error index values: 

 

 
A detailed explanation of analysis of variance is beyond the scope of this paper, but the reader can consult 

standard texts for the details.19 In short, the ANOVA tables partition the total variance in a set of experimental data 
into explained and unexplained components. The explained components include the main effects and interactions 
described above. For each of these, the ANOVA table lists variance metrics (Sum of Squares, degrees of freedom, 
and Mean Square) that are the basis of computing the quantities in the last two columns. These columns, “F Value” 
and “p-value,” contain equivalent information about the magnitude of the effects listed in the first column, and are 
the heart of the ANOVA table. The F statistic is a signal-to-noise term that represents the variance associated with a 

Table 5. ANOVA Table for Precision Error Index Values. 

Source 
Sum of 
Squares df 

Mean 
Square 

F 
Value 

p-value 
Prob > F 

Model 8.14 25 0.33 20.3 < 0.0001 
    A-Output 3.23 5 0.65 40.2 < 0.0001 
    B-Point Type 2.43 1 2.43 151.4 < 0.0001 
    C-Experiment Design 1.21 2 0.61 37.8 < 0.0001 
    AB 0.18 5 0.04 2.3 0.1228 
    AC 0.15 10 0.01 0.9 0.5422 
    BC 0.93 2 0.47 29.1 < 0.0001 
Residual 0.16 10 0.02     
Cor Total 8.30 35       

Table 4. ANOVA Table for Accuracy Error Index Values. 

Source 
Sum of 
Squares df 

Mean 
Square 

F 
Value 

p-value 
Prob > F 

Model 0.45 25 0.02 29.8 < 0.0001 
    A-Output 0.29 5 0.06 97.6 < 0.0001 
    B-Point Type 0.02 1 0.02 36.6 0.0001 
    C-Experiment Design 0.03 2 0.01 20.9 0.0003 
    AB 0.06 5 0.01 21.5 < 0.0001 
    AC 0.04 10 0.00 6.5 0.0033 
    BC 0.00 2 0.00 2.5 0.1346 
Residual 0.01 10 0.00     
Cor Total 0.45 35       
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given effect as a multiple of the unexplained variance. Larfe F values imply significant effects. In Table 4, for 
example, the “Output” factor has the largest F-Value, implying that balance component has a greater influence on 
accuracy than either point type or experiment design. Likewise, from Table 5 it appears that Point Type is more 
important in determining precision than the other two factors 9or any of their interactions. 

The right-most column contains probability values that are interpreted as the probability that an F-Value as large 
as recorded could occur due to chance because of random variations in the data. A small p-value implies a low 
probability of chance effects and therefore a high probability that the effect is not due simply to chance variations in 
the data but is in fact real. We typically agree on a “significance level” prior to the test, which marks the p-value 
criterion for accepting an effect as real. In this study the significance criterion was selected to be 0.01, meaning that 
any effect with a p-value below 0.01 has a probability of less than 1% of being induced by random variations in the 
data, and therefore at least a 99% chance of being a real effect. We say that we can accept any effect as real by this 
criterion with 99% confidence. The effects that are accepted as real have black p-values in Tables 4 and 5, while the 
effects not believed to be real are listed in red. The results of the analysis of variance and other analyses performed 
in this study are discussed in the next section. 

VI. Results and Discussion 
The design matrix enables us to generate a distribution of unit standard errors for a given design before any data 

are acquired. The three parts of Fig. 2 reveal similarities in the standard error distribution for all three designs. In 
general, the standard error of the design is at a minimum near the center of the range of independent variables. These 
distributions exist in a six-dimensional space of which Fig. 2 represents only two dimensions, but the same general 
behavior applies when the unit standard errors are plotted against any two of the independent variables. 

The OFAT error distribution achieves a deeper minimum near the center of the design than the MDOE error 
distributions because there are so many more residual degrees of freedom available to estimate the uncertainty. In 
either the MDOE or the OFAT designs, response estimates made in the extreme corners of the design space will 
feature significantly more uncertainty than points acquired in the middle. 

This phenomenon is responsible for the interaction for precision that exists between point type (factor B) and 
experiment design (factor C), as the ANOVA results of Table 5 reveal. In this table, the BC interaction has a p-value 
of less than 0.0001, meaning that there is a probability in excess of 99.99% that the difference in precision from one 
experiment design to the next depends on point type. Figure 4 illustrates what is happening. 

The “I-beam” marks on each data point in Fig. 4 represent 95% Least Significant Difference (LSD) bars. A 
difference can be said to exist with at least 95% confidence between points for which these bars do not overlap. In 
Fig. 4, we are unable to resolve a difference between the precision of confirmation points and model calibration 
points for the two MDOE designs, but we can say with at least 95% confidence that there is a difference for the 
OFAT design (since their LSD bars do not overlap). This difference can be attributed to the relative depth of the 
distribution of standard unit errors for the OFAT design compared to the two MDOE designs, as revealed in Fig. 2. 
The model calibration points are more or less uniformly distributed over the range of independent variables, but the 
confirmation points tend to be concentrated near the center of the design, with typically at least half of the six 
outputs at either zero or a relatively low load near the center of the relatively wide, symmetric load range. The 
precision is proportional to the magnitude of standard errors, with a larger difference existing between the standard 
errors in the center and the average standard error for the OFAT design than the MDOE designs. 

Note that while this difference is large enough to resolve, it is still quite small in absolute terms. Figure 4 shows 
the difference in precision to be on the order of 0.1 of the precision error budget, which is one third of the accuracy 
error budget. The accuracy error budget is nominally 0.1% of full scale output by Eq. (8). Therefore, this difference 
amounts to roughly 0.003% of full scale. For practical purposes, then, there is no significant difference between the 
precision of model and confirmation points for any of the experiment designs. 

Figure 5 illuminates another interaction that is seen to be significant in the ANOVA results of Table 4. The p-
value is seen to be less than 0.0001 for the AB interaction, meaning that the difference in accuracy from model point 
to confirmation point is dependent on the output channel of the balance. Figure 5 shows that for all three experiment 
designs, outputs have generally similar accuracy at calibration points and confirmation points except for R1, where 
the accuracy in estimating responses at other load combinations besides those used to fit the model is degraded by an 
amount that can be resolved easily. While the accuracy for R1 still meets requirements even at the confirmation 
points (error index less than 1), clearly there is something about R1’s behavior that distinguishes it from all five of 
the other balance outputs. 

The one remaining significant interaction from the ANOVA tables is the AC interaction, which is significant for 
accuracy but not for precision according to the ANOVA results of Tables 4 and 5. In a sense, this is one of the most 
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interesting interactions. We are anxious to see if there is any difference in accuracy or precision from one 
experiment design to the next, and it is interesting to know if such differences depend on which balance output we 
are considering. Figures 6 and 7 illustrate the nature of this interaction for accuracy and precision. 

The ANOVA results indicate no significant design-output interaction for precision. This means that the 
difference in the precision of the math model from one balance output to the next is independent of the experiment 
design used to develop that model. The significant AC interaction for accuracy can be seen in Figs. 6 and 7 to again 
be attributable to behavior in the R1 output that distinguishes it from all the other balance outputs, especially for 
confirmation points. 

Absent the anomalous behavior of R1, there are no experiment design effects significant at the 0.01 level for 
accuracy. The only experiment design effects significant at the 0.01 level for precision are due to the selection of 
confirmation points near the center of the design, coupled with the seep minimum in the distribution of OFAT 
standard errors due to the large data volume of that design (seven times more loadings than the MDOE designs) 
Tables 6 and 7 present the ANOVA results neglecting R1. 

 
 

 
Figure 3 reveals another consequence of the relatively large volume of data acquired in the OFAT calibrations. 

This figure shows that the OFAT response models have on average about 50% more terms than the corresponding 
models developed from MDOE designs. The reason is that the substantial additional data results in higher precision 
levels for estimating model coefficients, and thus model terms that are too small to be detected with the resolution 
afforded by the volume of data in the MDOE designs are detected as significant in the OFAT models. Note that the 
biggest difference is in the higher-order terms, where the OFAT design detects more such terms than the MDOE 
designs. But as the ANOVA results indicate, there is virtually no difference between the accuracy or the precision of 
MDOE and OFAT models, notwithstanding the seven-fold increase in data volume for the OFAT experiment 
design. This implies that the higher order terms that the OFAT design is picking up are too small to be of practical 

Table 6. ANOVA Table for Accuracy Error Index Values, Neglecting R1. No significant 
experiment design effects at the 0.01 significance level. 

Source 
Sum of 
Squares df 

Mean 
Square 

F 
Value 

p-value 
Prob > F 

Model 0.06 21 0.00 6.0 0.0107 
    A-Output 0.03 4 0.01 17.3 0.0010 
    B-Point Type 0.00 1 0.00 2.2 0.1787 
    C-Experiment Design 0.01 2 0.00 6.0 0.0306 
    AB 0.00 4 0.00 2.2 0.1648 
    AC 0.01 8 0.00 3.4 0.0624 
    BC 0.00 2 0.00 1.5 0.2778 
Residual 0.00 7 0.00     
Cor Total 0.06 28       

Table 7. ANOVA Table for Precision Error Index Values, Neglecting R1. Only significant 
experiment design effects at the 0.01 significance level due to selection of confirmation 
points. 

Source 
Sum of 
Squares df 

Mean 
Square 

F 
Value 

p-value 
Prob > F 

Model 0.07 21 0.00 25.7 0.0001 
    A-Output 0.02 4 0.00 35.3 < 0.0001 
    B-Point Type 0.04 1 0.04 272.7 < 0.0001 
    C-Experiment Design 0.01 2 0.00 36.2 0.0002 
    AB 0.00 4 0.00 3.7 0.0627 
    AC 0.00 8 0.00 1.3 0.3861 
    BC 0.01 2 0.00 20.8 0.0011 
Residual 0.00 7 0.00     
Cor Total 0.07 28       
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importance. The MDOE models are well within specifications, and the acquisition of more data after requirements 
are already met represents an unnecessary expenditure of resources. MDOE practitioners seek to scale the data 
volume in order to acquire an ample number of data points to satisfy precision and accuracy requirements, but no 
more. The preserves resources and reduces clutter in the response surface models, which helps reveal the underlying 
physics by identifying more clearly the most important factors. 

It is also interesting to compare the models for the randomized and sequential MDOE models in Fig. 3. The 
MDOE design executed in sequential order will have been confounded with systematic effects if any were in play. If 
there were such effects, the outputs of the balance would be a function of seven variables, not six. They would 
depend on the six load variables and also a seventh variable—time. By fitting the data to only six variables, there is 
a tendency for curvature terms to become artificially inflated, as the model seeks to bend the responses to account 
for the variable that is not being explicitly fitted. While it is not possible to say that systematic effects were in play 
during the sequential MDOE experiment, the models developed from that data set have almost twice as many pure 
quadratic and higher order terms as the models developed from the randomized MDOE experiment. 

We introduced a number of hypotheses in the previous section by saying that it was our intent to test these 
hypotheses using an analysis of variance. A slight inconsistency surfaced in the preliminary analysis involving the 
R1 output, as noted above. While the accuracy and precision of the R1 output are both well within tolerance, this 
balance component appears to behave sufficiently differently from the other five balance components that different 
conclusions are reached by analyses depending on whether R1 is included or not. The R1 phenomenon may be 
limited to the confirmation point data, and may reflect conditions during the acquisition of the few points rather than 
some general aspect of the balance. For these reasons we evaluate the hypotheses we have developed on the basis of 
ANOVA results presented in Tables 6 and 7. 

A. Accuracy 
 
1. Description and Computation 

Average of “accuracy error index” values for models developed from a given experiment design for a given 
balance output. The accuracy error index is the ratio of a residual to a load-dependent tolerance level, representing 
the fraction of the accuracy error budget consumed on that point. 
 
2. Observations 

These observations are based on the ANOVA results in Table 6. 
 

A1. The A (OUTPUT) effect is significant at the 0.01 level. 
A2. The B (POINT TYPE) and C (EXPERIMENT DESIGN) effects are not significant at the 0.01 level. 
A3. None of the two-way interaction effects is significant at the 0.01 level. 

 
3. Conclusions 

o We reject H01: A=0, concluding that the accuracy of the response models is not constant over all six 
balance responses. This conclusion is supported by observation A1. 

o We reject H12: B≠0, concluding that the response models are just as accurate for predicting outputs at 
confirmation points as at model calibration points. That is, we conclude that the DNW calibration 
exhibits transferability with respect to accuracy, and the models are useful for predicting responses at 
general load combinations.  This conclusion is supported by observation A2. 

o We reject H13: C≠0, concluding that the MDOE designs deliver the same accuracy as the OFAT designs 
with a reduction in loading combinations in excess of 85%. This conclusion is supported by observation 
A2. 

o We reject H14: AB≠0, concluding that the good transferability observed in the DNW balance calibration 
from model point predictions to predictions at independent load combinations holds individually for each 
balance component and not simply in an “average” sense. This conclusion is supported by observation 
A3. 

o We reject H15: AC≠0, concluding that the accuracy differences across balance components are not 
influenced by the design of the calibration experiment. This conclusion is supported by observation A3. 

o We reject H16: BC≠0, concluding that all three experiment designs generated the same degree of 
transferability from calibration model points to confirmation points. This conclusion is supported by 
observation A3. 
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4. Discussion 
While each balance component satisfied accuracy requirements comfortably, there is some variation in accuracy 

from one component to another. The balance and its calibration models deliver good accuracy transferability in an 
average sense and also component by component. No accuracy decrement is detected with the MDOE designs 
relative to the OFAT design despite substantially fewer data points. There is no more difference in component-to-
component performance with an MDOE design than with an OFAT design despite the substantial difference in data 
volume. The transferability in models developed from the MDOE calibrations was just as good as from the OFAT 
calibrations, notwithstanding so many fewer points in the MDOE calibration. 

B. Precision 
1. Description and Computation 

Average of “precision error index” values for models developed from a given experiment design for a given 
balance output. The precision error index is the ratio of a 95% confidence interval half-width for model prediction to 
a load-dependent tolerance level, representing the fraction of the precision error budget consumed on that point. 
 
2. Observations 

These observations are based on the ANOVA results in Table 7. 
 

P1. The A (OUTPUT), B (POINT TYPE), and C (EXPERIMENT DESIGN) effects are all significant at the 
0.01 level. 

P2. The BC interaction is significant at the 0.01 level. 
P3. Neither the AC nor the AB interactions are significant at the 0.01 level. 

 
3. Conclusions 

o We reject H01: A=0, concluding that there are differences in precision from one balance output to 
another. This conclusion is supported by observation P1. 

o We reject H02: B=0, concluding that the precision is different for the calibration model points than the 
confirmation points. This conclusion is supported by observation P1. 

o We reject H03: C=0, concluding that not all of the experiment designs produced models with the same 
precision. This conclusion is supported by observation P1. 

o We reject H14: AB≠0, concluding that all components exhibit about the same difference in precision from 
OFAT to MDOE. This conclusion is supported by observation P3. 

o We reject H15: AC≠0, concluding that the precision differences across balance components are not 
influenced by the design of the calibration experiment. This conclusion is supported by observation P3. 

o We reject H06: BC=0, concluding that the MDOE designs and the OFAT design generate differing 
degrees of improvement in precision in going from a calibration model point to a confirmation point near 
the center of the design. This conclusion is supported by observations P2. 

 
4. Discussion 

o While each balance component satisfied precision requirements comfortably, there is some variation in 
precision from one component to another just as there was some variation in accuracy. While the 
confirmation points generated different levels of precision than the calibration points, the precision was 
in fact uniformly better for the confirmation points. This is attributed to the fact that the confirmation 
points were near the center of the design where prediction standard errors (and thus 95% confidence 
interval half-widths were at a minimum). In any case, there was no evidence of a negative transferability 
problem in which the model would have difficulty predicting responses anywhere besides the calibration 
points. These models performed at least as well with confirmation points as with calibration points. The 
precision of the OFAT model was generally greater than the precision of the models developed from the 
two MDOE designs, although both MDOE designs delivered precision levels well within specifications. 
The difference is attributed to the significantly greater number of data points acquired in the OFAT 
experiment. The precision enhancement resulting from so many OFAT data points applies to each 
balance component individually. Both MDOE and OFAT designs exhibited improvements in the 
precision near the center of the design, where unit standard errors of prediction were a minimum. We 
reject H06: BC=0, concluding that the MDOE designs and the OFAT design generate differing degrees of 
improvement in precision in going from a calibration model point to a confirmation point near the center 
of the design. This conclusion is supported by observations P2. 
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VII. Summary and Conclusions 
A strain gage balance has been calibrated using an automated balance calibration machine capable of setting the 

multiple compound loads required of a calibration using the Modern Design of Experiments (MDOE). The balance 
was calibrated using a conventional One Factor at a Time (OFAT) load schedule that required 734 loadings, 
followed by a load schedule that featured the kind of reduced data volume that MDOE practitioners are now using 
for balance calibration (103 points). The MDOE load schedule was executed both in random and in sequential order. 

Precision and accuracy metrics were quantified for 18 combinations of balance output (six outputs) and 
experiment design (three designs). The response models were evaluated for both precision and accuracy at the same 
points that were fitted to estimate the model and also at 114 independent confirmation load combinations that were 
not used to fit the models. The average fraction of accuracy and precision error budget consumed were used as 
performance metrics for the calibration models developed from both OFAT and MDOE experiment designs. 

Principal findings of this study are summarized as follows: 
 

1. At 734 points, the OFAT experiment design required over seven times as many loadings as the MDOE 
designs. 

 
2. A statistically significant difference was observed in the precision of OFAT vs. MDOE designs, with the 

OFAT design featuring the higher precision. The absolute difference in precision was on the order of 
0.01% of full scale, and not deemed of practical importance, since both MDOE and OFAT designs satisfied 
precision requirements by comfortable margins. The slight OFAT advantage in precision is attributed to the 
seven-fold increase in data volume relative to the MDOE design. 

 
3. While precision and accuracy differed from one balance output to another, all channels were within 

specifications. The R1 output channel displayed somewhat lower accuracy than the other five balance 
channels, although it was still within accuracy specifications except for a small number of extreme points. 
The precision of the R1 output was comparable to that of all five other channels. 

 
4. The accuracy of the R1 output relative to the other five channels was better for calibration model points 

than for confirmation points, suggesting that some factor limited to the confirmation runs may have 
influenced the relative behavior of the R1 output. 

 
5. The confirmation points were acquired near the middle of the design, where the model predictions are 

generally more precise than at points near the edges of the design. The estimated precision was therefore 
generally better for confirmation points than for calibration points. 

 
6. The accuracies of calibration points and confirmation points were comparable. This suggests good 

transferability from points used to fit the model to general load combinations. 
 

7. The MDOE designs delivered comparable accuracy and precision as the OFAT design despite requiring 
significantly fewer calibration loadings. Except for randomization, no MDOE quality assurance tactics 
were employed in this test. Specifically, the selection of loading combinations was not optimized for 
quality and the test matrix was not blocked, nor was the data volume rigorously scaled to the accuracy and 
precision requirements of the calibration. It is possible that some further improvement in quality and a 
further reduction in cost could be achieved by implementing these standard MDOE practices. 
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Figure 1. Balance calibrated in this study. 

Figure 2. Distribution of Standard Errors. a) 734-Point OFAT experiment design; b) 101-Point MDOE 
experiment design, standard order; C) 103-Point MDOE experiment design, random order. 
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Figure 3. Significant model terms marked in black for six balance responses and three experiment designs. 
The number of significant terms is recorded above each model. Total significant terms in each experiment 
displayed to right of per-experiment term counts. 
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Figure 4. Significant interaction between experiment design and point type for precision at 
representative balance output (R5). Confirmation points were acquired near center of design space 
where OFAT distribution of standard errors achieves a lower minimum due to large number of residual 
degrees of freedom. 
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Figure 5. Significant interaction between point type and balance output for accuracy. a) OFAT; 
b) Sequential MDOE; c) Randomized MDOE. For all experiment designs, outputs have generally similar 
accuracy at calibration points and confirmation points except R1. 
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Figure 6. Interactions between experiment design and balance output. a) Accuracy for calibration model data;
b) Accuracy for confirmation point data; c) Precision for calibration model data; d) Precision for confirmation
point data. Insignificant interaction for precision, but significant interaction for accuracy due to output R1. 
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Figure 7. Interactions between experiment design and balance output. a) Accuracy for calibration model data; b)
Accuracy for confirmation point data; c) Precision for calibration model data; d) Precision for confirmation 
point data. Insignificant interaction for precision, but significant interaction for accuracy due to output R1. 
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