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Simulated strain-gage balance calibration data is used to compare the accuracy of two 
balance calibration model building methods for different noise environments and calibration 
experiment designs. The first building method obtains a math model for the analysis of 
balance calibration data after applying a candidate math model search algorithm to the 
calibration data set. The second building method uses stepwise regression analysis in order 
to construct a model for the analysis. Four balance calibration data sets were simulated in 
order to compare the accuracy of the two math model building methods. The simulated data 
sets were prepared using the traditional One Factor At a Time (OFAT) technique and the 
Modern Design of Experiments (MDOE) approach. Random and systematic errors were 
introduced in the simulated calibration data sets in order to study their influence on the 
math model building methods. Residuals of the fitted calibration responses and other 
statistical metrics were compared in order to evaluate the calibration models developed with 
different combinations of noise environment, experiment design, and model building 
method. Overall, predicted math models and residuals of both math model building methods 
show very good agreement. Significant differences in model quality were attributable to 
noise environment, experiment design, and their interaction.  Generally, the addition of 
systematic error significantly degraded the quality of calibration models developed from 
OFAT data by either method, but MDOE experiment designs were more robust with respect 
to the introduction of a systematic component of the unexplained variance. 

Nomenclature 
AF = axial force 
d = order of polynomial 
F = load symbol 
i, j = index variables 
k = number of independent variables 
K = number of regressors in a polynomial model 
NF = normal force 
p = number of parameters in a polynomial model, including intercept 
PM = pitching moment 
rAF = axial force gage response 
rNF = normal force gage response 
rPM = pitching moment gage response 
RM = rolling moment 
rRM = rolling moment gage response 
rSF = side force gage response 
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rYM = yawing moment gage response 
SF = side force 
X = design matrix 
YM = yawing moment 
 
Terminology 
Alternative Hypothesis = Assertion that an effect is non-zero by a significant amount 
ANOVA     = Analysis of Variance 
Bonferroni Limt   = Minimum acceptable probability that multiple terms are significant 
Coding     = Linear transformation of variables into a range convenient for processing 
Confidence Interval  = Precision Interval when n = infinity 
Explained SS    = Sum of Squares attributable to known causes 
F-Value     = Ratio of Mean Square for an effect to Residual mean square 
Hierarchy     = Condition in which higher order terms are accompanied by component  
      lower-order term 
Inference     = Decision to reject either a null hypothesis or its corresponding alternative 
Inference Space   = A coordinate system in which one axis is assigned to each independent variable 
Interaction Effect   = Change in effect due to change in factor level from low to high 
LOF     = Lack of Fit 
LSD     = Least Significant Difference 
Main Effect    = Change in response due to change in factor level from low to high 
MDOE     = Modern Design of Experiments 
Mean Square    = Ratio of sum of squares to degrees of freedom. Variance 
Multicollinear    = State in which two or more regressors share a near-linear dependency 
Normal Probability Plot = Graph distinguishing between random and systematic effects 
Null Hypothesis   = Assertion than an effect is zero 
OFAT     = One Factor At a Time 
Orthogonal    = State in which regressors are all mutually independent 
Pareto Chart    = Bar chart of ordered absolute t-Values 
Precision Interval  = Range in which the average of an n-point sample is expected to lie a prescribed  
     percentage of the time 
Prediction Interval  = Precision Interval when n = 1 
PRESS     = Predicted Residual Sum of Squares  
Regressor     = Term in a regression model 
Residual     = Difference between measurement and some reference  
Residual Mean Square = Residual sum of squares divided by residual degrees of freedom 
Residual SS    = Difference between total sum of squares and explained sum of squares 
Significance    = Risk of erroneously rejecting a null hypothesis 
SVS     = Single Vector System 
t-Limit     = Minimum acceptable probability that a given term is significant 
t-Value     = Measured quantity expressed as multiple of standard error in measurement 
Total SS     = Total sum of squares. Measure of variability in data set 
VIF     = Variance Inflation Factor/ A measure of multicollinearity 

I. Introduction 
force balance is used in a typical wind tunnel test to measure aerodynamic load components by generating 
electrical signals that are proportional to the strain induced by those loads. The relationships between applied 

load, induced strain, and resulting electrical signal are complex; while ideally each balance signal would represent 
only its component of the applied load and have no response to any other load components, in practice the electrical 
outputs are influenced by multiple load interactions. Balance designs are optimized to minimize these undesirable 
interactions, but in practice they cannot be entirely eliminated. For this reason, it is necessary to carefully calibrate 
force balances. 

There have been many changes in the design of force balance transducers since the first application of measured 
strain to infer aerodynamic loads in the 1940s, including the development of machining methods required to produce 
single-piece, six-component balance designs. But apart from automating elements of the force balance calibration 
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process (implemented by some but not all laboratories), there have been relatively few changes in basic force 
balance calibration methods in the ensuing 60 years. 

The goal of a force balance calibration experiment is to derive a mathematical model that defines the relationship 
between the loads applied to the balance and the electrical signals it produces. The accuracy of this model is also 
determined during the calibration experiment. It is a common convention in the aerospace force measurement 
community, as well as a formal recommendation of the American Institute of Aeronautics and Astronautics,1 to use 
a math model in the form of a polynomial function of the component loads. Quoting from the AIAA’s 
Recommended Practice on Calibration and Use of Internal Strain-Gage Balances with Application to Wind Tunnel 
Testing, “In its most common form, the model assumes the electrical output reading from the strain-gage bridge for 
the ith component (Ri) to be related to the applied single and two-component loads … by a second order polynomial 
function…” 

This convention of using second-order polynomials as the calibration model appears to be based on early results 
that argue against the need for higher-order terms. For example, the AIAA Recommended Practice cites a 1959 
report by the British Royal Aircraft Establishment,2 which states, “In practice, for a well-designed balance, it is 
generally found that terms of the third and higher degrees in load components are completely negligible, while 
coefficients of second degree terms (called second order coefficients) are nearly all small, if not negligible…” An 
even earlier (1956) report of the National Advisory Committee for Aeronautics (forerunner of NASA) states,3 “To 
date the Langley Laboratory has not encountered any terms for these equations which are higher than the second 
order, although many load combinations are made which would reveal many third-order terms if they were present.” 
The AIAA Recommended Practice document notes that the second-order polynomial model is sometimes extended 
by the addition of pure cubic terms (although mixed cubic terms—third-order terms of the form A2B—are not 
mentioned). The document also describes the addition of certain absolute-value terms to account for situations in 
which the outputs of a balance depend on the sign of the strain in the measuring elements, as is not uncommon in 
multi-piece balance designs. 

Whether the basic second-order polynomial model or one of the extensions to this base model is used, we can 
assume that in a calibration experiment there will be K regressors in the math model and that a load schedule 
consisting of n combinations of component loads will be planned with n corresponding response measurements, 
where n must be greater than K + 1 for all regression coefficients to be estimated including the intercept. The general 
form of the full polynomial model is then as follows: 

 iij

K

j
ji xy εββ ++= ∑

=1
0  (1a) 

where yi is the response recorded for the ith load application, xij is the ith level of the jth regressor, βj is the coefficient 
of the jth regressor, and εi is an error term, assumed to be drawn from a normal distribution with a mean of 0 and 
with a constant standard deviation for all responses. The quantity β0 is an intercept term that requires certain 
additional iterative procedures to account for the fact that an unloaded balance still experiences applied forces due to 
the weight of the loading hardware and the balance itself. These procedures are beyond the scope of the current 
paper but are addressed in detail in the AIAA Recommended Practice on balance calibration cited above. 

Equation (1a) can be described more succinctly in vector/matrix form as follows: 

 εβ += Xy  (1b) 

where y is an (n × 1) vector of response measurements, β is a (p × 1) vector of coefficients, and ε is an (n × 1) vector 
of error terms. 

X is called the design matrix, consisting of n rows corresponding to the number of data points acquired in the 
experiment, and p columns, one for each term in the math model, including the intercept term. The design matrix 
plays a central role in determining both the cost and the quality of a calibration experiment,4 and indeed of any 
experiment in which a polynomial math model is used to fit system responses as a function of multiple independent 
variables. Furthermore, the details of the design matrix are largely within the researcher’s control. The number of 
rows depends on the volume of data that the researcher decides to acquire, the number of columns depends on the 
math model that the researcher selects, and the values of the individual matrix elements depend on the levels of the 
independent variables that are set for each data point. For a balance calibration experiment, this is defined by what 
the researcher specifies as the load schedule. 
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We focus on certain elements of the design matrix in this paper because it is such an important determinant of 
both productivity and quality in a response modeling experiment, and because it is so easy for the researcher to 
control. It is obvious that productivity can be influenced by the volume of data acquired, which is defined by the 
number of rows in the design matrix. Direct operating costs and cycle time can both be minimized by specifying as 
few rows in the design matrix as will be adequate to achieve the objectives of the experiment.5 The impact of the 
design matrix on quality is revealed through the covariance matrix and how it affects uncertainty both in estimates 
of the individual regression coefficients, and in response predictions made by applying the model. 

The covariance matrix, C, is a (p × p) square matrix computed by pre-multiplying the design matrix by its 
transpose, inverting the product, and multiplying each element of the resulting matrix by the unexplained variance of 
the residuals, σ2: 

 ( ) 21σ−′= XXC  (2) 

It can be shown that the diagonal elements of the covariance matrix represent the variance in estimates of the 
regression coefficients. That is, the variance in the ith regression coefficient, βi is simply: 

 ( ) iiiVar C=β  (3) 

The off-diagonal elements of the covariance matrix quantify the degree to which the regressors are correlated. 
Correlated regressors result in an undesirable characteristic known as multicollinearity, of which more will be said 
presently. We would generally prefer that the off-diagonal elements of the covariance matrix all be zero. While this 
ideal state is difficult to achieve in all practical circumstances, much of the quality improvement delivered by 
formally designed experiments is derived by defining the test matrix in such a way as to minimize the off-diagonal 
elements of the covariance matrix. The impact of formal experiment design in a balance calibration experiment will 
be discussed further in later segments of this paper. 

Other than the intrinsic variability of the data itself, Eqs. (2) and (3) clearly indicate that the variance of the 
estimated regression coefficients depends only on the design matrix! This suggests that there may be opportunities to 
minimize the uncertainty in estimates of the regression coefficients simply by optimizing the design matrix in some 
way. 

Similarly, when the model is used to predict responses for a specified combination of independent variable 
settings (component loads in a balance calibration experiment), the variance in those predictions depends heavily on 
the design matrix. Consider a vector x0 = [1 x01 x02 … x0K]′ representing a data point specified by a given 
combination of component loads on a balance, where x01 is the level of the ith regressor corresponding to this point. 
The estimated mean response at this point is 

 ( ) bxxy 00 ′=ˆ  (4) 

where b is a vector of estimated regression coefficients. That is, b is our best estimate (typically by some least-
squares criterion) of the vector of true coefficients, β, in Eq. (1b). The set of estimated mean responses over all x0 
comprise what is called a response surface, and the process of estimating the b vectors is called response surface 
modeling. The variance in the response prediction at a particular x0 is computed as follows: 

 ( )[ ] ( ) 00 xXXxxy 12
0ˆVar −′′= σ  (5) 

As in the case of the individual regression coefficients, Eq. (5) reveals that except for the intrinsic variability in 
the data used to fit the response model, the variance in a response prediction for a given point is determined entirely 
by the design matrix. Equations (2), (3), and (5) suggest that since the design matrix plays such a central role in 
determining the precision of a response surface modeling experiment, improvements in the quality of such 
experiments can be achieved by planning the design matrix carefully. 
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Research has been ongoing at NASA Langley Research Center for about 10 years to demonstrate the practical 

improvements that can be achieved in aerospace research quality and productivity generally, by optimizing the 
design matrix in multivariable response modeling experiments. This research has been an element of a larger testing 
technology activity geared toward enhancing aerospace research quality and productivity by integrating experiment 
design, execution, and analysis activities into a formal research process described as the Modern Design of 
Experiments (MDOE). The MDOE process has been successfully applied in numerous aerospace research 
disciplines at Langley and elsewhere. This includes the area of balance calibration, where an entirely new hardware 
system was introduced to facilitate the MDOE loading combinations needed to optimize the design matrix while 
retaining the simplicity and inherent reliability of the traditional dead-weight loading method preferred at Langley.6,7 
It should be noted that MDOE design matrix optimization is also well-suited for automated balance calibration 
machines.8,9 Such machines are capable of applying multiple loading combinations without certain physical 
constraints inherent in a traditional dead-weight calibration system, although at the expense of some additional 
complexity in alignment.10 

Independent of the MDOE activity at Langley, NASA Ames Research Center has investigated a key aspect of 
the design matrix optimization problem with respect to balance calibration; namely, the selection of math models 
that can be supported by a given load schedule and that also minimize the residual variance when the model is fitted 
to the calibration data. In the broader context of the design matrix, the Ames effort focuses on the columns of that 
matrix, identifying a recommended subset of the largest math model that can be supported by a given load schedule. 
To motivate subsequent discussions in this paper of practical implementation details, we now present a brief general 
explanation for why the quality of a response surface modeling experiment can often be improved by eliminating 
some of the math model terms. 

Assume for a moment that Eq. (1) represents the largest math model that can be supported by a given test matrix. 
For a balance calibration experiment, the test matrix is simply the calibration load schedule. That is, we assume that 
this equation describes the largest math model for which non-singular regression results can be obtained for the 
prescribed load schedule, subject to the constraint that only model terms drawn from a prescribed original set are 
considered. This constraint simply ensures that the order of the model and the functional form of the individual 
regressors is consistent with standard recommended practices, as described above. 

We wish to examine the consequences of reducing the model so that fewer than the K regressors of the model 
described by Eq. (1) are retained. Let r represent the number of regressors that we wish to remove and let p represent 
the number of terms that will be retained in the model, including the intercept term. We can then express Eq. (1) as 
follows: 

 εββ ++= rrpp XXy  (6) 

Here, Xp is a (p × n) matrix with columns corresponding to the retained terms in the model, including the 
intercept, and βp is a (1 × p) vector of the corresponding regression coefficients for this reduced model. The columns 
of Xr represent terms that are deleted from the model, and βr is a vector of the corresponding regression coefficients. 

If b is a vector of estimated regression coefficients for the unreduced model, and bp corresponds to those 
coefficients that are retained, it can be shown that the matrix Var(bp) – Var(βp) is positive semidefinite.11 Therefore, 
dropping terms from the full model and refitting the data to a subset of the original regressors results in model 
coefficient estimates with variance that is less than or equal to the variance in the corresponding coefficients of the 
full model. In other words, with respect to the precision of the regression coefficient estimates there is nothing to 
lose, and possibly something to gain, by reducing the number of regressors in the math model. 

Consider now the impact of such a model reduction on the variance of response predictions. Note that a vector of 
predicted responses for each point in the test matrix can be generated from the vector of measured responses, y, by 
means of the “hat matrix,” H, as follows: 

 Hyy =ˆ  (7) 

where 

 ( ) XXXXH ′′= −1  (8) 



 
American Institute of Aeronautics and Astronautics 

 

6

and X is the design matrix, as before. The variance in the vector of response estimates is computed as follows: 

 ( ) ( ) ( )HIHHyHy 2VarˆVar σ′=′=  (9) 

The hat matrix is both symmetric (equal to its transpose) and idempotent, meaning that HH = H. Equation (9) 
therefore reduces to 

 ( ) 2ˆVar σHy =  (10) 

Note that the variance of the ith response prediction is just the ith diagonal element of Hσ2. Following Box and 
Draper,12 we consider the trace of this matrix, which is just the sum of all the diagonal elements: 

 ( ) ( )[ ] ( )i

n

i
ŷVartracetrace

1

22 ∑
=

− =′′= XXXXH 1σσ  (11) 

We invoke the following matrix identity: trace(AB) = trace(BA). Let A = X and B = (X'X)-1X'. Then 

 ( ) ( ) ( )trace trace trace p p− −⎡ ⎤ ⎡ ⎤= = =′ ′ ′ ′⎣ ⎦ ⎣ ⎦
1 1X X X X X X X X I  (12) 

since p is the dimension of the square matrix (X'X)-1 as noted above in the description of the covariance matrix. 
Combining Eqs. (11) and (12) we have 

 ( )
( )

n
p

n

y
py

i

n

i
i

n

i

2
12

1

ˆVar
ˆVar σσ =→=

∑
∑ =

=

 (13) 

That is, the prediction variance averaged over all points in a regression analysis is the same for any order model 
and depends only on the intrinsic variability of the data, the volume of data fitted, and the number of terms in the 
math model. Therefore, if a given number of data points are acquired in a measurement environment with a given 
degree of intrinsic variability, the average prediction variance depends on nothing more than the number of terms in 
the regression model! Obviously, there is potential to reduce the average prediction variance simply by reducing the 
number of terms in the model. This is because each term in the model carries with it some contribution to the total 
uncertainty in the prediction. 

The purpose of this introduction has been to identify certain benefits of reducing the number of terms in a 
response model, to motivate the examination of practical means of implementing such reductions which comprises 
the bulk of this paper. Summarizing the key points, the design matrix determines the uncertainty in estimates of the 
regression coefficients and the model predictions. Reducing the number of columns in the design matrix by selecting 
a reduced math model never increases the variance in estimates of the retained coefficients, and may decrease it. 
Because the prediction variance averaged over all regression points is directly proportional to the number of terms in 
the math model, reducing the number of model terms also increases the precision of the response predictions. 

The remainder of this paper describes practical ways and means of improving the quality of a balance calibration 
by reducing the calibration math model. These techniques utilize statistical metrics to evaluate the significance of 
math model terms that may be used for the global regression of calibration data. Two related methods are compared 
in this paper. 

The first method is called “Candidate Math Model Search.” This technique was first developed at Ames 
Research Center for the analysis of strain-gage balance calibration data.13,14 The method has been implemented in a 
software package called BALFIT.15 

The second method is currently being used at Langley Research Center for balance calibration analysis and other 
data analysis problems. It relies upon standard stepwise regression analysis methods11,12,16 that are implemented in a 
number of commercially available software packages.17-21 Table 1 summarizes key elements of the two math model 
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building methods. The specific stepwise regression procedures of a representative commercial package (Design 
Expert® version 7, or DX7) are compared with the BALFIT variable selection and model building process. 

 
Each of the two methods determines an optimum math model for the analysis of balance calibration data that 

depends on the calibration data set. In addition, both methods still require some user input in order to uniquely 
specify the optimum math model. Table 2 below lists the user input that is needed. 

 
Both math model building methods are being applied to real-world data analysis problems on a regular basis. 

However, so far no direct comparison of the two methods has been performed in order (i) to compare selected sets of 
math terms, and (ii) to assess residuals of fitted data sets. Recently, the first author suggested that numerically 
simulated balance calibration data be used to compare the two methods. This approach has several advantages: (i) 
the exact solution of the global regression problem of the simulated data sets is known; and (ii) random and 
systematic errors can easily be introduced in the data sets in order to investigate the impact of data errors on the 
math model building methods. 

In the first part of this paper, the generation of the four simulated balance calibration data sets is discussed. Then, 
key elements of the two math model building methods are reviewed. Finally, results of the application of both math 
model building methods to the simulated calibration data sets are presented. 

Table 1. Description of basic elements of two balance calibration math model building methods. 

SOFTWARE TOOL DESCRIPTION 

BALFIT 

First, Singular Value Decomposition (SVD) is used in order to get the largest math 
model, i.e., the permitted math model, that the calibration data supports; then, using 
the permitted math model as an upper bound, candidate math models are found 
using the standard deviation of the response residuals as a metric; finally, the 
recommended math model is assembled from the candidate math models using a 
user selected change of the standard deviation from one math model to the next as a 
metric. 

DX7 

The independent variables are specified and upper and lower limits are defined to 
facilitate coding of variables. Factor interaction models and all full dth-order 
polynomial models (d from 1 to 6) are automatically examined to identify a subset 
of permitted models (full-rank hat matrix so nonsingular) that the test matrix will 
support. A weighted combination of residual standard deviations, PRESS statistics, 
lack-of-fit F-statistics, and R-squared statistics is used to suggest an initial full 
model. The user can edit this or select another full permitted model as the starting 
point for the variable selection and model building process. Terms from the starting 
model are discarded or retained by the stepwise regression algorithm, which seeks 
to minimize unexplained variance and multicollinearity. Hierarchy is imposed on 
the resulting reduced model at the user’s option. Multiple metrics for fit quality are 
tabulated and displayed graphically. The user edits the final recommended model 
based on these metrics to incrementally improve the fit, to resolve multicollinearity 
issues, or to reflect the user’s subject matter expertise. 

Table 2. User input needed to specify optimum math model. 

SOFTWARE TOOL USER INPUT 

BALFIT 

• Combination of math term groups, i.e., function classes, that are used for the 
global regression of the balance calibration data (see Table 7; at the present time 
the BALFIT software supports all math term groups) 

• Standard deviation change from one candidate math model to the next in percent 
of the standard deviation minimum of each gage 

DX7 

• Input variables and ranges 
• Alpha-in and Alpha-out: Significance levels for retaining and rejecting regressors 

from the permitted math model 
• Subject matter expertise to assess quality of recommended model and to 

edit/reassess as necessary 
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II. Balance Calibration Data Simulation 
A reduced second-order polynomial function of six variables was used to simulate a six-component strain gage 

balance. For realism, the significant interaction terms and the relative magnitudes of the coefficients were modeled 
loosely after a production wind tunnel balance in current use at Langley Research Center, although the model as 
simulated does not precisely represent any specific balance at Langley or elsewhere. Table 3 lists the significant 
terms and coefficients for the simulated model and Table 4 displays the simulated load capacities. Note that the 
model coefficients correspond to independent variables in coded units, not physical units. The coded variables 
represent a linear transformation of calibration loads into a range from -1 to +1, where -1 corresponds to the 
algebraically smallest load capacity while +1 corresponds to the largest load capacity. Table 4 displays the 
correspondence between range limits for coded and physical units. Commercial data analysis packages such as the 
one used to create the model for the simulated balance tend to use coded variables, for reasons outlined in 
Appendix A. 

 
Two load schedules were simulated. The first was a conventional calibration load schedule of the kind that has 

been used routinely at Langley Research Center for decades and is similar in data volume and general characteristics 
to calibration sequences employed at numerous other laboratories. It was originally designed to permit model 
coefficients to be determined by graphical means, reflecting a computational limitation of the 1950s when it was 
initially introduced. The basic design has remained virtually unchanged since then. There are a total of 81 load 
sequences performed sequentially in time. Each load sequence consists of a tare point, four increments, three 
decrements, and a return tare point providing a total of nine data points per sequence; 729 points in all. This is a 
member of a general class of test designs known in the testing technology literature as One Factor At a Time 
(OFAT) designs, reflecting the fact that in each sequence only one component is loaded at a time while the others 
are held constant. 

The second load schedule is an MDOE design for which the volume of data has been scaled to achieve specified 
precision goals in a given measurement environment, and the loading combinations have been selected to optimize 
the design matrix in certain ways. The specific details of the MDOE experiment design process are beyond the scope 
of this paper, but we mention some of the principal design features: 
 

1) There were 64 points in the MDOE design, compared to 729 in the OFAT design. 
2) The component loads were selected to minimize off-diagonal elements of the covariance matrix, 

maximizing prediction precision for a given volume of data. 
3) The points were selected to facilitate orthogonal blocking, a type of point-grouping that allows between-

group bias errors to be conveniently removed from the regression computations. Blocking also facilitates 
the estimation of bias errors induced by systematic variations. 

4) The points were executed in random order, a standard MDOE quality assurance tactic by which systematic 
variations washing through the calibration facility over time (thermal effects, instrument drift, etc.) are 
prevented from biasing the estimation of regression coefficients other than the intercept. These systematic 
bias errors are converted to random fluctuations that can be compensated by acquiring additional data if 
necessary. 

 
A third set of simulated data consisted of 25 component load combinations that were randomly selected from a 

uniform distribution of values ranging between the load capacity limits of the balance as displayed in Table 4. These 
points were not used to fit any of the calibration response models. Instead, they were held in reserve as 
“confirmation points” to be used to test the models, as will be described later in the paper. 

The models in Table 3 represent the “true” balance models in this simulation, as distinct from models to be 
determined later by fitting simulated data. A perfect regression analysis would simply return these models exactly, 
and we use departures in the fitted models from these true response models to assess the regression model-building 
process. 

Table 3. Coefficients of “true balance,” coded variables. 
 

Intercept A-NF B-AF C-PM D-RM E-YM F-SF A2 B2 C2 D2 E2 F2 AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
NF -1.0 2096.7 -1.0 5.1 -1.4 -0.1 -0.2 2.16 0.75 -0.88 -0.78 0.26 -0.56 -1.82 -0.49 -7.08 0.69
AF 538.6 3.0 538.7 -2.6 5.0 -2.0 1.0 -1.13 0.40 0.30 -0.35 -0.30 0.30 0.82 -0.75 -1.20 -4.00 0.30
PM -0.1 6.6 -0.1 1397.6 9.1 3.4 0.9 0.79 -0.45 0.43 0.69 1.14 -0.43 -0.69 0.00 -0.89 -2.58 -8.95
RM 0.0 -1.5 -0.1 1.9 592.9 1.0 -1.0 0.33 0.26 -0.14 0.38 -0.40 0.21 1.17 0.40
YM -0.2 11.4 -0.1 -3.5 12.9 1094.6 -5.7 -0.84 -0.32 0.34 16.49 -0.44 10.12 0.62
SF 0.0 -3.5 -0.1 -0.7 -12.4 -4.1 1974.7 0.40 0.21 -0.54 -0.86 17.13 -8.41 0.00 -0.43 -0.51 0.00 1.96 1.01 0.00  
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Simulated error-free balance responses were generated for each of the two calibration load schedules as well as 

for the 25 simulated confirmation points, using the coefficients in Table 3. Two error environments were then 
simulated. For the first error environment, simulated experimental errors were drawn at random from a normal 
distribution with a mean of zero and a constant standard deviation, using ordinary Monte Carlo techniques. The 
standard deviation of these simulated random errors was determined from 324 measured replicates in an actual 729-
point OFAT balance calibration conducted at Langley Research Center using a balance with the same load capacity 
as the simulated balance in this study. Table 5 lists the standard deviations of these replicated responses and Fig. 1a 
shows the actual simulated random errors normalized by standard deviation. Note that the normalized simulated 
random errors in Fig. 1a are centered on zero and approximately 95% of them lie within ±2σ, confirming the 
designed distributional features of the random error simulation. 

 
The second simulated error environment features the same random noise as the first, but included an additional 

component of systematic error. Systematic errors are due to long-period, slowly varying effects that occur routinely 
in real-world experiments. These effects cause sample means to vary slowly over time, violating a common but 
unfortunately somewhat naïve assumption that all random errors occur about stable (time-invariant) sample means. 

These time-dependent bias errors are caused by such factors as slowly changing temperature effects, 
instrumentation drift, operator fatigue, system warm-up effects, mechanical expansion or contraction due to 
temperature or applied loads, and any number of additional unknown (and unknowable) causes. In high-precision 
research environments such as are common in aerospace research, and especially in calibration experiments where 
chance variations in the data are truly small, these systematic errors often comprise that largest component of the 
unexplained variance in a data set. 

To simulate systematic error, there are an infinite number of choices for how sample mean might vary with time. 
In this simulation we chose a simple first-order function of time in which the systematic bias error component starts 
at minus six standard deviations at the beginning of the calibration and increases at a uniform rate sufficient to bring 
it to plus six standard deviations over the period of time in which a 729-point, hand-loaded OFAT calibration load 
schedule might be executed (typically 3 to 4 weeks). Figure 1b shows the combination of random and systematic 
errors normalized by standard deviation. Compare with Fig. 1a to see the effect of systematic error. 

Note that due to the high precision that is characteristic of a calibration laboratory, the standard deviation of 
random variations tends to be relatively small, so that a drift of ±6 standard deviations over 3 to 4 weeks does not 
represent an especially large change in absolute terms. Also note that real-world systematic error is seldom so 
accommodating as to vary uniformly in time and in one direction only. In actual experiments, abrupt shifts are not 
uncommon and complex systematic error patterns are the norm. In that sense this simulation is a fairly conservative 
representation of typical systematic error effects. Nonetheless it serves to contrast the case of random-only error 
with that in which some systematic error is also present. 

 
There were thus four simulated data sets, comprised of all four combinations of the two test matrix designs and 

the two noise environments. Table 6 summarizes their characteristics. 

Table 6. Description of simulated balance calibration data sets. 

DATA 
SET 

LOAD 
SCHEDULE ERROR TYPES NUMBER OF 

POINTS 
1 
2 
3 
4 

OFAT 
OFAT 
MDOE 
MDOE 

Random 
Random + Systematic 

Random 
Random + Systematic 

729 
729 
64 
64 

Table 5. Standard deviation of random error, MicroV/V. 

NF AF PM RM YM SF 
0.50 0.61 0.63 0.20 1.04 1.30 

Table 4. Load limits (pounds for forces, inch-pounds for moments) 
and corresponding coded values. 

Coded NF AF PM RM YM SF 
-1 -6520 0 -12800 -8150 -6400 -4000 
+1   6520 400   12800   8150   6400   4000 



 
American Institute of Aeronautics and Astronautics 

 

10

III. Candidate Math Model Search 
During the past two years a new method was developed at Ames Research Center that analyzes strain-gage 

balance calibration data. The method combines industry-wide accepted balance calibration analysis procedures with 
automatically generated math models. The new Ames approach became possible after it was recognized that ideas 
from vector algebra and a numerical technique called Singular Value Decomposition (SVD) may be used to 
rigorously identify the largest math model that the calibration load schedule supports.15 The flowchart in Fig. 2 
summarizes key elements of the new Ames approach. 

Experience has shown that the new Ames approach is fast, reliable, and accurate. It was successfully applied to a 
wide variety of in-house and customer supplied balance calibration data sets.22,23 The approach uses applied 
calibration loads, measured electrical responses, and natural zeros of the balance in combination with a math model 
determination algorithm in order to generate two math models for the analysis. Calibration load or check load 
residuals have to be compared in order to decide which one of the two math models should be used for the final 
analysis of the data and the calculation of the data reduction matrix. 

The first math model is called the permitted math model. It is the result of applying SVD to the tare corrected 
calibration load schedule. It is the largest math model that the load schedule supports using the user’s math term 
group selection as a constraint. The global regression problem of the calibration data would become singular or 
close to singular if only a single additional term from the selected math term group combination would be added to 
the permitted math model. Table 7 shows different math term group choices that are traditionally used for strain-
gage balance calibration analysis. 

 
The BALFIT software allows the user to choose practically any combination of these math term groups as a 

constraint for the permitted math model. By default, however, terms from the first group are always included in the 
user’s selection. Experience showed that a combination of terms from the first, third, and fifth math term group will 
lead to good math models for a single-piece balance. A combination of terms from the first five groups is usually 
needed for the global regression of calibration data of a multi-piece balance. 

The second math model is called the recommended math model. It is the result of applying a candidate math 
model search algorithm to the calibration data set using the permitted math model as an upper bound. The standard 
deviation of the response residual of different math term combinations is used as a metric in order to test individual 
terms of a possible candidate math model for significance. Then, using the standard deviation change from one 
candidate math model to the next as a metric, the recommended math model is assembled from the candidate math 
models. By design, the recommended math model only uses the most significant terms of the permitted math model. 
Table 8 below lists definitions of the permitted and the recommended math model. Figure 3 summarizes key 
elements of the determination of the permitted and recommended math model. 

Table 7. Traditional math term group choices for strain-gage balance calibration analysis. 

GROUP NUMBER 
MATH TERM 

F ( load symbol 
i, j ( gage indices 

DEFAULT FOR 
SINGLE-PIECE 

BALANCE 

DEFAULT FOR 
MULTI-PIECE 

BALANCE 
1† 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Fi 
|Fi| 

Fi · Fi 
Fi · |Fi| 
Fi · Fj 

|Fi · Fj| 
Fi · |Fj| 
|Fi| · Fj 

Fi · Fi · Fi 
|Fi · Fi · Fi| 

× 
- 
× 
- 
× 
- 
- 
- 
- 
- 

× 
× 
× 
× 
× 
- 
- 
- 
- 
- 

† This group is included in all allowed group combinations. 
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In the end, the standard deviation of the calibration load residuals and the largest load residual of each gage 

should be compared in order to decide if the permitted or the recommended math model should be used for the final 
analysis of the calibration data. In addition, the accuracy of each math model should be evaluated using check or 
proof loads that were not a part of the original calibration load schedule. It is important to remember that the 
recommended math model uses only the most significant terms of each gage. Therefore, the recommended math 
model should always be used for the final analysis of balance calibration data whenever “over-fitting” is a concern. 
The recommended math model is also compared in the present study with the math model that is the result of 
applying stepwise regression analysis to the calibration data. 

The first simulated data set of the present study may be used to demonstrate the application of the Ames 
approach to calibration data. The first, third, and fifth math term group from Table 7 were selected for the analysis. 
Figure 4a shows the corresponding permitted math model for this data set. All possible load combinations were used 
in the calibration data set. Therefore, SVD correctly recognized that all terms of the selected math term group 
combination are supported. Figure 4b shows the calibration load residuals in percent of the gage capacity after the 
global regression of the calibration data was performed using the permitted math model. In the next step, the 
candidate math model search was performed using the permitted math model as an upper bound. Figure 4c shows 
the result of the candidate math model search, i.e., the standard deviation of the response residual as a function of 
the number of terms of each candidate math model. Enlarged symbols in Fig. 4c identify those candidate math 
models that were used to assemble the recommended math model. A user specified standard deviation change of 1% 
of the standard deviation minimum of each gage was used to assemble the recommended math model. Terms of the 
recommended math model are depicted in Fig. 4d. Calibration load residuals are depicted in Fig. 4e after the 
recommended math model was used for the analysis. As expected, these load residuals are very close to the residuals 
that are depicted in Fig. 4b for the much larger permitted math model. 

In the next part of the paper, the second math model building method is explained in more detail. 

IV. Analysis by Stepwise Procedures 
This section describes the application of standard stepwise regression methods to improve the design matrix of a 

calibration experiment by selecting terms for the response model. As noted earlier, these methods are implemented 
in a number of commercial data analysis software packages. To illustrate the stepwise regression method, an 
analysis of Data Set 1 (Table 6) is presented, paralleling the BALFIT analysis described in the previous section. This 
analysis was performed using one of many commercially available software packages—Design Expert17 (AKA 
DX7)—although other commercial software implementations of this method18-21.use similar procedures. 

The DX7 analysis process begins by naming the dependent (response) and independent (load) variables. Upper 
and lower limits of the ranges of the independent variables are entered in order to facilitate coding them by a linear 
transformation that centers and scales them into a range from -1 to +1. The coding transformations are described in 
Appendix A. All of the commercial response surface modeling software packages cited in the references invoke the 
coding of independent variables, for reasons summarized in Appendix A. For the current analysis, this step simply 
meant entering the data from Table 4 above, in response to prompts from the software. The test matrix and all 
response measurements were then entered, simply by pasting them from a spreadsheet into an equivalent structure 
within DX7. 

Once the data are entered, the DX7 stepwise regression analysis proceeds through four phases for each response 
variable: Fit Summary, Model Selection, Analysis of Variance, and Diagnostic Evaluation. As part of the diagnostic 
evaluation, a test known as the Box-Cox Transformation Test is automatically performed to determine if a power 

Table 8. User input needed to specify optimum math model. 

MATH MODEL DEFINITION 

PERMITTED 

Largest math model that the calibration data supports using the user’s math term group 
selection as a constraint; it is determined by applying SVD to the tare corrected load 
schedule; terms of the math model are identical for all gages; it is used as an upper 
bound during the candidate math model search. 

RECOMMENDED 

The math model that uses only the most significant terms of each gage; the model is 
built using candidate math models that were generated after applying a search 
algorithm to the calibration data set; this search algorithm uses the permitted math 
model as a starting point. 
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transformation of the responses would provide a better fit to the data. If so, a specific transformation is 
recommended. 

For the present analysis, no transformations were recommended for any of the data sets, but there can be data 
sets for which a better fit can be achieved by modeling the log of the response, say, or the square root. (A class of 
transformations known as “variance stabilization transformations” serves to make the unexplained variance more 
constant, for example, which adheres more closely to basic assumptions in least-squares regression analysis and 
therefore often generates better models.) When a specific transformation is recommended, the user has the option of 
selecting it from several choices in a drop-down menu. This automatically performs the specified transformation of 
the data. It is possible to quickly analyze the transformed data to see if there is any significant improvement over the 
untransformed case. If not, one of the transformation selections is “none,” which can be invoked to return to an 
analysis of the original, untransformed data. 

Once the transformation decision is made for a given response, the four main phases of the analysis can begin. 

A. Phase One: Fit Summary 
Phase One is analogous to the BALFIT process for identifying the “Permitted Model.” DX7 performs a 

preliminary analysis that begins with the most simple of models—a “0th-order” model consisting of only the 
intercept term—and continues through models of progressively higher order. The highest-order model that DX7 
considers is dictated by the number of independent variables, as there is an upper limit of 400 terms that DX7 can 
include in any one model. All regression analyses in DX7 apply standard QR Decomposition to the design matrix to 
compute model coefficients. 

Each model is first evaluated to determine if its hat matrix (Eq. (8)) is of full rank so that the model can be 
estimated. Note that the hat matrix is a function only of the design matrix, which depends only on the load schedule 
and not any of the responses. Therefore, the same set of models will pass this screen for all responses. Models 
lacking a full-rank hat matrix are flagged in red and a warning is provided not to select them. See Fig 5a, the 
Sequential Sum of Squares Report generated by the analysis of normal force responses for Data Set 1. This table 
provides a sequential comparison of models showing the statistical significance of adding more model terms to those 
already in the model. The significance can be assessed by examining the right-most column, labeled “p-value.” This 
is the probability that an improvement due to extending the model represents an effect so small that it cannot be 
distinguished from noise. So, for example, the line labeled “Linear vs. Mean” has a p-value < 0.0001. This means 
that for this set of Normal Force data, a model consisting only of the six first-order terms plus the intercept is such a 
great improvement over a model consisting only of the intercept, that there is less than one chance in 10,000 that 
such an apparent improvement could be due only to experimental error. This strongly suggests that the first-order 
terms are significant, and that adding them to the model would improve it. 

Looking at successive rows in the report in Fig. 5a, the same type of analysis reveals that adding the 15 two-
factor interaction (2FI) terms to the six linear terms improves the model significantly (again, p-value < 0.0001), and 
adding the six pure quadratic terms likewise results in a substantial improvement. Note the line labeled “Cubic vs. 
Quadratic,” though. Here, the p-value is 0.8133, meaning that the additional improvement that can be realized by 
adding third-order terms to this model is so small that there is over an 80% chance (81.33%) that an effect that small 
could be attributable to ordinary fluctuations in the experimental data. So, notwithstanding the fact that a third-order 
model would be of full rank and thus estimable, this analysis shows that the improvement over a quadratic model 
would be negligible. Likewise, a 4th-order model would add no significant improvement over a cubic model. 

The largest model that DX7 can analyze has 400 terms, as noted above. A 5th-order model in six variables 
requires 462 terms, exceeding this limit. Therefore, models of 5th-order and higher are excluded. Based on the 
analysis of 3rd-order and 4th-order models, however, it is unlikely that models of higher order would improve 
significantly on the quadratic model, even if they could be estimated. 

Figure 5b is the Lack of Fit Tests report for Design Expert. For each of the models listed, the residual variance is 
partitioned into pure error and lack of fit components. The pure error component can only be calculated if there are 
replicates in the data set. In this case (Data Set 1), there were 324 pure error degrees of freedom, more than plenty to 
estimate the component of unexplained variance attributable to ordinary chance variations in the data. In this case, 
Fig. 5b shows that the pure error mean square (σ2) is 0.30, suggesting that the standard deviation in replicated 
Normal Force measurements was 0.53 microV/V. 

The column labeled “F Value” is the ratio of the lack of fit (LOF) mean square to 0.30, the pure error mean 
square. The LOF mean square is based on the difference between the predicted response and the average of all 
measurements made for each combination of independent variables in the test matrix. Those differences are squared 
and then summed to produce the total error sum of squares, from which the pure error sum of squares is subtracted 
to generate the LOF sum of squares. The LOF mean square is then calculated by dividing this by the number of LOF 
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degrees of freedom. This is just the number of unique data points in excess of the minimum number needed to fit the 
model. 

The pure error mean square is a measure of how much error is due to the intrinsic variability of the measurement 
environment. The LOF mean square is a measure of how much error is due to imperfections in the way the model 
fits the data. The ratio of these two is the F-statistic listed in Fig. 5b for various models. A high LOF F value implies 
that the error is dominated by lack of fit, suggesting that the model might profit from the addition of further terms. It 
is unlikely that the F value will be substantially less than 1 except by chance, since we cannot expect the model to 
have much less variance than the data upon which it was constructed. F values near 1 suggest a good fit to the data. 
The corresponding p values represent the probability that an F value of the indicated magnitude could occur due 
simply to chance variations in the data. High p LOF p values mean that it is likely that the estimated lack of fit is due 
to nothing more than random fluctuations in the data, and that the model fits well. Low p values imply significant 
lack of fit. Note that the linear model and the two-factor interaction model both feature significant lack of fit, while 
the quadratic and higher-order models all fit the data quite well. 

Figure 5c displays the DX7 Model Summary Statistics report. For each of the models examined, this table lists 
the standard deviation of the residuals, the PRESS statistic (predicted error sum of squares), and three related 
variations of the R-squared statistic. 

To compute the PRESS statistic, the data are fitted without the first point in the test matrix. The resulting model 
is used to predict the first point and the difference between the measured response and that prediction is squared. 
This process continues for each data point and then all of the squared residuals are summed. Large PRESS statistics 
imply a poor fit, and reveal circumstances in which “influence points” may be driving the fit. 

The R-squared statistic is computed by partitioning the total sum of squares of the data set into explained and 
unexplained components. The total sum of squares simply represents the sum of squared differences between each 
measured response and the average of all responses. The error (or unexplained) sum of squares is the sum of squared 
differences between each measured response and the model prediction for that point. The explained and unexplained 
sum of squares add to form the total sum of squares so the explained sum of squares is conveniently computed by 
subtracting the error sum of squares from the total. The R-squared statistic is simply the ratio of the explained sum 
of squares to the total. 

In a perfect world devoid of unexplained variance in experimental data, all variance in the data would be 
explained by the model and the R-squared statistic would be exactly 1. The precision of measurements in modern 
aerospace calibration laboratories is in fact so great that the unexplained variance, which is responsible for 
experimental uncertainty, is indeed quite small, and almost all of the variance in a data set is explainable by a well-
fitted model. In Fig. 5c, you can see that the R-squared statistics for all models have a value of 1 to 4 decimal places. 

The Adjusted R-squared statistic displayed in the DX7 Model Summary Statistics report of Fig. 5c is competed 
in a similar was as the ordinary R-squared statistic, except that each sum of squares component is first divided by its 
corresponding number of degrees of freedom. So the “adjustment” is to ratio the explained and total mean squares 
(variances) rather than the sum of squares alone. 

The Predicted R-squared statistics are computed using the PRESS values. The predicted error sum of squares 
(PRESS) is divided by the total sum of squares and the result is subtracted from 1. While the ordinary and adjusted 
R-squared statistics describe how well the model fits the current data, the predicted R-squared statistic provides 
some insight into how well the model will fit new data governed by the same relationship that has been modeled. 

One unfortunate attribute of the ordinary R-squared statistic is that it continues to increase as terms are added to 
the model, even if those terms are insignificant. For this reason, the first author gives greater weight to the adjusted 
R-squared and predicted R-squared values. The adjusted R-squared tends to flatten out as insignificant terms are 
added to the model, and the predicted R-squared will start to decrease when too many insignificant terms are added. 
We prefer that the adjusted and predicted R-squared values be close to each other. 

The R-squared statistics in Fig. 5c reveal that even a simple first-order model accounts for almost all of the 
variance in Data Set 1. This indicates that the balance is very nearly linear. However, the sequential sums of squares 
and the lack of fit analyses on Figs. 5a and 5b indicate that improved fits are available by adding up to second order 
terms, with higher order terms making a relatively small incremental contribution. 

Note that in all three reports in Fig. 5, the quadratic model is underlined and labeled as “Suggested.” This 
suggestion by the software is based on a subjective scoring system that uses a combination of selected metrics to 
propose an initial starting model from among those that are estimable. DX7 automatically defaults to this model, 
which becomes what BALFIT describes as the “Permitted Model.” 
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To identify the Suggested model, each model is assigned two scores, as follows: 
 
 Score1 = (M)(L)(Pred R-Squared) 
 Score2 = (M)(L)(Adjusted R-Squared) 
 

M is a Sequential Model Sum of Squares index and L is a Lack of Fit index, where 
 

• M = 1 if the p-value from the sequential sum of squares report (Fig. 5a) is less than or equal to 0.05 
• M = 0.5/(p-value) if this p-value is greater than 0.05 
• M = 0 if model is not estimable 

and  
• L = 1 if the p-value ≥ 0.10 from the Lack of Fit report of Fig. 5b (or if Lack of Fit is not present) 
• L = (p-value) / 0.10 if this p-value is less than 0.10 

 
Predicted R-Squared and Adjusted R-Squared are simply the corresponding values from the Fit Summary table. 
The suggested model is the one with the highest Score1, but if one model is highest on Score1 and a different 

model is highest on Score2, then both models will be “Suggested” and the user must choose between them. The 
program suggests a model with only the intercept term (the mean model) if all the predicted R-squared values are 
negative, or if all model scores are zero. 

The user has the option to override this suggested model by selecting any of the other estimable models as a 
starting point. For example, in this case selecting a third-order model might permit some mixed cubic terms to enter 
the model that could improve the fit, notwithstanding the fact that the full cubic model provides little improvement 
over the full quadratic model. Truly insignificant higher order terms tend to be rejected in the stepwise regression 
process to follow. On the other hand, the addition of higher-order terms can simply result in a better fit to noise in 
the current data set, rendering the model less useful as a prediction tool. In the end, some subject matter expertise 
and a certain amount of prudent judgment must be brought to bear. In general, the user seeks models with these 
properties: 

 
1) the highest order that is estimable; 
2) no lack of fit (LOF p-value > 0.10); 
3) reasonable agreement between Adjusted R-squared and Predicted R-squared (within 0.2 of each other). 

B. Phase II: Model Selection 
The “Suggested” model from Phase One: “Fit Summary” becomes the default model on the “Model” screen of 

DX7’s graphical user interface. Figure 6 shows this screen for the current example, in which we are fitting the 
Normal Force response data from Data Set 1. The default model is the quadratic model recommended from the 
initial fit summary (Fig. 5), and appears as the selected option in the “Process Order” drop-down menu of Fig. 6a. 
The user is free to select other models from this menu to override the default. 

The terms for whichever model is chosen are marked below the dropdown menus with the capital letter “M,” 
which can be toggled on or off by the user to include or exclude individual terms. In this case, all 28 terms for a 
2nd-order model in six variables are included in the initial model. Terms of third order and higher (accessible by 
scrolling the display) are not marked for inclusion in this example, but the user can easily toggle individual terms 
into the model. 

The user is now ready to examine subsets of this initial (“Permitted”) model. Four methods are accessible from 
the “Selection” drop-down menu. The default is “Manual,” in which the user can simply toggle individual terms in 
and out of the model as just described. This method is not typically invoked at this early stage, but is useful later to 
“fine tune” the final model. 

The remaining three model selection methods on the drop-down menu are variations of a general class of 
methods know as “stepwise-type procedures.” The three methods are known as (1) “Forward Selection,” (2) 
“Backwards Elimination,” and (3) “Stepwise Regression,” which is actually a combination of the first two methods. 

Forward Selection begins by assuming that only the intercept term is in the model. It then provisionally adds 
the one term that has the highest correlation with the response. A model F-statistic and its associated p-value are 
computed for this two-term model. If the p-value is below a specified threshold (indicating low probability that the 
added term is insignificant), the term is retained and the forward selection process continues. The next term to be 
provisionally entered is the one that has the highest correlation with the response after correcting for first term 
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entered. This is called a “partial correlation,” and the associated p-value indicates the probability that this term 
makes an insignificant change to the explained variance of the model. If it is below the entry criterion, this term is 
retained. The process continues until either all terms from the initial (“Permitted”) model have been included, or 
until the most significant remaining term does not cause enough of a change in the explained variance to satisfy the 
entry criterion. 

Backward Elimination is similar to forward selection except that the process attempts to identify terms for the 
final model by working in the opposite direction. The backward elimination method begins with all terms from the 
Permitted Model included. The term with the weakest correlation with the response is provisionally rejected, and the 
impact on the explained variance of the model is assessed by an F-test. If the rejection of this term produces a 
significant reduction in the model’s explained variance, it is retained and the process stops. Otherwise, the process 
continues until no terms in the model can be rejected without causing a significant reduction in the model, or until 
the only remaining term is the intercept. 

Stepwise Regression is a combination of forward selection and backward elimination. We begin as a forward 
selection process and continue until the model contains the intercept and two regressors. Now apply backward 
elimination to the three-term model, eliminating each regressor in turn to assess the reduction in the model’s 
explained variance via an F-test. When the backward elimination step is finished, resume the forward selection 
process with the whichever remaining term causes the most significant increase in the explained variance. If such a 
term increases the explained variance by a user-specified threshold amount, retain it and initiate the backward 
elimination on the new model. Continue until there are no candidate regressors significant enough to enter the model 
and none in the model that are so weak that they can be eliminated with no significant effect. 

Proponents of stepwise regression note that the backward elimination step protects against multicollinearity. If 
two regressors are highly correlated, adding one of them to the model may render the first one superfluous. In such a 
case it is better to eliminate that term. 

It is common to apply more than one stepwise procedure to the same data set. For example, the first author 
commonly applies backward elimination first, to give all model terms a chance to be included. He then applies 
stepwise regression to the surviving model terms, and finishes with one more application of backward elimination, 
to reject the occasional high-order term that survives the first two applications without contributing significantly to 
the model. 

Figure 6b shows the DX7 Model Screen after the application of these stepwise procedures to the current 
example. This is what is called the “Recommended Model” by BALFIT. While all first-order terms were retained, 
several of the two-way interaction terms were rejected as insignificant, as were a couple of the pure quadratic terms. 
The model has been reduced from 28 terms to 17 by eliminating terms that made no significant contribution to the 
model’s ability to predict responses, but which each carried some component of prediction uncertainty. By Eq. (13), 
we see that this reduced the average prediction variance to 17/28 = 61% of what it would gave been had we used the 
full, 28-term “Permitted Model.” To achieve the same reduction in average prediction variance with the original 28-
term model would require a 65% increase in data volume, with attendant increases in cycle time and direct operating 
costs. For the 729-point manually-loaded calibration represented by Data Set 1, this would translate into more than 
two additional weeks for the calibration. 

The reader is advised to consult standard textbooks on regression analysis11,12,16,28 for a more detailed description 
of the stepwise procedures outlined here. It is not necessary to understand the algorithms in detail to use these 
methods, however; one can simply choose a method and the software will execute the associated algorithm. 

The stepwise procedures end with a display of the analysis of variance page in DX7. This leads to Phase Three 
of the variable selection and model building process. 

C. Phase Three: Analysis of Variance 
Figure 7a is an ordinary analysis of variance (ANOVA) table from DX7 for the current example, which 

corresponds to the model in Fig. 6b. This is the “Recommended Model” for Normal Force, using Data Set 1. DX7 
generates an ANOVA table to display components of the total variance in a sample of data. This is useful for 
examining the model produced by the automated stepwise procedures described above, and provides an opportunity 
to inject human subject matter expertise and judgment into the model building process. 

The concept exploited by an analysis of variance is that the entire data sample is characterized by variance, most 
of which can be explained by the math model. Some residual variance remains, which is responsible for uncertainty 
in the modeling result. An ANOVA partitions both the explained and the residual (or unexplained) variance into 
components that provide additional insights into the underlying process, which are useful for improving the model. 

Figure 7a shows that the ANOVA table is organized into rows, each of which describes one component of either 
explained or unexplained variance, and columns, each of which provides a different quantitative descriptor of the 
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variance components. The first column simply labels the source of variance. The second, Sum of Squares, is divided 
by the third column, df (degrees of freedom), to produce the fourth column, Mean Square, also known as the 
variance component for that source. The computational details are available in standard references,29 but the larger 
the mean square in column 4, the more influence that source of variance has. The variance components are presented 
in the next column as multiples of the unexplained variance, or residual mean square. This ratio, the F Value, is a 
convenient dimensionless metric of the relative importance of each source of variance. 

The Model F value, at the top of the table, simply represents the ratio of the variance explained by the complete 
model to the unexplained variance. Small values would imply that the model has fitted mostly noise. In practical 
aerospace applications, however, the precision of the measurements generally guarantees a sufficient signal-to-noise 
ratio to produce a significant model, and the model F Value will be quite large, as in this instance. 

Note that the largest component F value is the normal force load, factor A in the ANOVA table. This is 
consistent with expectations that the normal force output described by the model would be influenced much more 
heavily by the normal force load than any other source of variation in the data. (For a perfect balance, all other 
component F values would be zero.) 

The F values reveal that for this balance, pitching moment has the greatest influence on the normal force output 
other than normal force itself. Even so, this variance component is five orders of magnitude less than the principal 
load component. Other observations available from the F values include the fact that axial force and rolling moment 
loads have approximately the same influence as each other, both somewhat less than the influence of pitching 
moment, and that by comparison, yawing moment and side force have relatively little influence on the normal force 
output. A significant interaction is also revealed by the high F value of the DF term, indicating that the influence that 
side force loads have on the normal force output depend on what the rolling moment load is, and conversely. Also 
note that the pure quadratic normal force load term is significant, indicating some curvature in the normal force 
response, but that this term is small compared to the first-order normal force loading term, implying a high degree of 
linearity in this transducer. Such insights can provide the balance engineer with considerable insights into the 
performance of instrument such as this one. 

The p values in the last column of the ANOVA table express the probability that an F value as large as indicated 
could occur simply due to chance variations in the data sample. Small p values are associated with large F values 
and indicate a low probability that the apparent influence of the indicated term is due to chance. Therefore, 1-p 
indicates the probability that the term is real and belongs in the model. 

A glance at the ANOVA table in Fig. 7a reveals that almost all the terms in the model have p values that are less 
than or equal to 0.0001. This implies a high probability that the true coefficient for these terms is non-zero and that 
we are therefore justified in retaining them in the model. The first-order yawing moment term, factor E, is a 
conspicuous exception, with a p value of 0.8407 and a value of F that is well below 1. This term is therefore quite 
unlikely to be significant, but it is retained to maintain hierarchy, an important concept discussed in Appendix A. 
Retaining this term renders the model “well formulated,” as the linear yawing moment term is “hierarchically 
inferior” to the two-way interaction between yawing moment and rolling moment (the “DE” term in the ANOVA 
table), which is significant. The reader is referred to Appendix A for further discussion of well-formulated models 
and hierarchically inferior terms. 

The unexplained variance is partitioned in the ANOVA table, just as the explained variance is. There are two 
components, “pure error” and “lack of fit.” These represent the degree to which the magnitude of model residuals 
can be attributed to random error (imperfections in the data), and fitting error (imperfections in the model). The lack 
of fit F value is the ratio of the lack of fit mean square to the pure error mean square. The lack of fit p value is the 
probability that the degree of lack of fit estimated for this model could be due to chance variations in the data. It is 
quite high (0.9362) in this case, implying that it is unlikely there truly is significant lack of fit in this model. In 
general, the lack of fit can be regarded as insignificant when the lack of fit p value is greater than 0.1. 

A number of summary statistics are presented at the bottom of the ANOVA table. Most of these were described 
earlier. The Mean is just the average of all the response data and the coefficient of variation (CV) is just the ratio of 
the standard deviation to the mean. For a nearly symmetric loading schedule, these numbers are not very meaningful 
as the average response is near zero, artificially inflating the coefficient of variation. The Adequate Precision 
number is simply the ratio of the dynamic range of the responses to the standard deviation. Large numbers imply 
sufficient signal to noise to fit a reasonable model. A value of 4 is considered adequate to develop a model, so the 
value in Fig. 7a in excess of 53,000 implies an ample signal-to-nose ratio. 

Figure 7b is a standard table from DX7 that provides information for each coefficient in the present example. 
The coefficients are given for the model in coded units (see Appendix A). The standard error for each coefficient is 
listed, as are upper and lower limits for the 95% confidence interval. Note that the 95% confidence interval for the 
linear yawing moment term ranges from -0.11 to +0.13, a range that includes zero. This implies that we cannot say 
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with at least 95% confidence that this coefficient is different from zero. This is consistent with the low F and high p 
values in the ANOVA table that revealed this term to be insignificant, having been retained only to ensure a well-
formulated model by preserving hierarchy, per recommendations in Appendix A. 

The far-right column in Fig. 7b lists “variance inflation factors,” a measure of multicollinearity. Multicollinearity 
occurs when two or more regressors are correlated to some degree. If that is the case, the model may have difficulty 
predicting responses for independent variable combinations other than those used to fit the model. 

For the ideal case in which a regressor is perfectly orthogonal to all other regressors in the model (no 
colinearity), its VIF value will be 1. A standard criterion is that if VIF values are less than 10, multicollinearity is 
not a serious problem. A somewhat more stringent standard embraced by some researchers is that VIF values should 
be less than 5. By even this more stringent criterion, Fig. 7b indicates that the current model has no serious 
multicollinearity problems. 

The ANOVA table and the table of coefficients are used to manually fine tune models developed by the stepwise 
procedures described above. High-order terms with low p values are candidates for deletion and can be toggled out 
of the model to see how this affects the standard deviation, the lack of fit p value, and the various R-squared 
statistics. Likewise, when an abnormally high VIF value indicates multicollinearity, higher order terms with high 
VIF values can be provisionally toggled out of the model to see if this relieves the multicollinearity problem without 
introducing significant lack of fit. In general, manual adjustments are made to the model when there is significant 
multicollinearity, or when insignificant terms can be deleted without violating hierarchy. With each proposed 
adjustment, the various quality metrics in Fig. 7 can be monitored conveniently to assess the impact. 

D. Phase Four: Diagnostic Evaluation. 
Except for information that may be available externally, all information on the quality of a response surface 

modeling experiment is contained in the residuals. For this reason, commercial software packages typically provide 
numerous tools for evaluating the residuals. We illustrate this in Phase Four of a typical DX7 analysis called the 
diagnostic evaluation phase, continuing with the Normal Force model fitted from Data Set 1 as an example. DX7 
presents a total of 32 different plots of residuals for this model, and tabulates a number of them as well. A 
comprehensive exposition is beyond the scope of this paper, but certain key diagnostic plots of residuals are 
presented and will be discussed in this section. 

Figure 8 presents normal probability plots of residuals for four different models fitted from Data Set 1. Normal 
probability paper is constructed so that a cumulative Gaussian probability distribution appears as a straight line. If 
the distribution of residuals falls on a straight line when plotted on such probability paper, it indicates that they are 
normally distributed, which suggests that they are due primarily to ordinary random error in the data, and not to 
some systematic imperfection in the math model. That is, a straight line implies that the model “goes through the 
middle” of the data, with the residuals due only to random error. 

Figure 8a is the normal probability plot of residuals from the 17-term “recommended model” of Fig. 6b. The 
straight line suggests that the fit is adequate. Compare with Fig. 8b, which displays residuals from the 28-term full 
quadratic “permitted model” of Fig. 6a. This comparison reveals no loss in the quality of the fit from significantly 
reducing the number of model terms. 

Figures 8c and 8d show how the normal plot of residuals looks when an inadequate model is fitted. Figure 8c 
displays residuals from a linear model featuring only the intercept and the six first-order load terms. One might have 
thought that such a model would fit the data reasonably well, given how small a contribution the higher-order terms 
make to the explained variance according to the ANOVA table. In truth, the first-order model does account for most 
of the variance in the data set, per the R-squared statistics of Fig. 5c. Figure 8c simply illustrates how sensitive the 
normal probability plot of residuals is for detecting lack of fit. Figure 8d illustrates this same point. Here, the 
residuals of the two-factor interaction model are plotted, which differs from the full quadratic model of Fig. 8a by 
only six relatively small quadratic terms. Nonetheless, there is a substantial systematic departure from a straight-line 
plot of the residuals, indicating lack of fit induced by the absence of the quadratic terms. Figure 8 illustrates that the 
normal plot of residuals can be a very sensitive indicator of lack of fit. 

It is a standard practice in commercial data analysis software packages to plot residuals against predicted 
response levels. Such plots are expected to exhibit no functional dependence on the level of the predicted response. 
If this is not the case—if the residuals are proportional to the predicted response, say—then they might display a 
triangular shape, growing from left to right in such a plot. It is important to know this because the least squares 
calculations assume a uniform variance for all data points. If this assumption does not hold, the coefficient estimates 
will not be unbiased estimators of the true model coefficients. In such a case, a “variance stabilization 
transformation” of the response variables often addresses the problem, as indicated at the start of this section on 
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stepwise procedures. A fit of the natural log of the response often has a more nearly constant variance when the 
untransformed variance depends on the magnitude of the response, for example. 

If the model fits the data poorly, a quadratic or higher-order dependency of the residuals will be apparent when 
they are plotted against predicted levels. To see why that is so, consider a math model with a poor fit. Let 

 ( )bx,fy =  (14) 

be the current (poor) model of a response, y, as a function of a vector of independent variables, x, using a set of 
regression coefficients, b. 

Following Box and Draper,12 assume that this model fits some other set of response data well, instead of the 
current data. That is, assume there is some response, w, an unknown function of y, which this model fits better: 

 ( )bx,fw =  (15) 

Even though w is an unknown function of y, we can expand it over a suitably limited range as a Taylor series. If 
the data set that would correspond better to the current model is sufficiently close to the current data set (that is, if 
the current model is only marginally suboptimal), we can neglect third-order terms and higher terms in the Taylor 
series, as follows: 

 2
210 yayaaw ++=  (16) 

Equate (15) and (16), divide by a1, and absorb a0 into the intercept term of the coefficients vector, b. Renaming the 
coefficients leads to a function in this form: 

 ( )bx, ′+= fyy 2α  (17) 

This relationship holds for all n data points, so we have 

 ( ) .,,2,1        ,2 niyfy iii …==′− αb,x  (18) 

The term on the left can be estimated by residuals of the fitted model, and the quantity yi on the right can be 
estimated from model predictions. So if the current model is not a good fit and would therefore fit another data set 
better than the current one, we would expect to see a characteristic quadratic dependency in the plot of residuals 
against model predictions, per Eq. (18). 

Figure 9 shows the difference between the plot of residuals against model predictions for the recommended 
model (Fig. 9a), and the plot of residuals against model predictions for the factor interaction model (Fig. 9b), 
consisting of the full 28-term permitted model less the six pure quadratic terms. We have already established in 
Phase One, the Fit Summary phase, that the factor interaction model is inadequate. This was confirmed in the 
normal probability plots of residuals in Fig. 8. Note the characteristic quadratic shape of the residuals in Fig. 9b, 
confirming Eq. (18). No such quadratic dependency is apparent in Fig. 9a, suggesting that this model may be an 
adequate fit to the data. Third-order and higher dependencies can be seen in the plot of residuals against predicted 
responses if the current fit is sufficiently poor. Such plots are produced automatically by DX7 for all response 
models, as an additional test for model adequacy. 

A plot of residuals against run number is also a staple of commercial data analysis packages. Figure 10 is an 
example from DX7. Run number serves as a surrogate for time. If the residuals are not a featureless function of time 
(that is, if they are not independent of time), it suggests that changes were occurring during the experiment that 
affected the response measurements. 

Compare Fig. 10a, the residuals of the recommended math model developed from Data Set 1, to Fig. 10b, the 
residuals of the recommended math model developed from Data Set 2. Data Set 2 differs from Data Set 1 only in 
one respect. The experimental error simulated in Data Set 2 has a pronounced systematic component that is lacking 
in Data Set 1, as Fig. 1 shows. A systematic component of the unexplained variance results from bias errors that 
change with time. As noted earlier, these systematic errors can be caused by temperature effects, instrument drift, 
operator fatigue, and any number of other non-random sources of unexplained variance manifest in a time series of 
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measurements. The nature of the specific systematic error modeled in this study is that it causes early measurement 
to be biased low and later measurements to be biased high. This is reflected in the plots of residuals versus run 
number in Fig. 10. (There are, of course, an infinite number of variations on this theme, as the bias errors 
responsible for systematic components of the unexplained variance can change with time in any number of ways.) 

If there are systematic errors in a data set as well as ordinary random errors, it is problematic for a response 
surface experiment because the true response must then be considered a function of all the known independent 
variables plus one additional variable, time. Under such circumstances, the response model will be just as inadequate 
if time is ignored as it would be if any other independent variable affecting the response is ignored. In a balance 
calibration experiment, systematic error means the math model depends on seven independent variables—the six 
load components plus time. If the response is only modeled in terms of six of these, the model will not predict 
responses as accurately as it would if the systematic error is taken into account. (We note in passing that it is not a 
simple matter of modeling the response as a function of time as well as the other independent variables, because 
systematic errors are transient and generally non-repeatable. The problem of systematic unexplained variance is 
most effectively attacked during the acquisition of the data, by invoking certain quality assurance tactics in the 
design of the experiment that eliminate the systematic error by converting it to another component of random 
error.30-32 These tactics are key elements of the Modern Design of Experiments and are reflected in Data Sets 3 
and 4.) 

Unfortunately, if systematic errors are present in a calibration data set or in a data set for any other response 
surface modeling experiment, recovery is difficult if the experiment was not designed from the beginning to defend 
against this. Under such circumstances, the errors associated with successive measurements in a time series are not 
independent. That is, if systematic errors cause the ith measurement to be too high, say, then the (I + 1)st 
measurement is also more likely to be high than low. This loss of independence violates one of the fundamental 
assumptions upon which regression analysis is based, bringing into question the validity of any model produced by 
this method. When the independent variable levels are changed systematically with time, their effects become 
confounded with the systematic error sources. That is, if the experiment is designed in such a way that the true 
change in response is due to changes in two independent variables (time and something else), but modeled as a 
function of only one of them, the coefficient for the one variable taken in to account will be in error. (The solution to 
this problem is to ensure that the independent variable levels are not changed systematically with time, but are set in 
random order. This is one of the key quality assurance tactics of MDOE.) 

Notwithstanding the difficulty in recovering from systematic errors in an experiment that was not designed to 
anticipate them, it is important at least to know if they were present during the data acquisition. Otherwise it is 
possible to invest an unjustifiable level of confidence in the resulting math model. Plotting the residuals against run 
number provides valuable reassurance that there is no evidence of systematic error when that is the case (as in 
Fig. 10a), and provides an important warning when systematic error is present as in Fig. 10b. 

Equations (14) through (18) describe a situation in which a transformation of the response variable might have 
resulted in a better model. Commercial data analysis packages such as DX7 provide a direct test on the data for 
whether such a transformation would be helpful. This method is known as the Box-Cox transformation test,33 which 
examines scaled transformations involving a power transformation, yλ, of the response variables, y. A model is fitted 
for a range of candidate exponents, typically from -3 to +3. The residuals (or the log of the residuals) are plotted 
against λ and the point at which this function is a minimum is a maximum likelihood estimator of the exponent that 
produces the best fit in a least-squares sense. Figure 11 is a representative Box-Cox transformation plot for the 
models examined in this study. Note that it has a very sharp minimum at λ = 1, corresponding to a recommendation 
of no transformation. This was true of all of the recommended models developed by DX7, which gives additional 
reassurance that those models are adequate. 

While the Box-Cox transformation test provided no suggested transformations that would improvement in 
balance calibration models, it did help refine the comparisons among models developed in this study that were 
constructed by different analysis means, using different experiment designs, under different noise conditions. This 
will be illustrated presently. 

This subsection has described a number of diagnostic plots of residuals that are useful in assessing model 
adequacy. Dozens of additional plots and tables of model adequacy indicators are provided in DX7 and other 
commercial data analysis packages in order to provide the opportunity to inject human expertise and judgment into 
the model-building process. The typical process involves a shuttling back and forth between model revision and 
model assessment until the response models satisfy the user. Modern commercial data analysis packages make this 
process quick and painless. 

For most of the models developed in this study using commercial software, the initial models were adequate and 
the diagnostic evaluations of the residuals served simply to confirm this conclusion, with no model revisions 
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proposed. In some cases, however, small changes in the models improved them significantly. For example, models 
that initially contained highly correlated regressors could be improved by eliminating one or more of those 
regressors from the model. This is justified because under such circumstances, the correlated regressors contain 
redundant information. The resulting models were more generally transferable to other load combinations besides 
those that were fitted to produce the model. 

As another example, occasionally the automated stepwise procedures would produce a model containing one or 
more terms that the ANOVA page indicated was insignificant. When these could be removed while maintaining 
hierarchy, they were manually eliminated. A quick glance at the subsequent diagnostic indicators would confirm in 
such instances that the adjustments had no unintended consequences. 

A third example of circumstances in which model adjustments can make improvements is when a term is added 
to the recommended model based on subject-matter expertise. For example, let us say that it is known from the 
design of the balance that the degree of nonlinearity in one component, say “A,” depends on the load applied to 
another component, say “B.” In that case, the addition of a mixed cubic term of the form A2B can often improve the 
model. Since this was a simulation experiment, no such additions were made. But this is not uncommon when data 
have been acquired using physical balances with known properties. 

E. Summary of the Stepwise Procedures 
This section has described the implementation of stepwise regression procedures in a specific data analysis 

package, to illustrate what is typically available in such packages and to provide a comparison with the BALFIT 
analysis process described in the previous section. To summarize this process, the independent variables are first 
specified and upper and lower limits are defined to facilitate coding of variables. Factor interaction models and all 
full dth-order polynomial models (d from 1 to 5 in this example) are automatically examined to identify a subset of 
permitted models (full-rank hat matrix so nonsingular) that the test matrix will support. A weighted combination of 
model adequacy statistics is used to suggest an initial full model. The user can edit this or select another full 
permitted model as the starting point for the variable selection and model building process. Terms from the starting 
model are discarded or retained by the stepwise procedures, which seeks to minimize unexplained variance and 
multicollinearity. Hierarchy is imposed on the resulting reduced model at the user’s option. Multiple metrics for fit 
quality are tabulated and displayed graphically. The user edits the final recommended model based on these metrics 
to incrementally improve the fit, to resolve multicollinearity issues, or to reflect the user’s judgment and subject 
matter expertise. 

V. Comparison Strategy 
Calibration models are compared in this paper on the basis of three factors: the design of the calibration 

experiment, the nature of the noise environment, and the software analysis tools and methods used to generate the 
calibration models. The comparison strategy is described in some detail in this section, and illustrated with one 
specific model quality assessment metric; namely, the standard deviation of residuals between simulated measured 
responses and the responses predicted by various models derived from different data sets. Similar comparison 
analyses are reported in Section VI for other model quality metrics. 

We begin this section with a description of the basic organization of the study into a two-level full factorial 
experiment design. This is followed by subsections describing how main effects and interactions are quantified, and 
how each effect is objectively classified as “significant” or “insignificant.” Subsequent subsections describe 
interaction effects and distinguish between significance criteria that involve individual effects and combinations of 
effects. There is a subsection justifying a transformation of variables that under certain circumstances can improve 
the precision of some comparisons by increasing the signal-to-noise ratio, and there is a subsection that addresses 
the partitioning of explained variance components and the insights to be achieved from doing so. We end with s 
consideration of multicollinearity and how it is addressed in quantifying the dependencies of response models on 
experiment design, noise environment, and analysis method. 

A. Organization as a Two-Level Full Factorial Experiment Design in Three Factors 
Calibration models were developed for this study by altering three factors: the design of the calibration test 

matrix, the noise environment under which the data were acquired, and the software/procedures used for the 
analysis. There were two levels of each of these three factors. 

The two levels of the DESIGN factor were “OFAT” and “MDOE.” OFAT (One Factor At a Time) is a 
conventional calibration design represented in this case by a 729-point test matrix first introduced at Langley 
Research Center over 50 years ago and used with little modification ever since. MDOE (Modern Design of 
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Experiments) is a new calibration design based on a low-cost, high-quality research process introduced to various 
aerospace disciplines at Langley Research Center in the mid 1990s. 

The two levels of the NOISE factor were “Random” and “Random + Systematic.” Random error was modeled as 
a normal distribution with mean of zero and a standard deviation based on the analysis of physical replicates from a 
real (non-simulated) balance currently in use at Langley Research Center. An error term was selected at random 
from this distribution for each simulated balance response measurement. The other level of the noise factor included 
a component of systematic error as well as the random error, modeled as a variation in the mean of the random error 
distribution with time. A uniform rate was modeled that was the equivalent of just under half a standard deviation 
per day for the length of a typical hand-loading calibration experiment. 

The two levels of the SOFTWARE factor were “DX7” and “BALFIT.” DX7 is a representative commercial 
software package (Design Expert®, version 7) that implements standard stepwise procedures to fit general response 
models. BALFIT is a customized balance calibration package developed at Ames Research Center to automate the 
analysis of balance calibration data. 

The comparisons of the factors in this study turn on examining three main effects and their interactions. We 
define the “main DESIGN effect” for a specified model adequacy metric as the difference in that metric between 
MDOE and OFAT designs, averaged over all combinations of noise environment and analysis software for the six 
response variables modeled. An example will clarify this below. Since there are two noise environments and two 
analysis software packages, there are four combinations of these variables for each of the six response variables, or 
24 MDOE-OFAT differences averaged to estimate the main Design effect. 

Similarly, the “Noise Effect” for a specified metric is the difference in that metric between the cases of random-
error-only, and random-plus-systematic error, averaged over all combinations of test matrix design and analysis 
software for the six response variables. Finally, the “Software Effect” for a specified metric is the difference in that 
metric between DX7 and BALFIT results, averaged over all combinations of test matrix design and noise 
environment for the six response variables. 

We are also interested in interactions among these variables. For example, the noise effect might only be 
significant for one experiment design and not another, in which case we would say that there is an interaction 
between the noise and design factors. Three such two-way interactions are possible, Noise-Design, Noise-Software, 
and Software-Design. Finally, there is a potential three-way interaction involving all three factors in the study. This 
interaction would be exist if, for example, there was a significant Noise-Design interaction for models developed by 
one software package, but not another. 

It is convenient to assign Latin letters to the three factors as in Table 9: 

 
Since each factor has only two levels, it is customary to label them as “low” and “high.” The assignment of 

levels to these designations is entirely arbitrary and conveys no relative ranking or preference for the levels. The 
level assignments serve only to resolve polarity issues in the effects estimates. The “effect” for a specified model 
adequacy metric is defined as the change in that metric in going from the “low” level of a given factor to the “high” 
level. Therefore, if that effect is positive, it means the given metric increases with a transition from the low to the 
high level of the factor in question. Likewise, if the effect is negative, it means the metric decreases with a transition 
from low to high level. 

With Table 9, we can use rather compact notation to describe the main effects and interactions that interest us. 
They are the A, B, and C main effects; the AB, AC, and BC two-way interactions; and the ABC three-way 
interaction. For each of the seven main effects and interactions, our objective is simply to discover whether the 
effect is real; that is, non-zero. For example, we will want to discover if there is any significant difference in a 
particular metric between DX7 and BALFIT results. If the A effect is real, we will conclude that such a difference 
exists. The sign of the effect will indicate which of the two factor levels is favored. In formal terms, we wish to test 
a null hypothesis, H0, which can be expressed compactly as follows: 

 H0: A=0 

Table 9. Experimental Factors. 

Factor Name “Low” “High” 
A Software DX7 BALFIT 
B Design OFAT MDOE 
C Noise Random Rnd+Sys 



 
American Institute of Aeronautics and Astronautics 

 

22

We will reject this hypothesis if we are able to detect some difference between the results obtained with the DX7 
software and the BALFIT software. There is corresponding alternative hypothesis, H1, expressed as follows: 

 H1: A≠0, 

which we will reject if we cannot detect any difference in results obtained with the two software packages. There are 
analogous pairs of null and alternative hypotheses for each of the seven main effects and interaction effects. 

The study is structured as a two-level full factorial experiment in three factors. Table 10 shows the basic design 
layout of the experiment, with the standard deviation of residuals for the Normal Force model as an example 
comparison metric: 

 

B. Estimation of Main Effects and Interactions 
Two-level factorial experiment designs of the kind represented by Table 10 are quite efficient, in that they allow 

a large number of inferences to be made from a relatively small volume of data—eight numbers in this case. For 
example, note that four independent estimates of the NOISE effect are available from this sample of data. Compare 
rows 1 and 2. They feature the same levels of the first two factors, SOFTWARE and DESIGN, and differ only in the 
third factor, NOISE. We conclude therefore that any difference in the response metric—standard deviation in normal 
force model residuals in this instance—is attributable only to differences in the noise environment. 

Recalling that a factor’s main effect is defined as the response at the “high” level of that factor (“Rnd+Sys” from 
Table 9), less the level at the “low” level of that factor (“Random”), we have as this estimate of the main NOISE 
effect from rows 1 and 2: 1.18 – 0.53 = +0.65. This indicates that the addition of systematic error caused a positive 
change (an increase) in residual standard deviation of about 0.65 μV/V in this example. Note, however, that this 
result only applies to one combination of factors A and B—OFAT designs analyzed with the DX7 software. Rows 
3&4, 5&6, and 7&8 likewise provide independent estimates of the NOISE effect for normal force residual standard 
deviation. These three estimates plus the first one cover all four combinations of the two levels of SOFTWARE and 
DESIGN, as summarized in Table 11. The main NOISE effect is defined as the average of these estimates, which in 
this example is +0.39. 

We conclude that for the Normal Force models, adding systematic error of the type modeled in this study to the 
random error increases the standard deviation in model residuals by 0.39 μV/V averaged over all combinations of 
the two experiment designs and two software packages. We say that such an estimate features a “wide inductive 
basis” because it spans all possible combinations of the SOFTWARE and DESIGN factors, rather than one 
“representative” combination. 

 

Table 10. Two-Level Factorial Design Layout. 

ROW SOFTWARE 
(A) 

DESIGN 
(B) 

NOISE 
(C) 

NF Residual 
σ. μV/V 

1 DX7 OFAT Random 0.53 
2 DX7 OFAT Rnd+Sys 1.18 
3 DX7 MDOE Random 0.60 
4 DX7 MDOE Rnd+Sys 0.61 
5 BALFIT OFAT Random 0.53 
6 BALFIT OFAT Rnd+Sys 1.18 
7 BALFIT MDOE Random 0.62 
8 BALFIT MDOE Rnd+Sys 0.85 

Table 11. NOISE Effects for Normal Force Residual Standard Deviation, μV/V. 

ROWS (Table 10) SOFTWARE (A) DESIGN (B) Noise Effect 
1&2 DX7 OFAT +0.65 
3&4 DX7 MDOE +0.01 
5&6 BALFIT OFAT +0.65 
7&8 BALFIT MDOE +0.23 

 



 
American Institute of Aeronautics and Astronautics 

 

23

Note that there is some variability in the NOISE effects presented in Table 11. For example, for both DX7 and 
BALFIT, the addition of systematic error apparently inflates the Normal Force residual standard deviation more 
when the model is developed from an OFAT experiment design than when it is developed from an MDOE design 
(0.65 vs. 0.01, and 0.65 vs. 0.23, respectively). This reflects the quality assurance tactics embedded within the 
MDOE design to defend against systematic errors. It also illustrates that while the average NOISE effect is 0.39 
μV/V, the magnitude of the effect appears in this example to depend on the level of one or both of the other two 
factors. We say in such circumstances that an interaction exists. 

To quantify the interaction between NOISE and DESIGN, we subtract the average noise effect for the low level 
of DESIGN (OFAT) from the average noise effect for the high level of DESIGN (MDOE), and normalize to 
facilitate a direct comparison with the main effects. We denote this interaction by “BC.” 

The same calculations can be performed for the DESIGN and SOFTWARE main effects and their interactions as 
have been computed for the NOISE factor. For example, rows 1&3, 2&4, 5&7, and 6&8 all provide independent 
estimates of the DESIGN effect and rows 1&5, 2&6, 3&7, and 4&8 do likewise for the SOFTWARE main effect. 

Residual standard deviations for all six balance response components were computed for the eight factor 
combinations illustrated in Tables 10—a total of 48 estimates of residual standard deviation. These data were 
“blocked” by response, a technique that increases the number of degrees of freedom available to assess the three 
main factor effects and their interactions, and provides results that span all six response components. Table 12 
summarizes the results, displaying all main effects and interactions blocked to include all balance output responses. 

 

C. Objective Identification of Significant and Insignificant Effects 
Recall that our objective is to infer whether effects such as those in Table 12 are real or not, by which we mean 

“non-zero” (whether positive or negative). Effects that are of sufficient magnitude to be distinguishable from zero 
with a prescribed level of confidence are said to be “significant.” For this study, “significant” effects are those that 
can be distinguished from zero with at least 99% confidence. That is, we will accept up to a 1% (0.01) probability of 
an incorrect inference (due, say, to experimental error) if we infer that a given effect is real. This inference error 
tolerance level is commonly referred to as the “significance” of the study. (Somewhat paradoxically, the smaller the 
“significance” by this definition, the greater the significance of the conclusions!) 

In formal; terms, we wish to decide whether to reject the null hypothesis for each of the effects (concluding that 
the effect is real), or to reject the alternative hypothesis (concluding that there is no significant effect). Because of 
experimental error, we cannot simply reject the null hypothesis for every effect that is non-zero. Even if there truly 
is no effect, ordinary experimental error will cause all of the effects estimates to be non-zero except by rare 
coincidence. Some of the effects in Table 12 are clearly greater than others. The NOISE and DESIGN main effects, 
along with the interaction between them, seem to dominate the other effects, but it is not yet clear whether we are 
justified in describing these effects as significant. 

One way to make objective inferences as to whether the null hypothesis or its alternative should be rejected is to 
rigorously compute the uncertainty in estimating each effect, and from this determine if the effect is large enough to 
unambiguously distinguish it from zero. If so, we would reject the null hypothesis and if not, we would reject the 
alternative hypothesis. However, there is a graphical method that is less tedious and more convenient. It utilizes the 
normal probability plot introduced in section IV-D and illustrated in Fig. 8. Recall that normally distributed points 
will fall on a straight line in such a plot and points that are not normally distributed will lie off of such a line. We 
exploit this property to distinguish between effects that differ systematically from zero, and those that own their 
departure from zero merely to random variations associated with experimental error. We know by the Central Limit 

Table 12. Residual Standard Deviation Main Effects and 
Interactions across All Response Components, μV/V. 

Effect Value, μV/V 
A: SOFTWARE 0.03 

B: DESIGN -0.41 
C: NOISE 0.50 

AB -0.01 
AC 0.04 
BC -0.42 

ABC 0.01 
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Theorem that ordinary experimental error is normally distributed, so we expect the latter points to fall on a straight 
line on normal probability paper while the former points lie off the line. Figure 12 illustrates this concept for the data 
in Table 7. 

Figure 12 confirms our earlier speculation from examining Table 12 that the B and C main effects are significant 
as well as the BC two-way interaction between them. All three effects are unambiguously off the line. The triangles 
in this plot represent error from replicates, generated when the analysis was extended over all six response variables. 

Effects to the right of the line are positive and those to the left are negative. Recall that an “effect” is defined as a 
change in some response (the calibration residual standard deviation in this case) due to a transition from the “low” 
level of some factor to the “high” level, per Table 9. The fact that the NOISE effect, C, is to the right of the line and 
is therefore positive, coupled with the fact that “Random” error was defined as the “low” level of the noise factor 
while random-plus-systematic error was defined as the “high” level, means that adding systematic error to the noise 
will cause the calibration residual standard deviations to increase. While this is hardly an unexpected result, it does 
confirm our intuitive expectations and serves as a simple illustration of the interpretation of normal probability plots. 

The DESIGN effect, B, is to the left of the line in Fig. 12 and is therefore negative. From the definitions of low 
and high levels for this factor in Table 9, we conclude that a change in the design of the experiment from OFAT to 
MDOE would reduce the calibration residual standard deviations. 

The interaction effect, BC, is also negative. Note that while a main effect represents a change in a response, a 
two-way interaction represents a change in an effect. The BC interaction represents the change in the C main effect 
when the B factor changes from “low” to “high.” In this example, the negative BC interaction means that the noise 
effect, C, gets smaller as the experiment design factor, B, transitions from OFAT to MDOE. That is, adding 
systematic error increases the residual standard deviation for both OFAT and MDOE designs, but less so for an 
MDOE experiment design than for an OFAT experiment design. The interpretation of two-way interactions is 
entirely symmetric, so that we could just as easily say that a negative BC implies that the DESIGN effect gets larger 
as we transition from the low level to the high level of the NOISE factor. We say “larger” because the DESIGN 
effect is already negative—going from OFAT to MDOE reduces the residual standard deviation. For BC to have a 
negative sign, this means that the reduction in residual standard deviation must be greater when there is systematic 
error than when there is only random error.  The next subsection discusses interaction effects in more detail. 

Normal probability plots such as Fig. 12 are often as revealing for the effects they do not show, as for the 
significant effects they identify. Note, for example, that there is no significant A effect (SOFTWARE factor) in 
Fig. 12. This means that, across all six response variables, for both experiment designs, and in both noise 
environments, no significant difference could be detected between the calibration residuals of data sets analyzed 
with BALFIT and with a commercial data analysis package, Design Expert. Also, there are no significant interaction 
effects involving factor A. That is, the NOISE effect, the DESIGN effect, and their two-way interaction, are all 
estimated to be the same whether the calibration residuals are based on models developed by BALFIT or by Design 
Expert. 

D. Elucidation of Significant Interaction Effects 
Figure 13, an interaction graph, is a standard data structure used in the analysis of two-level factorial 

experiments such as this one. It clearly illustrates that the addition of systematic error has a much more serious 
effect on data acquired in an OFAT experiment than on data acquired using MDOE. The error bars on each data 
point in this figure represent 95% Least Significant Differences (LSD). If the LSD bars for two points overlap, we 
are unable to distinguish a difference between them with at least 95% confidence. Clearly there is substantial 
overlap of the MDOE and OFAT LSD intervals for the case of random-only experimental error. This suggests that 
when there is systematic error, we cannot resolve a difference between the residual standard deviation of a data set 
acquired with an OFAT experiment design and a data set acquired with an MDOE experiment design. There are two 
points to make about this. First, since much of the raison d’etre of MDOE experiment design is to defend against 
systematic error, it is not surprising that its greatest benefits are derived under conditions when systematic error is 
present. Secondly, the OFAT design consumed the resources required to obtain 729 data points, while the MDOE 
design required only 64 points—an order of magnitude difference, with attendant increases in direct operating cost 
and cycle time, and with no resolvable increase in quality. This suggests that the OFAT design is substantially more 
wasteful of resources than the MDOE design. 

E. Pareto Charts and the Bonferroni Limit 
A normal probability plot such as Fig. 12 is very convenient for quickly identifying which effects are significant 

and which are not. The distance each significant point is away from the straight line in such a normal probability 
plot reveals some information about the relative magnitude of each effect, but these relative magnitudes are 
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displayed much more clearly in a Pareto chart as in Fig. 14. A Pareto chart is simply a bar chart that rank orders each 
effect by its magnitude, expressed as a multiple of the standard deviation of the error in estimating it (the t-value). 

The Pareto chart also reveals how confident we can be that each effect is non-zero. Those effects that rise above 
the lower horizontal line on the Pareto chart—labeled the t-Value limit—are of sufficient magnitude that we can still 
distinguish the effect from zero with at least 95% confidence, notwithstanding the experimental error in the data and 
the attendant uncertainty it causes. 

There is one potential difficulty in using confidence limits as a criterion for identifying individual significant 
effects. Imagine for a moment that the three largest effects in Fig. 14 are significant, but just at the 95% confidence 
level. That is, suppose that each has a 95% probability of being real (non zero). The probability that all three effects 
are real is then 0.95 × 0.95 × 0.95 = 0.86, well below our 95% criterion. To have a probability of 95% that all three 
effects are real requires an average individual probability of 98.3%. This may seem like a small difference from 
95%, but it amounts to odds of about 58:1 vs. 19:1. The introduction of a joint-probability criterion therefore 
provides a much more stringent condition for interpreting effects as real. 

Effects that are sufficiently large that there is a specified probability that they are all real are said to exceed the 
Bonferroni limit. For the Pareto chart in Fig. 14, the Bonferroni limit corresponds to a 95% confidence level. It is 
clear from this chart that all three of the effects identified on the normal probability plot of Fig. 12 as significant are 
large enough to exceed the Bonferroni limit, and we therefore infer with at least 95% confidence that all three are 
real (non-zero) effects. 

The Bonferroni criterion is clearly more stringent than the t-Value criterion. While both criteria are commonly 
used, in this study we adopt the Bonferroni criterion, declaring only those effects to be real that have a joint 
probability of 95% or greater that they are all non-zero. 

F. The Utility of Variable Transformations 
We must digress briefly to discuss an important technical detail. The normal probability plot and Pareto chart are 

constructed under the assumption that experimental errors follow a Gaussian distribution, with a standard deviation 
that is constant for each data point analyzed. This is generally the case when the data consists of ordinary measured 
values. But in this case, the data consists of computed values—standard deviations in the regression residuals. The 
standard deviation follows an asymmetric probability density function with a long positive tail. The variance in the 
estimate is not constant when we are estimating standard deviations. Rather, it is proportional to the magnitude of 
the estimated standard deviation. 

This common situation requires a “variance stabilization transformation” to transform the variables into 
something with a constant variance. The logarithmic transformation often fits the bill nicely. Assume that we 
analyze the logarithm of the standard deviations rather than the standard deviations themselves, simply for the 
purpose of identifying significant effects using probability plots and Pareto charts. That is, let si be the standard 
deviation of regression residuals corresponding to a math model developed for the ith combination of NOISE, 
DESIGN, and SOFTWARE factors, and let yi = log(si) be its logarithm. The variance in the distribution of s is 
proportional to s: 

 kss =2σ  (19) 

We use ordinary error propagation34 to compute the variance in the distribution of logarithms of si: 
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So from Eqs. (19) and (20) we see that while the variance of the distribution of standard deviations is not 
constant, the variance in the distribution of logarithms of the standard deviation is constant. We would expect much 
more sensitive estimates of the significance of various effects using this transformation, since we no longer have to 
cope with the long tail of the distribution of standard deviations and its tendency to produce large outliers. 

Fortunately, it is not necessary to make judgments about the efficacy of applying a transformation to each 
individual response variable of interest. We simply apply the Box-Cox transformation test discussed earlier and 
illustrated in Fig. 11. Recall that the Box-Cox transformation test objectively determines if a power-law 
transformation will produce better results. That is, this test indicates whether a better result can be achieved with yλ 
rather than y, with the optimum λ indicated as the minimum of the Box-Cox transformation plot shown in Fig. 11. 
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The Box-Cox power transformation plot in Fig. 15 applies to the standard deviation effects data discussed in this 
section, and suggests that a better result can be achieved with a power transformation in which the exponent is zero. 
It turns out that in the limit as lambda approaches zero, yλ approaches log(y). That is, for small lambda, yλ plots 
against log(y) very nearly as a straight line.12 This confirms conclusions based on Eq. (20), that a logarithmic 
transformation is expected to have better variance properties and will therefore be a more sensitive indicator of 
significant effects. 

For this study, the Box-Cox power transformation test was applied routinely to the data for each model adequacy 
metric. Transformations were applied when they could improve the sensitivity of the effects tests. Figure 16 
illustrates how the logarithmic transformation improved the sensitivity of the normal probability plot for identifying 
significant residual standard deviation effects. Note that the straight line is much less slanted, meaning that an effect 
of a given magnitude is farther from the straight line and therefore more easily resolvable. 

In this instance, the transformation did not yield any new insights; B (DESIGN), C (NOISE), and BC are still 
identified as the only significant effects for residual standard deviation. But there are circumstances in which an 
effect would stand unambiguously off the straight line in the normal probability plot of transformed effects, when it 
would not before the transformation. 

The effect of the logarithmic transformation is also seen in Fig. 17, comparing Pareto charts before and after 
transformation. Note from the scale of the y-axis that the t-values are over twice as great after transformation, 
indicating a substantial improvement in signal to noise ratio for assessing the significance of the effects. Note also 
that the four insignificant effects—A, AB, AC, and ABC—while all still comfortably below either significance 
criterion (t-value limit or Bonferroni limit), are nonetheless closer to those lines than in the untransformed Pareto 
chart. This is because the transformation has improved the signal-to-noise ratio to the point that these effects can 
almost be resolved in the noise, but not quite. So we retain our original inference, which is that we can only say with 
95% confidence that the B, C, and BC effects are real. We reject the null hypothesis for those three effects. We 
reject the alternative hypothesis for the A, AB, AC, and ABC effects. 

G. Partitioning of the Explained Sum of Squares 
The total sum of squares for any ensemble of data can be computed by subtracting each data point from a 

specified reference, squaring the difference, and adding all the squared values. The reference most commonly used 
is the average of the data. The sum of squares is an indication of the amount of variability that exists among the 
different data points. In a good experiment, most of the variability will have been caused by changes imposed by 
altering the levels of the factors under study. We refer to this as “explained variance.” After accounting for all the 
explained variance, however, there always remains a residual variance that is unexplained. It is because of this 
unexplained variance that there must necessarily be some uncertainty associated with any experimental result. 

While the details are beyond the scope of the present paper, it is possible to partition the total sum of squares into 
explained and unexplained components. It is possible to further partition the explained sum of squares into 
components attributable to individual main effects and interactions among the factors. For the current example in 
which we are analyzing how the three factors of this study impact the standard deviation of calibration residuals, the 
component sums of squares are represented in the pie chart of Fig. 18. This figure reveals that in the case of residual 
standard deviation, the three significant effects involving the NOISE and DESIGN factors and their interaction, 
account for 99.6% of the explained sum of squares. Only 0.4% can be attributed to the A (SOFTWARE) factor and 
its interactions with noise and design. For the case of residual standard deviation, it appears that the choice of 
experiment design has about the same effect in this study as the noise environment. 

Figure 19 summarizes the findings for residual standard deviation as a response surface modeling adequacy 
metric. The normal probability plot identifies significant and insignificant factor effects, the Pareto chart illustrates 
their relative magnitude and indicates which effects are jointly significant (above Bonferroni limit), the interaction 
graph provides insights into the relationship between noise and experiment design, and the pie chart shows what 
fraction of the overall explainable variability in the data can be attributed to the various factors and factor 
interactions. Composite figures such as Fig. 19 are displayed in the next major section for a variety of math model 
quality metrics, to show how they are influenced by the choice of experiment design, noise environment, and 
analysis software. 

H. Multicollinearity 
It is not uncommon for a regressor in a math model to exhibit some degree of correlation with one or more other 

regressors. When they exhibit near-linear dependencies a condition known as multicollinearity is said to exist. The 
consequences of multicollinearity and some methods for dealing with it are discussed in Appendix B. A particular 
source of multicollinearity due to a physical constraint among balance calibration loads comes into play when a 
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Single Vector System is used to apply the loads. Single Vector Systems are further described in Appendix B as is the 
constraint they introduce, which is responsible for substantial multicollinearity in models that feature all three 
components of the dot product between the total force load vector and the total moment load vector; namely, the 
(NF)(YM), (AF)(RM), and (SF)(PM) terms. 

Since SVS loading was developed at Langley Research Center to accommodate MDOE calibration designs, each 
point in the MDOE loading design simulated in this study features the dot product constraint described in 
Appendix B. This constraint does not come into play unless all three of the two-way interaction terms are significant 
and thus retained in the model; if any of them is excluded from the model, the multicollinearity is relieved. Analysts 
at Langley Research Center who routinely use DX7 to analyze data generated with SVS load schedules exploit this 
to produce models that do not suffer from multicollinearity. However, SVS loading is not commonly practiced at 
Ames Research Center and the BALFIT software system developed there does not currently include a test for 
multicollinearity. 

Unfortunately, of the 24 models developed in this study by BALFIT, four of them did feature significant terms 
for all three components of the total force-moment dot product and therefore displayed multicollinearity. This 
introduces a lack of balance in the full-factorial design of this study which would complicate the analysis if not 
taken into account. In order not to skew the model comparisons with multicollinearity effects that are present in 
some models and not in others, the analyses reported in the next section are limited to responses in which the dot 
product constraint did not come into play. This is the case for most of the data, and there was still ample precision 
available after deleting the multicollinear cases to resolve subtle effects in the three main factors of the study. 

Extensions to BALFIT are currently being tested which will enable it to detect multicollinearity and 
automatically correct for the presence of collinear terms in the recommended model. This will enable BALFIT to 
analyze calibration data acquired with SVS loading systems, as well as data from the conventional calibration 
experiments for which it was originally designed. 

VI. Comparison of Analysis Results 
The analyses described in the previous section and summarized in Fig. 19 for the standard deviation of 

calibration residuals was applied to numerous other model quality metrics as well. Each metric is described in this 
section. We make seven inferences for each response metric by rejecting either the null hypothesis or the alternative 
hypothesis associated with the three main effects of this study, the three two-way interactions, and the one three-way 
interaction. These hypothesis pairs are summarized here for convenience: 
 

H01: A=0  No difference in results obtained by DX7 and BALFIT 
H11: A≠0  DX7 and BALFIT produce different results 
 
H02: B=0  No difference in results obtained by with MDOE and OFAT experiment designs 
H12: B≠0  MDOE and OFAT experiment designs produce different results 
 
H03: C=0  No difference in results when systematic error is added to the random error 
H13: C≠0  Results are different when systematic error is present than when there is only random error 
 
H04: AB=0 Differences in results obtained by MDOE and OFAT are independent of analysis software 
H14: AB≠0 Differences between MDOE and OFAT results depend on analysis software 
 
H05: AC=0 Differences attributable to noise environment are independent of analysis software 
H15: AC≠0 Différences attributable to noise environnent depend on analysis software 
 
H06: BC=0  Differences in results obtained by MDOE and OFAT are independent of noise environment 
H16: BC≠0  Differences between MDOE and OFAT results depend on noise environment 
 
H07: ABC=0 The level of any two-way interaction is independent of the level of the third factor  
H17: ABC≠0 The level of any two-way interaction depends on the level of the third factor 

 
The three-way interaction hypotheses ask, for example, if the dependence of the DESIGN effect on NOISE 

environment is computed to be different when one SOFWARE system is used for the analysis than the other. 
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For each model quality metric examined in this study, one hypothesis is rejected for each hypothesis pair.  Those 
results are summarized in this section. For each metric we provide a description, discuss its importance, present 
observations from the data, and draw conclusions from those observations. All conclusions are reported with at least 
95% confidence in the stringent Bonferroni-Limit sense. 

A. Standard Deviation of Calibration Model Residuals 
 

1. Description and Computation 
Square root of residual variance, or standard deviation of unexplained variance. Computed as the root-mean-

square of differences between predicted and simulated measured responses for all points used to fit the regression 
model. 
 
2. Observations 

Observations for this model quality metric were reported in the last section as a detailed example illustrating the 
comparison methodology of this study. These observations are drawn from Fig. 19: 
 

A1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit 
A2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
A3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
A4. Adding the systematic component of unexplained variance increased the standard deviation of calibration 

model residuals by a statistically significant amount when the data were acquired with the OFAT 
experiment design, but there was no significant increase when the data were acquired with the MDOE 
experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the standard deviation of model 
residuals for the models obtained by DX7 and BALFIT. This conclusion is supported by observation A3. 

o We reject H02: B=0, concluding that OFAT experiment designs lead to greater standard deviations of 
model residuals than MDOE experiment designs. This conclusion is supported by observations A1 and 
A2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater standard deviations of model residuals than for the 
case of the random component alone. This conclusion is supported by observations A1 and A2. 

o We reject H14: AB≠0, concluding that differences in standard deviations of model residuals obtained with 
MDOE and OFAT experiment designs are independent of whether BALFIT or DX7 was used to generate 
the models. This conclusion is supported by observation A3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the standard deviation of calibration model 
residuals that are independent of whether BALFIT or DX7 was used to generate the models This 
conclusion is supported by observation A3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on the standard deviation of calibration model residuals depending on whether the 
data were acquired with the OFAT experiment design or the MDOE experiment design. By this metric, 
the quality of models developed with the MDOE design seems to be more robust with respect to the 
addition of systematic error than the quality of models developed with the OFAT design. This conclusion 
is supported by observations A1 and A4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for the standard deviation of calibration model residuals. This means that the 
significant interaction observed between DESIGN and NOISE is computed to be the same whether 
BALFIT or DX7 is used for the analysis. This conclusion is supported by observation A3. 

 
4. Discussion 

Models developed by BALFIT and DX7 result in calibration model residual standard deviations that are 
essentially the same. However, for either software package, calibration quality as assessed by this metric is impacted 
by the addition of systematic error for OFAT experiment designs. No resolvable difference was detected between 
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the calibration model residual standard deviations of MDOE models generated in the presence of random noise only, 
and the random-plus-systematic noise illustrated in Fig. 1. This is attributed to MDOE quality assurance tactics 
incorporated into the test matrix design; specifically, randomization and blocking intended explicitly to defend 
against systematic error. 

B. Maximum calibration model residual 
 
1. Description and Computation 

Largest absolute difference between predicted and simulated measured response for all points used to fit the 
math model. Model predictions at each point used to fit the model were subtracted from the simulated measurement 
at that point and the largest absolute difference was recorded for each model examined. 
 
2. Observations 

Observations for this model quality metric are drawn from Figs. 20 and 21. 
 

B1. The A (SOFTWARE), B (DESIGN), C (NOISE), and BC effects are all significant with respect to the 
Bonferroni limit, however the SOFTWARE effect is barely resolvable and its Least Significant 
Difference bars slightly overlap in Fig. 21. 

B2. The A (SOFTWARE) and C (NOISE) effect is positive while the B (DESIGN) and BC effects are 
negative. 

B3. None of the interaction effects involving A (SOFTWARE) is significant (AB, AC, or ABC). 
B4. Adding the systematic component of unexplained variance increased the maximum calibration model 

residuals by a statistically significant amount when the data were acquired with the OFAT experiment 
design, but there was no significant increase when the data were acquired with the MDOE experiment 
design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in maximum model residuals for 
the models obtained by DX7 and BALFIT. This conclusion is supported by observation B1. 

o We reject H02: B=0, concluding that OFAT experiment designs lead to greater maximum model residuals 
than MDOE experiment designs. This conclusion is supported by observations B1 and B2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater maximum model residuals than for the case of the 
random component alone. This conclusion is supported by observations B1 and B2. 

o We reject H14: AB≠0, concluding that differences in maximum model residuals obtained with MDOE 
and OFAT experiment designs are independent of whether BALFIT or DX7 was used to generate the 
models. This conclusion is supported by observation B3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in maximum calibration model residuals that are 
independent of whether BALFIT or DX7 was used to generate the models. This conclusion is supported 
by observation B3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on maximum calibration model residuals depending on whether the data were 
acquired with the OFAT experiment design or the MDOE experiment design. By this metric, the quality 
of models developed with the MDOE design seems to be more robust with respect to the addition of 
systematic error than the quality of models developed with the OFAT design. This conclusion is 
supported by observations B1 and B4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for maximum calibration model residuals. This means that the significant interaction 
observed between DESIGN and NOISE is computed to be the same whether BALFIT or DX7 is used for 
the analysis. This conclusion is supported by observation B3. 

 
4. Discussion 

Models developed by BALFIT were observed to generate slightly larger maximum calibration model residuals 
than models developed by DX7, although this difference was just barely resolvable in the data. See Fig. 20. The 
LSD bars for BALFIT and DX7 touch and slightly overlap in Fig. 21 so we are unable to unambiguously reject the 
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H01 null hypothesis. We conclude, therefore, that there is no practical difference between the maximum calibration 
model residuals for models developed under BALFIT and DX7. 

As with the standard deviation of calibration residuals, for either software package the addition of systematic 
error impacted the OFAT experiment designs but not the MDOE designs. Again, this is attributed to MDOE quality 
assurance tactics incorporated into the test matrix design for the express purpose of defending against systematic 
error and the loss of measurement independence that that occurs when it is not taken into account. 

C. Standard Deviation of Confirmation Point Residuals 
 
1. Description and Computation 

Computed as the root-mean-square of differences between predicted and simulated measured responses for 25 
confirmation points used to test the regression model.  These points were not used to fit the model. 
 
2. Observations 

Observations for this model quality metric were drawn from Fig. 22. 
 

C1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit 
C2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
C3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
C4. Adding the systematic component of unexplained variance increased the standard deviation of 

confirmation point residuals by a statistically significant amount when the data were acquired with the 
OFAT experiment design, but there was no significant increase when the data were acquired with the 
MDOE experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the standard deviation of 
confirmation point residuals for the models obtained by DX7 and BALFIT. This conclusion is supported 
by observation C3. 

o We reject H02: B=0, concluding that OFAT experiment designs lead to greater standard deviations of 
confirmation point residuals than MDOE experiment designs. This conclusion is supported by 
observations C1 and C2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater standard deviations of confirmation point residuals 
than for the case of the random component alone. This conclusion is supported by observations C1 and 
C2. 

o We reject H14: AB≠0, concluding that differences in standard deviations of confirmation point residuals 
obtained with MDOE and OFAT experiment designs are independent of whether BALFIT or DX7 was 
used to generate the models. This conclusion is supported by observation C3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the standard deviation of confirmation point 
residuals that are independent of whether BALFIT or DX7 was used to generate the models. This 
conclusion is supported by observation C3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on the standard deviation of confirmation point residuals depending on whether the 
data were acquired with the OFAT experiment design or the MDOE experiment design. By this metric, 
the quality of models developed with the MDOE design seems to be more robust with respect to the 
addition of systematic error than the quality of models developed with the OFAT design. This conclusion 
is supported by observations C1 and C4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for the standard deviation of confirmation point residuals. This means that the 
significant interaction observed between DESIGN and NOISE is computed to be the same whether 
BALFIT or DX7 is used for the analysis. This conclusion is supported by observation C3. 
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4. Discussion 
Models developed by BALFIT and DX7 result in confirmation point residual standard deviations that are 

essentially the same. As with other metric examined in this study, for either software package the calibration quality 
as assessed by this metric is impacted by the addition of systematic error for OFAT experiment designs. Again, no 
resolvable difference was detected between the confirmation point residual standard deviations of MDOE models 
generated in the presence of random noise only, and the random-plus-systematic noise illustrated in Fig. 1. 

D. Maximum Confirmation Point Residual 
 
1. Description and Computation 

Largest absolute difference between predicted and simulated measured response for 25 confirmation points used 
to test the regression model. These points were not used to fit the model. 
 
2. Observations 

Observations for this model quality metric are drawn from Fig. 23. 
 

D1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
D2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
D3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
D4. Adding the systematic component of unexplained variance increased the maximum confirmation point 

residuals by a statistically significant amount when the data were acquired with the OFAT experiment 
design, but there was no significant increase when the data were acquired with the MDOE experiment 
design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in maximum confirmation point 
residuals for the models obtained by DX7 and BALFIT. This conclusion is supported by observation D3. 

o We reject H02: B=0, concluding that OFAT experiment designs lead to greater maximum confirmation 
point residuals than MDOE experiment designs. This conclusion is supported by observations D1 and 
D2.  

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater maximum confirmation point residuals than for the 
case of the random component alone. This conclusion is supported by observations D1 and D2. 

o We reject H14: AB≠0, concluding that differences in maximum confirmation point residuals obtained 
with MDOE and OFAT experiment designs are independent of whether BALFIT or DX7 was used to 
generate the models. This conclusion is supported by observation D3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in maximum confirmation point residuals that are 
independent of whether BALFIT or DX7 was used to generate the models. This conclusion is supported 
by observation D3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on maximum confirmation point residuals depending on whether the data were 
acquired with the OFAT experiment design or the MDOE experiment design. By this metric, the quality 
of models developed with the MDOE design seems to be more robust with respect to the addition of 
systematic error than the quality of models developed with the OFAT design. This conclusion is 
supported by observations D1 and D4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for maximum calibration model residuals. This means that the significant interaction 
observed between DESIGN and NOISE for maximum confirmation point residuals is computed to be the 
same whether BALFIT or DX7 is used for the analysis. This conclusion is supported by observation D3. 

 
4. Discussion 

Models developed by BALFIT and DX7 result in maximum confirmation point residuals that are essentially the 
same. As with other metrics examined in this study, for either software package the calibration quality as assessed 
by this metric is impacted by the addition of systematic error for OFAT experiment designs. Again, no resolvable 



 
American Institute of Aeronautics and Astronautics 

 

32

difference was detected between the confirmation point residual standard deviations of MDOE models generated in 
the presence of random noise only, and the random-plus-systematic noise illustrated in Fig. 1. 

E. Number of Successful Confirmations 
 
1. Description and Computation 

Twenty-five confirmation points were acquired at randomly-selected load combinations within the load range of 
the balance to test each model. These points were not used in any of the regression analyses to create the models. A 
point was considered successfully confirmed if it fell within the 95% prediction interval associated with the model 
being tested. 

A Critical Binomial Analysis was performed to determine if the number of successful confirmations was large 
enough to certify the model as an adequate predictor of responses at other load combinations besides those used to 
fit the data. We cannot require 25 successes out of 25 attempts as the criterion for certifying the model because there 
is uncertainty in the model prediction and also uncertainty in the confirmation points; individual confirmation point 
successes are evaluated in terms of 95% prediction intervals, not 100% prediction intervals. The Critical Binomial 
Number is a tabulated statistic that describes the minimum number of successes one is entitled to expect a given 
percent of the time when there is a specified number of trials for which the probability of success for each trial is 
known. One can use the CRITBIMOM function in Excel to compute this number. 

For the case of 25 trials in which the probability of success in each trial is assumed to be 95%, the critical 
binomial number is 21, with a significance of 0.01. That is, if the true response actually does lie within the 95% 
prediction interval limits 95% of the time, then in a set of 25 independent trials we would expect 21 or more 
successes to occur 99% of the time that such a 25-point test is conducted. 

 
2. Observations 

Observations for this model quality metric are drawn from Fig. 24: 
 

E1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
E2. The C (NOISE) effect is negative while the B (DESIGN) and BC effects are positive. 
E3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
E4. Adding the systematic component of unexplained variance decreased the number of successful 

confirmations when the data were acquired with the OFAT experiment design, but there was no 
significant decrease in the number of successful confirmations when the data were acquired with the 
MDOE experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the number of successful 
confirmations for models obtained by DX7 and BALFIT. This conclusion is supported by observation 
E3. 

o We reject H02: B=0, concluding that MDOE experiment designs lead to more successful confirmations 
than OFAT experiment designs. This conclusion is supported by observations E1 and E2.  

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to fewer successful confirmations than for the case of the 
random component alone. This conclusion is supported by observations E1 and E2. 

o We reject H14: AB≠0, concluding that differences in the number of successful confirmations obtainable 
with MDOE and OFAT experiment designs are independent of whether BALFIT or DX7 was used to 
generate the models. This conclusion is supported by observation E3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the number of successful confirmations that are 
independent of whether BALFIT or DX7 was used to generate the models. This conclusion is supported 
by observation E3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on the number of successful confirmations that are achieved, depending on whether 
the data were acquired with the OFAT experiment design or the MDOE experiment design. By this 
metric, the quality of models developed with the MDOE design seems to be more robust with respect to 
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the addition of systematic error than the quality of models developed with the OFAT design. This 
conclusion is supported by observations E1 and E4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for maximum calibration model residuals. This means that the significant interaction 
observed between DESIGN and NOISE for the number of successful confirmations is computed to be the 
same whether BALFIT or DX7 is used for the analysis. This conclusion is supported by observation E3. 

 
4. Discussion 

Models developed by BALFIT and DX7 are equally likely to be confirmed by using them to predict responses 
for loads that are not part of the calibration load schedule. As with other metrics examined in this study, for either 
software package the calibration quality as assessed by this metric is impacted by the addition of systematic error for 
OFAT experiment designs. For random noise only, OFAT and MDOE models were equally likely to be confirmed. 
No resolvable difference was detected between the number of successful confirmations of MDOE models generated 
in the presence of random noise only versus random-plus-systematic noise, but the introduction of systematic error 
dramatically reduced the probability of successfully confirming models developed with an OFAT design. 

F. Lack-of-Fit F-Statistic 
 
1. Description and Computation 

The residual or unexplained variance is partitioned into a component attributable to ordinary chance variations in 
the data and the remainder, attributed to model imperfections. The ratio of the latter to the former is the lack-of-fit F-
statistic. We do not expect this number to fall below one except for chance variations in the data, since the model is 
built from the data and cannot have less variance. But smaller LOF F values generally indicate a better fit to the 
data. 

 
2. Observations 

Observations for this model quality metric are drawn from Fig. 25. 
 

F1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
F2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
F3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
F4. Adding the systematic component of unexplained variance increased the lack-of-fit F-statistic when the 

data were acquired with the OFAT experiment design, but not when the data were acquired with the 
MDOE experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the lack of fit F-statistic for 
models obtained by DX7 and BALFIT. This conclusion is supported by observation F3. 

o We reject H02: B=0, concluding that MDOE experiment designs lead to lower lack of fit F-statistics than 
OFAT experiment designs. This conclusion is supported by observations F1 and F2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater lack of fit than when there is only random noise. 
This conclusion is supported by observations F1 and F2. 

o We reject H14: AB≠0, concluding that differences in lack of fit obtainable with MDOE and OFAT 
experiment designs are independent of whether BALFIT or DX7 was used to generate the models. This 
conclusion is supported by observation F3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in estimates of the lack-of-fit F statistic that are 
independent of whether BALFIT or DX7 was used to generate the models. This conclusion is supported 
by observation F3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on model lack of fit, depending on whether the data were acquired with the OFAT 
experiment design or the MDOE experiment design. By this metric, the quality of models developed with 
the MDOE design seems to be more robust with respect to the addition of systematic error than the 
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quality of models developed with the OFAT design. This conclusion is supported by observations F1 and 
F4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for maximum calibration model residuals. This means that the significant interaction 
observed between DESIGN and NOISE for the lack-of-fit F statistic is the same whether the models are 
developed with BALFIT or DX7. This conclusion is supported by observation F3. 

 
4. Discussion 

Models developed by BALFIT and DX7 appear to be characterized by the same degree of lack of fit. As with 
other metrics examined in this study, for either software package the lack-of-fit F statistic is adversely impacted by 
the addition of systematic error for OFAT experiment designs. For random noise only, OFAT and MDOE models 
had indistinguishable lack-of-fit F statistics. No resolvable difference was detected in this statistic for MDOE 
models generated in the presence of random noise only versus random-plus-systematic noise, but the introduction of 
systematic error dramatically increased the estimated lack of fit for models developed with an OFAT design. 

G. Prediction Uncertainty 
 
1. Description and Computation 

The average 95% confidence interval half-width for prediction uncertainty estimates the precision with which 
the model can predict responses. Based on Eq. (13), and assuming a normal distribution with sufficient degrees of 
freedom in variance estimates that the 95% confidence interval half width is 2σ, it is computed as follows: 

 σ
n
p2  (21) 

where σ is the standard deviation, p is the number of terms in the math model including the intercept, and n is the 
number of points used to fit the model. The true response is assumed to lie within an interval centered on the 
predicted value and twice as wide as Eq. (21). 
 
2. Observations 

Observations for this model quality metric are drawn from Fig. 26. 
 

G1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
G2. The B (DESIGN) and C (NOISE) effect are positive while the BC effect is negative. 
G3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
G4. Adding the systematic component of unexplained variance increased prediction uncertainty when the 

data were acquired with the OFAT experiment design, but not when the data were acquired with the 
MDOE experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the prediction uncertainty for 
models obtained by DX7 and BALFIT. This conclusion is supported by observation G3. 

o We reject H02: B=0, concluding that the OFAT experiment design lead to greater precision in prediction 
than the MDOE experiment design. This conclusion is supported by observations G1 and G2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to greater prediction uncertainty than when there is only 
random noise. This conclusion is supported by observations G1 and G2. 

o We reject H14: AB≠0, concluding that differences in prediction uncertainty obtainable with MDOE and 
OFAT experiment designs are independent of whether BALFIT or DX7 was used to generate the models. 
This conclusion is supported by observation G3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in prediction uncertainty that are independent of 
whether BALFIT or DX7 was used to generate the models. This conclusion is supported by observation 
G3. 
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o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on prediction uncertainty, depending on whether the data were acquired with the 
OFAT experiment design or the MDOE experiment design. By this metric, the quality of models 
developed with the MDOE design seems to be more robust with respect to the addition of systematic 
error than the quality of models developed with the OFAT design. This conclusion is supported by 
observations G1 and G4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for maximum calibration model residuals. This means that the significant interaction 
observed between DESIGN and NOISE for prediction uncertainty is the same whether the models are 
developed with BALFIT or DX7. This conclusion is supported by observation G3. 

 
4. Discussion 

Models developed by BALFIT and DX7 appear to provide equally precise response predictions. As with other 
metrics examined in this study, for either software package prediction uncertainty is adversely impacted by the 
addition of systematic error for OFAT experiment designs. The prediction precision of models developed from 
MDOE designs are only negligibly impacted by the addition of systematic error, while the prediction precision of 
OFAT models is degraded significantly. However, in either noise environment the prediction precision of the OFAT 
models was greater than that of the MDOE models. Given the uniformly better quality that MDOE designs appear to 
deliver by every other metric considered in this study, this result may seem surprising. However, it is easily 
explained by consulting Eq. (21), which shows that the prediction uncertainty decreases as the square root of the 
number of data points used to fit the model. The OFAT design featured more than 10 times as much data as the 
MDOE design (with a parallel cost difference), and so would expect to deliver higher precision, especially in a 
random-error-only environment. While the MDOE design delivered less precision than the OFAT design, the 
precision was still adequate to satisfy quality standards, with both designs delivering uncertainty levels well below 
0.25% of full scale output. This is an indication that the relatively large data volume of the OFAT design is not 
necessary to achieve quality objectives. MDOE designs achieve significant cost savings by “scaling” the 
experiment, to ensure that ample data are acquired to achieve precision goals, but no more. 

J. Number of Type I Inference Errors 
 
1. Description and Computation 

The terms in the model describing the “true” balance responses are all known, since this is a simulation.  We can 
therefore compare each math model to the true model to test for certain types of inference errors in constructing the 
regression models in the presence of a simulated noise environment. One of these is the Type I inference errors: We 
commit a Type I inference error when we erroneously reject a null hypothesis. In the regression process, there is an 
implicit null hypothesis for each term, stating that the term is not significant and does not belong in the model. We 
reject the null hypothesis when we include a given term in the model. If we erroneously reject the null hypothesis, it 
means that we have included a term in the model that does not belong there. Since the terms in the “true” model are 
known in this simulation study, Type I inference errors were easy to count by simply observing how many terms 
there were in each fitted response model that were not in the original, “true” model. 
 
2. Observations 

Observations for this model quality metric are drawn from Fig. 27. 
 

J1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
J2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
J3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
J4. Adding the systematic component of unexplained variance increased the lack-of-fit F-statistic when the 

data were acquired with the OFAT experiment design, but not when the data were acquired with the 
MDOE experiment design. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the number of Type I coefficient 
inference errors for models obtained by DX7 and BALFIT. This conclusion is supported by observation 
J3. 
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o We reject H02: B=0, concluding that MDOE experiment designs lead to a smaller number of Type I 
coefficient inference errors than OFAT experiment designs. This conclusion is supported by observations 
J1 and J2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to a greater number of Type I coefficient inference errors  than 
when there is only random noise. This conclusion is supported by observations J1 and J2. 

o We reject H14: AB≠0, concluding that differences in the number of Type I coefficient inference errors 
resulting from MDOE and OFAT experiment designs is independent of whether BALFIT or DX7 was 
used to generate the models. This conclusion is supported by observation J3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the number of Type I coefficient inference 
errors that are independent of whether BALFIT or DX7 was used to generate the models. This conclusion 
is supported by observation J3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on the number of Type I coefficient inference errors, depending on whether the data 
were acquired with the OFAT experiment design or the MDOE experiment design. By this metric, the 
quality of models developed with the MDOE design seems to be more robust with respect to the addition 
of systematic error than the quality of models developed with the OFAT design. This conclusion is 
supported by observations J1 and J4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for number of Type I coefficient inference errors. This means that the significant 
interaction observed between DESIGN and NOISE for the number of Type I coefficient inference errors 
is the same whether the models are developed with BALFIT or DX7. This conclusion is supported by 
observation J3. 

 
4. Discussion 

Models developed by BALFIT and DX7 appear to be equally adept at excluding extraneous terms from their 
recommended models. As with other metrics examined in this study, for either software package the number of Type 
I coefficient inference errors is adversely impacted by the addition of systematic error for OFAT experiment 
designs. For random noise only, OFAT and MDOE models had a negligible number of Type I coefficient inference 
errors—an average too close to zero to distinguish it from zero. MDOE models also generated too few Type I 
inference errors in the presence of random-plus-systematic noise to distinguish the average from zero. However, the 
introduction of systematic error did increase the number of Type I inference errors for models developed with an 
OFAT design. OFAT models developed in the presence of systematic error produced an average of between one and 
two Type I inference errors. That is, these models typically had one or two terms in them that were not in the “true” 
model. For obvious reasons, this can introduce bias by adding fictitious components to the response prediction. 
Systematic variations in the data introduce another regressor that is not addressed in models based on OFAT 
experiment designs; namely, time. The least squares algorithm tries to compensate for this unknown factor by 
introducing loading cross-terms to account for it. The MDOE designs are randomized, however, which converts 
systematic variations to an additional component of random error that does not impact the shape of the response 
surface model. This is why the OFAT designs generate more Type I inference errors than the MDOE designs. 

K. Number of Type II Inference Errors 
 
1. Description and Computation 

We commit a Type II inference error when we erroneously reject an alternative hypothesis. For each null 
hypothesis in the regression process, there is a corresponding alternative hypothesis for each term, stating that the 
term is significant and therefore belongs in the model. We reject the alternative hypothesis when we exclude a 
candidate term from the model. If we erroneously reject the alternative hypothesis, it means that we have left a term 
out of the model that really belongs there. As with the Type I inference errors (the error made by including terms 
that do not belong), it was easy to count Type II inference errors because this is a simulation for which the true 
model is known. Any term in the “true” model that was not included in the recommended model was counted as a 
Type II inference error. 
 
2. Observations 

Observations for this model quality metric are drawn from Fig. 28. 
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K1. The A (SOFTWARE), B (DESIGN), and C (NOISE) effects are all significant with respect to the t-Value 

Limit limit. The B and C effects are significant by the Bonferroni Limit. 
K2. All three significant effects are positive. 
K3. No interaction effect (AB, AC, BC, or ABC) is significant. 

 
3. Conclusions 

o We reject H11: A≠0, concluding that there is no significant difference in the number of Type II coefficient 
inference errors for models obtained by DX7 and BALFIT. This conclusion is supported by observation 
K1. While the SOFTWARE effect is large enough to be regarded as significant at the t-Value limit (95% 
probability that this individual effect is significant), there is less than a 95% probability that this effect is 
also significant if the B and C terms are (the Bonferroni Limit). See Fig. 28b. 

o We reject H02: B=0, concluding that MDOE experiment design lead to a larger number of Type II 
coefficient inference errors than the OFAT experiment design. This conclusion is supported by 
observations K1 and K2. 

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to a greater number of Type II coefficient inference errors  than 
when there is only random noise. This conclusion is supported by observations K1 and K2. 

o We reject H14: AB≠0, concluding that differences in the number of Type II coefficient inference errors 
resulting from MDOE and OFAT experiment designs is independent of whether BALFIT or DX7 was 
used to generate the models. This conclusion is supported by observation K3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the number of Type II coefficient inference 
errors that are independent of whether BALFIT or DX7 was used to generate the models. This conclusion 
is supported by observation K3. 

o We reject H16: BC≠0, concluding that the addition of the systematic component of unexplained variance 
had the same effect on the number of Type II coefficient inference errors whether the data were acquired 
with the OFAT experiment design or the MDOE experiment design. This conclusion is supported by 
observations K3. 

o We reject H17: ABC≠0, concluding that there is no three-way interaction for number of Type II 
coefficient inference errors. This conclusion is supported by observation K3. 

 
4. Discussion 

For this specific study, BALFIT appeared to be very slightly more likely to produce models with Type II 
inference errors than DX7. That is, there is a slight tendency for BALFIT to overlook subtle effects in the true 
model. However, none of the terms from the true model that were excluded from the BALFIT recommended models 
was large enough to cause a practical difference in response predictions. Even absent these small terms, the accuracy 
of the BALFIT models was well within typical precision requirements for force balance calibration. The difference 
between the BALFIT and DX7 results was too small to be resolved at the Bonferroni Limit, and for this reason the 
null hypothesis of no significant software difference was not rejected. 

Likewise, models produced from the MDOE design had more Type II inference errors than those generated from 
the OFAT design. This is attributed to the 10:1 data volume difference between the OFAT and MDOE designs that 
enabled the OFAT models to resolve terms in the true model that were real, but nonetheless too small to have any 
practical impact on the response predictions. That is, the OFAT models were largely fitting noise.  The MDOE 
designs produced smaller models, which by Eq. (21) minimized the prediction uncertainty and produced a higher-
quality result. 

L. Number of Erroneously Estimated Coefficients 
 
1. Description and Computation 

There are three ways to make errors in constructing a regression model: We can include a term that does not 
belong in the model, we can exclude a term that does belong in the model, or we can improperly estimate the 
coefficient for a term that we have correctly included in the model. To estimate the latter error, we computed 95% 
confidence intervals for each individual regression coefficient and counted the number of times that the true model’s 
corresponding coefficient was outside of this interval. 
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2. Observations 
Observations for this model quality metric are drawn from Fig. 29: 

 
L1. The B (DESIGN), C (NOISE), and BC effects are all significant with respect to the Bonferroni limit. 
L2. The C (NOISE) effect is positive while the B (DESIGN) and BC effects are negative. 
L3. Neither the A (SOFTWARE) effect nor its interaction with any other effects (AB, AC, or ABC) is 

significant. 
L4. Adding the systematic component of unexplained variance increased the number of erroneously 

estimated coefficients significantly when the data were acquired with the OFAT experiment design, and 
much less so when the data were acquired using MDOE. 
 

3. Conclusions 
o We reject H11: A≠0, concluding that there is no significant difference in the number of erroneously 

estimated coefficients for models obtained by DX7 and BALFIT. This conclusion is supported by 
observation L3. 

o We reject H02: B=0, concluding that MDOE experiment designs lead to a smaller number of erroneously 
estimated coefficients than OFAT experiment designs. This conclusion is supported by observations L1 
and L2.  

o We reject H03: C=0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance leads to a greater number of erroneously estimated coefficients  than 
when there is only random noise. This conclusion is supported by observations L1 and L2. 

o We reject H14: AB≠0, concluding that differences in the number of erroneously estimated coefficients 
resulting from MDOE and OFAT experiment designs are independent of whether BALFIT or DX7 was 
used to generate the models. This conclusion is supported by observation L3. 

o We reject H15: AC≠0, concluding that the addition of a systematic component to an existing random 
component of unexplained variance causes differences in the number of erroneously estimated 
coefficients that are independent of whether BALFIT or DX7 was used to generate the models This 
conclusion is supported by observation L3. 

o We reject H06: BC=0, concluding that the addition of the systematic component of unexplained variance 
had a different effect on the number of erroneously estimated coefficients, depending on whether the data 
were acquired with the OFAT experiment design or the MDOE experiment design. By this metric, the 
quality of models developed with the MDOE design seems to be more robust with respect to the addition 
of systematic error than the quality of models developed with the OFAT design. This conclusion is 
supported by observations L1 and L4. 

o We reject H17: ABC≠0, concluding that the level of any two-way interaction is independent of the level 
of the third factor for number of erroneously estimated coefficients.  This means that the significant 
interaction observed between DESIGN and NOISE for the number of erroneously estimated coefficients 
is the same whether the models are developed with BALFIT or DX7. This conclusion is supported by 
observation L3. 

 
4. Discussion 

Models developed by BALFIT and DX7 appear to perform equally well at estimating regression coefficient 
values. As with other metrics examined in this study, for either software package the number of erroneously 
estimated coefficients is adversely impacted by the addition of systematic error for OFAT experiment designs. Such 
errors increased from an average of one to three for random noise to an average of five to seven when both random 
and systematic errors were in play. The MDOE models, by comparison, did not generally produce coefficient errors 
under pure random error, and generated on average only one relatively small coefficient error in the presence of 
systematic error. This increase was too small to resolve with 95% confidence. Furthermore, the MDOE error tended 
to be in the intercept term and not in one of the terms regressors, meaning that the dependence of response on 
loading levels was preserved. This also meant that the response error was constant—independent of the levels of the 
loading variables and therefore easier to take into account. 
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M. R-Squared Statistics 
 
1. Description and Computation 

R-squared statistics are commonly used to assess the quality of regression models. Three variations were 
examined for each of the models in this study: 

 
o Ordinary R-Squared: Ratio of the explained sum of squares to the corrected total sum of squares. The 

corrected total sum of squares is computed by adding all the squared differences between each simulated 
measured response and the average of all the simulated measurements. The explained sum of squares is 
computed by adding all the squared differences between each predicted response and the average of all the 
simulated measurements. The R-Squared statistic approaches 1 as the model explains more and more of the 
variability in the data. 

o Adjusted R-Squared: Ratio of the total explained variance to the total variance. Computed the same way 
as the ordinary sum of squares, except that the numerator and denominator are each adjusted as follows: 
The explained sum of squares is first divided by the number of degrees of freedom associated with it, which 
is just the number of regressors in the model (p – 1). The result is the explained mean square, or explained 
variance. The corrected total sum of squares is likewise first divided by the corrected total degrees of 
freedom, which is just the number of points in the data set minus 1. The result is the total mean square, or 
variance. The adjusted R-Squared is often recommended as an improvement over the ordinary R-Squared 
statistic because the latter can be made arbitrarily close to one by simply adding regressors to the model. 
The Adjusted R-Squared tends to plateau as the number of regressors increases. As with the ordinary R-
Squared statistic, the adjusted R-squared statistic approaches 1 as more of the total variance in the data is 
explained by the model. 

o Predicted R-Squared: Computed by subtracting the ratio of the PRESS statistic to the total sum of squares 
from 1. The PRESS statistic (Predicted Residual Sum of Squares) is calculated by removing each data point 
from the regression in turn, computing the model coefficients based on the remaining n-1 data points, using 
this model to predict the response at that point, and forming a residual by subtracting that predicted 
response from the simulated measured response. The square of all such residuals is summed to form the 
PRESS statistic. The ordinary and adjusted R-Squared statistics purport to quantify the fraction of the total 
variability in the existing data set that can be explained by the model. The predicted R-squared statistic is a 
measure of how much variability in new data that the model is expected to explain. 

 
2. Observations 

Observations for this model quality metric are drawn from Fig. 30. 
None of the three main factor effects—A (SOFTWARE), B (DESIGN), or C (NOISE)—was significant for any 

of the above variations of R-Squared, nor were any interactions among those factors significant. 
 

3. Conclusions 
We conclude the R-Squared statistics are poorly suited to provide insight into the effects of software, experiment 

design, and noise level on the quality of regression models. 
 

4. Discussion 
This result was somewhat unanticipated, given the ubiquitous use of R-squared statistics to validate model 

quality. R-Squared values were typically “1” to seven or more significant figures in this study, leaving very little to 
choose between the largest and smallest values. None of the conclusions in the next section rest on R-Squared 
measures. 

N. Summary of Comparisons and Results of Analysis 
The principal findings of this section are summarized in Table 13. Clearly the model-building process simulated 

in this study is dominated by experiment design and noise environment. No significant software effect is observed, 
nor does the choice of analysis software appear to impact the noise and design effects or their interaction. 
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VII. Summary and Conclusions 
Simulated strain-gage balance calibration data have been used to assess differences in two balance calibration 

model building methods for different noise environments and experiment designs. One method uses a customized 
software system developed at Ames Research Center and the other employs standard response surface modeling 
methods implemented in numerous commercially available data analysis software products. For each of six 
simulated balance outputs, calibration models were developed for a total of eight combinations of experiment 
design, noise environment, and software system. A total of 48 math models were therefore developed and compared 
on the basis of a number of model quality assessment metrics. Overall, the performance of models developed with 
the two methods shows very good agreement. By a variety of model quality assessment metrics, no significant 
difference could be detected between models built with the two methods. 

Experiment design and noise environment had a much greater impact on the quality of the final calibration 
models than the method used to develop the models. Calibration models developed using the Modern Design of 
Experiments were superior to models developed using conventional One Factor At a Time loading schedules, 
especially when there was a systematic component of the unexplained variance as happens when long-term 
persisting effects are in play during an experiment (thermal effects, instrument drift, etc). There was a pronounced 
interaction between experiment design and noise environment, with formally designed experiments having a greater 
impact on model quality under more imperfect noise conditions that unfortunately characterize many realistic 
measurement environments. 

While the two software systems exhibited similar performance, the Ames software system is customized for 
balance calibration data analysis and therefore offers certain efficiencies with respect to commercial, off-the-shelf 
software. For example, certain calculations specific to balance calibration are automated in the Ames system.  These 
include tare-load iterations, and also model inversions to express the load variables as a function of the response 
variables (as is ultimately necessary in order to use a balance to acquire force and moment data.) The Ames 
Software is also configured to account for absolute-value terms in the fitted model, which adds complexity to the 
analysis if performed by general-purpose software. Perhaps the greatest strength of the Ames software is its 
automated report-writing capability, which enables large amounts of useful information to be automatically cast in a 

Table 13. Impact of Experiment Design, Noise Environment, and Modeling Software on Selected Model 
Quality Metrics: Summary of Significant Effects. Filled circles mark effects that are Significant at the 
Bonferroni Limit. Open Circles are Significant at the t-Level only. Empty cells Identify Insignificant Effects.

 



 
American Institute of Aeronautics and Astronautics 

 

41

portable data format that enables widespread circulation. The commercial software systems are generally much more 
limited in this regard. 

The general-purpose software features a larger number of model quality assessment metrics, including tests for 
multicollinearity. Multicollinearity is a state in which model regressors can become highly correlated due to a 
physical constraint involving the component loads that are applied in a balance calibration experiment using a Single 
Vector System.  The general software also permits the automated imposition of hierarchy in the math models, as is 
necessary to render them invariant under certain translational transformations. Finally, the general software utilizes 
coded variables, which have certain computational and interpretive advantages. The authors have agreed to a 
collaboration intended to adopt the best features of both systems in an updated version of the Ames software, to be 
reported at the 2007 summer AIAA Joint Propulsion Conference. 

Appendix A. Coding of Independent Variables and Hierarchy 

A. Coding of Independent Variables 
Coding is a procedure that invokes a linear transformation to map physical units into a dimensionless scale, 

typically from -1 to +1. Let ξ represent some independent variable such as the normal component of force in a 
balance load schedule, and let L and H represent the lowest and highest values of this variable in physical units, say, 
pounds. The following transformation converts a physical variable ranging from L = -6520 lbs to H = +6520 lbs, say 
(from Table 4), into a coded variable ranging from -1 to +1. This transformation both scales and centers the variable: 

 
( )

( )LH
LHx

−
+−

=
2

1
2

1ξ
 (A1) 

 
 
An inverse transformation can be used to convert back to physical units, as follows: 

 ( ) ( )[ ]112
1 −−+= xLxHξ  (A2) 

The inverse transformation may be problematical unless hierarchy is maintained, as will be discussed presently. 
There are many reasons for using coded variables in regression calculations: 
Greater clarity: Coded variables can bring a certain level of clarity to the problem that is more difficult to 

achieve when physical units are used because it is easier to see the relative contributions of various terms in a model 
when the regression has been performed on coded variables rather than physical variables. For example, the 
principal load coefficient for the normal force coded model in Table 3 is 2096.7, which can be seem immediately to 
be three orders of magnitude larger than the next-most influential term in the model, the interaction between side 
force and rolling moment, which has a coded-variable coefficient of 7.08. Likewise, it is clear that most of the 
interaction terms in the normal force model have coefficients that are less than 1.0 in coded units, indicating clearly 
how small the interaction terms are. This, coupled with the fact that the quadratic principal load term is only 2.16, 
indicates at a glance the normal force output is a near linear function of its inputs. When the variables are in physical 
units, the numerical values of the coefficients depend on which units are selected, and the relative importance of 
some terms becomes less obvious. 

Note also that the load range for the NF model of Table 3 is well approximated by the coefficient of the principal 
load term, as this coefficient is defined as the change in normal force response due to a change in coded variable 
level from 0 (no load) to 1 (full load). A more precise estimate is easy to obtain by also accounting for the 
coefficient of the quadratic term. 

By centering the variable, coding ensures that zero is always within the range of every independent variable. 
This attaches a physical interpretation to the intercept; namely, that it is the average of the response measurements. 
The regression intercept does not always a physical meaning if the independent variable range does not include zero, 
which can be the case if the variables are not coded. Centering also decouples slope and intercept effects. If the 
independent variable range contains zero, changes in the slopes of a response function (its shape) are independent of 
changes in the mean level of responses (the intercept). This ensures that the functional form of the response model is 
decoupled from issues associated with precisely determining the intercept. Bias errors therefore affect only the 
intercept, and not the details of how responses depend on the independent variables. 
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Orthogonality: Consider a regression model with K regressors that is refitted to the data as a function of K-1 of 
the regressors. If the coefficients of all retained regressors remain unchanged, we say that the discarded regressor 
was orthogonal to the remaining regressors. Orthogonality is a desirable property because it ensures that the 
magnitude of a given coefficient is independent of additional terms that may or may not be in a model. This makes 
the interpretation of regressor effects independent of other terms in the model, which is helpful in understanding the 
underlying physics. 

Consider the following simple illustration of a two-factor, two-level test matrix, where the variables are 
expressed in physical units (ξi) ranging from 1 to 10, and in coded units (xi) ranging in the usual way from -1 to +1. 
Equations (A1) and (A2) can be used in this example to convert from physical to coded units and back by setting 
L = 1 and H = 10. 

 
Recall that two vectors are orthogonal if the sum of their term-by-term cross-products (proportional to the cosine 

of the angle between the two vectors) is zero. Since a test matrix is comprised of a set of vectors representing 
independent variable levels, the same test of orthogonality can be applied to show that x1 and x2, are orthogonal but 
ξ1 and ξ2 are not. This means that if a model is fitted in terms of physical units, the value of the ξ1 coefficient will 
depend upon whether ξ2 is in the model or not (and conversely), but if the model is fitted in terms of coded units, the 
value of the x1 term will be the same whether x2 is retained or not, and conversely. This is especially relevant in the 
current context of model reduction by the elimination of terms. When the regressors are not orthogonal, each 
estimated regression coefficient is in fact a function of the true coefficients of more than one regressor. The least-
squares algorithm commonly used in regression computations is designed to determine the set of coefficients that 
minimizes the residual sum of squares, and will often produce relatively small test matrix residuals even when the 
regressors are not entirely orthogonal. However, if the regressors would have had different values with a different 
set of terms in the model, the coefficients that minimize residual error for the design matrix points may not predict 
responses at other points with the least possible error. A class of functions known as orthogonal polynomials has 
been used in aerospace response surface modeling applications to predict responses using math models for which 
every term is orthogonal to all other terms.24 But absent the use of such a specialized class of functions, 
orthogonality is difficult to eliminate entirely in general regression applications even when the variables are coded. 
Coding can provides some incremental quality improvement, however. 

Computing Resolution: Real numbers of the kind used in regression computations are a mathematical 
abstraction involving infinite resolution and infinite range. Computers must approximate real number calculations 
by using floating point numbers that involve a finite set of values with finite precision. The ANSI/IEEE Standard 
754-1985 for Binary Floating-Point Arithmetic25 establishes conventions for double-precision floating point 
numbers that specify they be stored in 64-bit words, with 52 bits reserved for a mantissa, 11 bits reserved for an 
exponent, and one bit to represent the sign. The finite bit allocation for the exponent limits the range of floating 
point numbers to something on the order of ±10308, and the finite number of mantissa bits limits the resolution to 
2-52 = 2.22E-16 at best. (Actually, the mantissa and exponent interact in such a way that the spacing between 
realizable floating point numbers gets larger for larger numbers). The range limitation does not generally represent a 
practical constraint in regression analysis but the resolution limit can affect calculations. Consider this example: 

It can be shown that the vector of regression coefficients from Eq. (1b), β, can be computed as follows: 

 ( ) yXXX ′′= −1β  (A3) 

where X is the design matrix and y is the vector of observed responses. 

Table 14. Comparison of coded and physical units. 

Physical Coded Point 
ξ1 ξ2 ξ1ξ2 x1 x2 x1x2 

1 1 1 1 -1 -1 -1 
2 1 10 10 -1 +1 +1 
3 10 1 10 +1 -1 -1 
4 10 10 100 +1 +1 +1 

Sum: 121 ≠ 0 Sum: 0 
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To illustrate the point about floating point resolution, consider a simple example in which the design matrix is as 

follows: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
01

01
δ

δ
X  (A4) 

 
This design matrix corresponds to a first-order math model in two variables, to be fitted with three data points. 

We then have 
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If |δ| < 10-8, a floating point representation of this matrix is singular even with double-precision, because the 
resolution limit of 10-16 dictated by the IEEE standard renders the 2nd and 3rd columns identical. The inverse would 
then be nonexistent and the regression coefficients could not be computed by Eq. (A3). Depending on the details of 
the test, it is not inconceivable that this limit could be encountered when the variables are expressed in physical 
units. For example, simply measuring force balance outputs in volts instead of microvolts could produce very nearly 
singular results when the calibration equations are inverted to express loads as a function of electrical output levels. 
A high correlation between regressors can result in a model that does not predict responses for arbitrary independent 
variable combinations as well as it does for the test matrix points for which the model coefficients were optimized. 
Coding the independent variables circumvents these floating point resolution issues and minimizes the potential for 
this source of multicollinearity. 

B. Hierarchy 
Peixoto26 describes a general coding transformation consisting of a combination of scaling and translation, and 

demonstrates that while scaling transformations do not change the estimation space of a polynomial function of two 
or more variables, the estimation space of such a polynomial is invariant under translation if and only if the 
polynomial is well-formulated. Following Kempthorpe,27 he uses the term “well formulated” to refer to a 
polynomial in which no hierarchically inferior terms have been eliminated. 

Such a model contains all the components of terms that are second-order and higher. For example, if an AB 
interaction term is included in the model, both the A and the B first-order terms must also be included to maintain 
hierarchy. Likewise, if terms of the form A2B are in the model, then so must A, B, and AB for the model to be well-
formulated. 

Note that Eqs. (A1) and (A2) represent coding transformations that include both scaling and translation, so it is 
important to maintain hierarchy when the variables are coded in this way. This means that hierarchically inferior 
terms must be retained in order to maintain hierarchy and preserve the invariance of the coding transformation, even 
if they are statistically insignificant. This is especially relevant when some multicollinearity is present, so that the 
coefficients are not all independent. In such a case, the coefficient of a term of second order or higher could be a 
function of the coefficients of its hierarchically inferior components, so that removing them from the model skews 
the coefficient of some of the retained terms. 

Also, the residual sum of squares of a nonhierarchical model includes components due to the missing 
hierarchically inferior terms. This makes the residual variance less representative of the true experimental error. For 
this reason, some commercial packages (e.g., Minitab®18) will not perform an analysis of variance on 
nonhierarchical models. Design Expert17 will permit such an analysis, but only under duress. Whenever a model is 
generated with missing hierarchically inferior terms, Design Expert generates a prompt to permit hierarchy to be 
automatically reinstated at the user’s option. If the user declines, Design Expert provides a warning and a second 
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prompt. If the user still declines the option to make the model hierarchical, Design Expert generates the model, but 
with this disclaimer: 

 
“Using this non-hierarchical polynomial regression model (it excludes hierarchically inferior terms) is not recommended. 
Measures of goodness of fit and the predicted response values may be not be the same as those from the coded equation. 
All analysis within Design-Expert software is based on the coded equation.” 

 
Draper and Smith28 also argue against dropping hierarchically inferior terms under a translation of origin. They 

propose the following rule: 
 

“If a model is to be consistent under a shift in origin, only the highest-order terms can be deleted at first and any chosen 
deletions must keep the model well-formulated. Moreover, if any of the highest-order terms are retained, all terms of 
lower order affected by them in a shift of origin must also be retained, whether or not their estimates are significant in the 
regression fit.” 

 
Draper and Smith also provides guidelines for removing terms when a rotational transformation is applied, as is 

commonly the case when certain canonical forms are invoked in the analysis of response surface models in order to 
remove cross-terms from the model. This is useful when it is of interest to determine variable combinations that 
correspond to a response maxima or minima, for example. 

While canonical analysis is not commonly invoked in the analysis of calibration data, it is important to note that 
even seemingly innocuous variable transformations can have unintended consequences that must be thoroughly 
understood. For example, Peixoto’s original work on this subject was motivated by a study of average daily 
temperatures in 56 U.S. cities as a function of longitude and latitude in which he simply translated the origin of the 
longitudinal variables to center them in the United States. This ostensibly benign change was the equivalent of 
redefining the origin of longitude measurements to pass somewhere near St. Louis rather than through Greenwich, a 
change that would hardly be expected to influence temperature predictions. Nonetheless, the functional form of non-
hierarchical third-order polynomial functions of longitude did change under this origin translation, while the 
functional form of hierarchical models remained the same. 

Peixoto’s temperature modeling example illustrates that nonhierarchical models are at a disadvantage under any 
translation of the origin, not just transformations used to code the variables. For example, it is common in balance 
calibration data to adjust the origin in various ways to account for tare loads. Models based on such data may be 
suspect if hierarchy is not maintained, even if the calculations are carried out in original physical units without 
coding the variables. As parting advice on this topic, Draper and Smith suggest that models generated by automated 
selection procedures should be reviewed and refined to ensure that they are well-formulated by the above criteria. 

Appendix B: Multicollinearity 
Regression models developed during the analysis of calibration data are intended to serve as general prediction 

tools, providing accurate estimates of balance outputs for any combination of loads within the range of the 
calibration. The individual regression coefficients also provide useful insights into the linearity of the balance, 
indicating which combinations of applied loads have the greatest effect on specific component responses. As has 
been described earlier in this paper, the regression coefficients also dictate which terms are retained in the final 
recommended model, with those having larger coefficients more likely to be retained than those with smaller 
coefficients. All of these purposes can be well served if there are no linear relationships among the regressors, in 
which case they are said to be orthogonal. Unfortunately, true orthogonality is in most practical applications of 
regression a mathematical abstraction that is only approximated at best by the regressors. Even two regressors that 
are totally unrelated tend not to be perfectly orthogonal, simply because of the presence of experimental error in the 
data used to estimate them. 

Notwithstanding the infrequency of perfect orthogonality in general multivariate regression analysis, the 
essential goals of the regression can usually be adequately met unless there are near-linear dependencies among the 
regressors, in which case the model is said to possess an undesirable property known as multicollinearity. 
Unfortunately, this property is not as rare as one might hope in general aerospace research applications of regression 
analysis. One example where it can come into play is in the analysis of balance calibration data acquired with a 
single vector system (SVS) of loading. 

SVS loading applies a single force vector to an offset from the balance moment center. The force is applied by 
hanging calibrated weights as in a conventional calibration loading system, with the orientation of the balance 
chosen to achieve the desired combination of component loads. This technique was introduced at Langley Research 
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Center to facilitate the implementation of MDOE experiment designs requiring multi-component load combinations 
that are impractical to set with conventional dead-weight systems.6,7 

There is an inherent constraint in single-vector loading that imposed by the fact that the total moment vector so 
generated is always at right angles to the total force vector.35 This results in a physical constraint involving three 
specific two-way interaction terms in a balance calibration model that renders them linearly dependent, as follows. 

Consider a balance loaded with three components of force and three moment components. Let F be the total 
force vector acting on the balance and let M be the total moment vector. Using x, y, and z subscripts to denote the 
vector components, we can express the dot product of these two vectors as follows: 

 ( )θcosFMzzyyxx =++=• MFMFMFMF  (B1) 

where F and M are magnitudes of the F and M vectors, respectively, and θ is the angle between them. For a SVS 
loading system, θ = π/2 and the right side of Eq. (B1) is therefore zero. 

Figure 31 displays the coordinate system for balance forces and moments recommended by the AIAA.1 The 
arrows point in the direction of positive forces and moments. By this convention we can rewrite Eq. (B1) as follows: 

 – (YM)(NF) + (PM)(SF) –(RM)(AF) = 0 (B2) 

The negative signs for the first and third terms result from a convention in North American wind tunnel testing in 
which the normal force is positive up and the axial force is positive downstream, which is opposite of the positive Z 
and X directions for the balance axis system. In any case, the three two-way interactions of Eq. (B2) are constrained, 
and this constraint results in near perfect correlation among the three terms that generates substantial 
multicollinearity when all three are retained in a model. This is because the constraint consumes one degree of 
freedom and since there are only two degrees of freedom remaining for these three terms, unique regression 
coefficients can only be estimated for at most two of them. 

All MDOE calibration load schedules are designed at Langley Research Center to be implemented using SVS 
hardware. In practice this means that the optimum MDOE design, which distributes points in the six-dimensional 
loading space of the balance in order to achieve certain quality objectives (low uncertainty in estimates of the 
coefficients, high orthogonality, high prediction accuracy, etc.) must be slightly detuned to accommodate the 
constraint in Eq. (B2). (MDOE designs implemented by other than SVS dead-weight loading, such as by automated 
balance calibration machines, do not have to incorporate the F•M constraint.) The MDOE design simulated in this 
study generated loading combinations that were each subject to the constraint in Eq. (B2). Any one or two of these 
two-way interactions could be accommodated in a response model without injecting multicollinearity problems, but 
not all three. 

If proactive steps are not taken to eliminate multicollinearity, it can have an adverse impact on the estimation of 
regression coefficients, as can be demonstrated by considering a simple example in which there are only two 
regressors, x1 and x2, scaled to unit length. The least-squares normal equations follow directly from Eq. (1b): 

 ( ) yXbXX ′=′  (B3) 
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where r12 is the coefficient of correlation between x1 and x2, rjy is the coefficient of correlation between the y and xj, 
and the bi are estimated regression coefficients. 
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The covariance matrix, Eq. (2), can be written for this example as follows: 
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Recall that the diagonal elements of the covariance matrix represent the variance in least-squares estimates of the 
regression coefficients. If we extend this example to multiple regressors instead of two, the diagonal elements can be 
generalized as follows: 
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where p is the number of regressors in the model and the numerator contains the coefficient of multiple 
determination from regressing xj on the remaining p-1 regressors. 

The term Variance Inflation Factor,36 or VIF, is used to describe the multiplier of σ2 in Eq. (B6): 
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=  (B7) 

If a given regressor is highly correlated with any subset of other regressors in the model, the numerator of 
Eq. (B7) will become very small and the VIF will be very large. Table 15a illustrates how large the VIF values can 
become when multicollinearity is present. 

All three terms of the dot product between the total force load vector and the total moment load vector were 
statistically significant for the models in Table 15a. Because of constraint Eq. (B2), these three regressors would be 
perfectly collinear except for the presence of some small experimental error, with theoretically infinite VIF values. 
Actual estimated VIF values, while not infinite, are sufficiently large to unambiguously indicate the presence of 
massive multicollinearity in these models. While perfect orthogonality implies a VIF of 1, it is a common 
convention to regard only VIF values greater than 10 as indicative of serious multicollinearity, although a more 
conservative criterion suggests that VIF values in excess of 5 are troublesome. Clearly all the terms in the four 
models presented in Table 15 are very nearly orthogonal except the three components of the F•M dot product. 

Because high VIF values are associated with large variance in the estimates of the regression coefficients, 
different data samples featuring slightly different levels of the independent variables can produce widely varying 
estimates of the regression coefficients when multicollinearity is present, clearly an undesirable result. Also, since 
precision intervals for estimates of the regression coefficients are directly proportional to the square root of the 
corresponding diagonal element of the covariance matrix, the square root of VIF represents the factor by which 
uncertainty estimates for  the regression coefficients are “inflated” due to multicollinearity (hence the name). 

When there is near perfect colinearity as when a physical constraint is in play, a literal interpretation of the VIF 
value such as those highlighted in Table 14a is meaningless. In such cases the correct interpretation is to regard the 
VIF values as “infinite,” meaning that the variance in estimates of the associated coefficients is so inflated that the 
coefficients can be virtually anything. That is, with perfectly collinear regressors there are simply too few degrees of 
freedom available to meaningfully quantify the uncertainty in estimates of the regression coefficients. 
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When one or more of the three terms in the F•M dot product are rejected during the regular process for 

determining the recommended model, the dot product constraint does not come into play and there are sufficient 
degrees of freedom available to estimate the significant terms in the model. However, if all three terms are initially 
retained in the model, it is possible to correct the multicollinearity problem by eliminating one of them. Subject 
matter expertise concerning the balance construction and other details may suggest one of the interaction terms to 
reject. If no such expertise is available, all combinations of one and two terms can be eliminated from the model in 
succession, with one or more model quality assessment metrics computed for each iteration. The configuration that 
generates the optimum set of quality metrics might then retained in the recommended model. 

Table 15b presents Variance Inflation Factors for the same models as in Table 15a, except that the interaction 
between normal force and yawing moment is excluded. It illustrates the dramatic reduction in VIF levels that can be 
archived by simply dropping one of the collinear terms. Note that there is always a risk that the dropped term might 
have offered considerable explanatory potential, so that the model may now feature greater lack of fit, a 
circumstance that the model-builder should examine closely. Whatever other imperfections the Table 15b models 
may or may not have, they all are now highly orthogonal. 

 

Table 15a. Variance Inflation Factors (VIFs) for Four Models that Retain All Three Components of F•M. 

Pitching Moment Yawing Moment Regressor 
Data Set 3 Data Set 4 Data Set 3 Data Set 4 

NF 1.00 1.00 1.02 1.01 
PM 1.01 1.01 1.02 1.02 
YM 1.13 1.13 1.31 1.30 
SF 1.01 1.01 1.01 1.01 
(NF)(PM) 1.02 1.02   
(NF)(RM)     2.67 2.65 
(NF)(YM) 13,941,260 13,874,586 35,599,843 35,049,871 
(AF)(RM) 4,340,756 4,319,998 11,085,246 10,913,998 
(SF)(PM) 7,978,338 7,940,169 20,372,703 20,057,928 
(RM)(YM) 1.02 1.02   
(RM)(SF) 1.04 1.04   
(PM)(RM)   1.01 1.01 
(NF)(NF) 1.01  1.02  

 

Table 15b. Variance Inflation Factors (VIFs) After Dropping the (NF)(YM) Component of F•M. 

Pitching Moment Yawing Moment Regressor 
Data Set 3 Data Set 4 Data Set 3 Data Set 4 

NF 1.00 1.00 1.00 1.00 
PM 1.01 1.01 1.01 1.01 
YM 1.01 1.01 1.01 1.01 
SF 1.00 1.00 1.00 1.00 
(NF)(PM) 1.01 1.01   
(NF)(RM)   1.01 1.01 
(NF)(YM) Deleted Deleted Deleted Deleted 
(AF)(RM) 1.04 1.04 1.04 1.04 
(SF)(PM) 1.04 1.04 1.03 1.03 
(RM)(YM) 1.01 1.01   
(RM)(SF) 1.02 1.02   
(PM)(RM)   1.01 1.01 
(NF)(NF) 1.01  1.00  
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Multicollinearity limits the “transferability” of balance calibration regression results. The general problem of 
transferability is described succinctly in this quote from the AIAA Recommended Practice on Calibration and Use 
of Internal Strain-Gage Balances with Application to Wind Tunnel Testing1: 

 
“Typically, when a calibration matrix is applied to the same data in which it was derived, it produces a significantly 
lower standard deviation than its application to a set of data that contains different combinations of the independent 
variables. This lack of transferability indicates that the coefficients are biased toward the specific combinations of 
independent variables contained in the design that was used to generate the coefficients. Therefore, the estimates of 
standard deviation are not representative of the ability of the mathematical model to predict unknown loads throughout 
the entire six dimensional inference space.” 

 
The reason for the transferability problem is not hard to understand. The least-squares algorithm used to fit 

regression models distributes the coefficients in such a way as to optimize the fit for the specific points used to 
generate the model. In that sense the regression coefficients are “tuned” for a specific data set. In most practical 
circumstances, the fit will be at least as good for those points as for any other set, notwithstanding the fact that 
perfectly adequate response predictions can be made for other independent variable combinations with a well-
formulated model. 

Models suffer from the transferability problem more when their regression coefficients are estimated with a 
variance that is inflated due to multicollinearity, as Fig. 32 illustrates. This figure compares near-orthogonal pitching 
moment and yawing moment models from Data Set 3 of this study to models generated from the same data in which 
all three F•M components were significant. This induced a level of multicollinearity that is reflected in the VIF 
values of Table 15a. 

The standard deviation of residuals and the largest residual are compared for two sets of data: the calibration data 
points used to fit the model, and an independent set of 25 confirmation points. The confirmation points were not 
used in the regression analysis that generated the model, but were held in reserve simply to test the model. 

The transferability problem is revealed by the fact that for each pair of bars in Fig. 32, the right bar representing 
the confirmation point data is consistently higher than the left bar representing the model data. This difference is 
much greater when multicollinearity is present than when it is not. For the models displaying multicollinearity, the 
residual standard deviations and maximum residuals are almost an order of magnitude greater for confirmation-point 
data than the calibration data used to fit the models. 

Note that the fitted model residuals are virtually the same whether multicollinearity is present or not; it is the 
confirmation-point residuals that show the effects of correlated regressors. This again reflects the fact that the least-
squares algorithm minimizes residuals, whether regressors are highly correlated or not. This suggests that model 
residuals may provide an overly optimistic indication of the health of a response model. Whenever possible (and 
often it is not possible when data are provided by third parties for analysis), the authors recommend the acquisition 
of confirmation points in a calibration data set. 
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Figure 1. a) Random error, normalized by standard deviation; b) Random plus systematic error, normalized by 
standard deviation. 
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Figure 2. Key elements of the new Ames approach to strain-gage balance calibration analysis (BALFIT 
result). 
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Figure 3. Determination of the permitted and recommended math model for balance calibration 
analysis (BALFIT result). 
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Figure 4a. Permitted math model used for analysis of Data Set 1 (BALFIT result). 
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 Figure 4b. Load residuals for permitted math model after analysis of Data Set 1 (BALFIT result).
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Figure 4c. Results of application of candidate math model search to Data Set 1 (BALFIT result). 
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Figure 4d. Recommended math model used for analysis of Data Set 1 (BALFIT result). 
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 Figure 4e. Load residuals for recommended math model after analysis of Data Set 1 (BALFIT result).
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Figure 5. Design Expert® NF Data Set 1. a) Sequential Model Sum of Squares report; b) Lack of Fit Tests 
report; c) Model Summary Statistics report.
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Figure 6. Design Expert® NF Models for Data Set 1. a) 
“Permitted Model”; b) “Recommended Model.” 
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Figure 7a. Design Expert® NF ANOVA for Data Set 1. 
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Figure 7b. Design Expert® NF Regression Coefficients for Data Set 1. 
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Figure 8. Design Expert® NF Normal Probability Plot of Residuals for Data Set 1. a) 17-Term Recommended 
Model; b) Full 28-Term Quadratic Model; c) 6-Term Linear Model; d) 22-Term Factor Interaction Model. 
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Figure 10. Design Expert® NF Plot of Residuals vs. Run Number (Time) for Data Set 1. a) Random error only,
b) Random-plus-Systematic error. 

 
 
Figure 9. Design Expert® NF Plot of Residuals vs. Predicted Responses for Data Set 1. a) Recommended Model,
b) Factor Interaction Model. 
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Figure 12. Normal Probability Plot: Standard Deviation of Calibration Residuals. 

Figure 11. Design Expert® Representative Box-Cox Transformation Plot. 
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Figure 13. Interaction Graph: Standard Deviation of Calibration Residuals.

Figure 14. Pareto Chart: Standard Deviation of Calibration Residuals.
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Figure 16. Normal Probability Plot: Standard Deviation of Calibration Residuals. a) Untransformed, 
b) logarithmic transformation. 

Figure 15. Box-Cox Transformation Plot: Standard Deviation of Calibration Residuals. 



 
American Institute of Aeronautics and Astronautics 

 

67

 
 

 

 
 
Figure 17. Pareto Chart: Standard Deviation of Calibration Residuals. a) Untransformed, b) logarithmic 
transformation. 

 
 
Figure 18. Partition of Explained Sum of Squares: Standard Deviation of Calibration Residuals.
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Figure 19. Factor Effects for Standard Deviation of Calibration Residuals. a) Normal Probability Plot, 
b) Pareto Chart, c) Interaction Graph, d) Partition of Explained Sum of Squares. 
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Figure 20. a) Normal Probability Plot: Maximum Model Residual; b) Pareto Chart: Maximum Calibration 
Residuals; c) Interaction Graph: Maximum Calibration Residuals; d) Partition of Explained Sum of Squares: 
Maximum Calibration Residuals. 
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Figure 21. Software Main Effect: Maximum Calibration 
Residuals. Least Significant Difference Bars Just Overlap. 
Cannot resolve software effect with high confidence. 
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Figure 22. a) Normal Probability Plot: Standard Deviation of Confirmation Point Residuals; b) Pareto Chart: 
Standard Deviation of Confirmation Point Residuals; c) Interaction Graph: Standard Deviation of 
Confirmation Point Residuals; d) Partition of Explained Sum of Squares: Standard Deviation of 
Confirmation Point Residuals. 
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Figure 23. a) Normal Probability Plot: Maximum Confirmation Point Residuals; b) Pareto Chart: Maximum 
Confirmation Point Residuals; c) Interaction Graph: Maximum Confirmation Point Residuals; d) Partition 
of Explained Sum of Squares: Maximum Confirmation Point Residuals. 
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Figure 24. a) Normal Probability Plot: Successful Confirmations; b) Pareto Chart: Successful Confirmations;
c) Interaction Graph: Successful Confirmations; d) Partition of Explained Sum of Squares: Successful 
Confirmations. 
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Figure 25. a) Normal Probability Plot: Lack of Fit F-Statistic Effects; b) Pareto Chart: Lack of Fit F-Statistic 
Effects; c) Interaction Graph: Lack of Fit F-Statistic Effects; d) Partition of Explained Sum of Squares: Lack 
of Fit F-Statistic Effects. 
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Figure 26. a) Normal Probability Plot: Average 95% Confidence Interval Half Width for Model Predictions;
b) Pareto Chart: Average 95% Confidence Interval Half Width for Model Predictions; c) Interaction Graph: 
Average 95% Confidence Interval Half Width for Model Predictions; d) Partition of Explained Sum of 
Squares: Average 95% Confidence Interval Half Width for Model Predictions. 
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Figure 27. a) Normal Probability Plot: Number of Type I Inference Errors (Including Terms That Do Not 
Belong in Model); b) Pareto Chart: Number of Type I Inference Errors (Including Terms That Do Not 
Belong in Model); c) Interaction Graph: Number of Type I Inference Errors (Including Terms That Do Not 
Belong in Model); d) Partition of Explained Sum of Squares: Number of Type I Inference Errors (Including 
Terms That Do Not Belong in Model). 
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Figure 28. a) Normal Probability Plot: Number of Type II Inference Errors (Excluding Terms That Are in 
the “True” Model); b) Pareto Chart: Number of Type II Inference Errors (Excluding Terms That Are in the 
“True” Model); c) Main Design Effect: Number of Type II Inference Errors (Excluding Terms That Are in 
the “True” Model).MDOE Neglects Statistically Significant Terms if they are Too Small to be of Practical 
Interest; d) Partition of Explained Sum of Squares: Number of Type II Inference Errors (Excluding Terms 
That Are in the “True” Model). 
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Figure 29. a) Normal Probability Plot: Number of Erroneously Estimated Coefficients; b) Pareto Chart: 
Number of Erroneously Estimated Coefficients; c) Main Design Effect: Number of Erroneously Estimated 
Coefficients; d) Partition of Explained Sum of Squares: Number of Erroneously Estimated Coefficients. 
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Figure 30. a) Normal Probability Plot: Ordinary R-Squared Effects. No Effects Are Significant; b) Normal 
Probability Plot: Adjusted R-Squared Effects. No Effects Are Significant; c) Normal Probability Plot: 
Predicted R-Squared Effects. No Effects Are Significant. 
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Figure 31. Coordinate System for Balance Forces and Moments Relative to Origin at the Balance Moment 
Center, BMC. 
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Figure 32. Effect of Multicollinearity on Model Residuals and Confirmation-Point Residuals. a) Residual 
Standard Deviation, Pitching Moment; b) Residual Standard Deviation, Yawing Moment; c) Largest Residual, 
Pitching Moment; d) Largest Residual, Yawing Moment. Multicollinearity affects confirmation-point 
predictions more than model-point predictions. 


