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A spontaneous Raman scattering optical fiber sensor is developed for a specific need of 

NASA/SSC for long-term detection and monitoring of the quality of liquid oxygen (LOX) in the 

delivery line during ground testing of rocket engines. The sensor performance was tested in the 

laboratory and with different excitation light sources. To evaluate the sensor performance with 

different excitation light sources for the LOX quality application, we have used the various 

mixtures of liquid oxygen and liquid nitrogen as samples. The study of the sensor performance 

shows that this sensor offers a great deal of flexibility and provides a cost effective solution for 

the application. However, an improved system response time is needed for the real-time, 

quantitative monitoring of the quality of cryogenic fluids in harsh envioronment. 
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1. Introduction 

 The environment within a rocket engine is particularly severe with very high temperatures and 

pressures along with extremely rapid fluid and gas flows.1  The escalating use of liquid phase 

compounds like oxygen, hydrogen, etc., as cryogenic fuels and their quality monitoring led to the 

development of a variety of sensor systems.  Apart from quality control, sensors are required for 

quantitative determination of constituent species in a sample mixture, especially in aircraft fuel 

tanks where a disproportionate concentration of one sample against another can lead to an 

explosion.2  Fuel vapors mixed with air containing a high level of oxygen are extremely 

flammable and raise serious questions on the survivability of aircraft. Implementation of sensors 

is not only restricted to realizing ignition susceptibility but also in monitoring the health of 

rocket engines, especially where an optimum level of cryogenic fuel purity is highly desirable. 

Several types of sensors like electronic sensors, capacitance based, electrochemical sensors, etc., 

are commercially available but lose their relevance in the supercritical environment of rockets 

and aircraft, where high temperature and pressure severely inhibit their optimal performance.3-5 

In the past, researchers have developed computational-analytical techniques for quality 

maintenance in cryogenic fuel like liquid methane at the entrance to the article tank.6  Though 

interesting, this method requires sampling of fuel mixture and thus fails to provide real-time 

measurement of impurities in fuel.  Application of fiber optic technology to rocket engine health 

monitoring offers an alternative approach towards realizing various parameters of interest and 

addresses several measurement issues associated with extremely harsh environments.  Today, 

optical fiber sensing technology has evolved to the point where one can measure nearly all the 

physical parameters of interest and a very large number of chemical species as well.7 
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This paper reports an all-optical cryogenic fluid sensor based on Raman spectroscopy for 

concentration ratio monitoring of liquid nitrogen (LN2) in liquid oxygen (LOX). The present 

work is motivated by a specific need of NASA Stennis Space Center (SSC) for long-term 

detection and monitoring of the quality of liquid oxygen in the delivery line during the testing of 

rocket engines.8 An attractive design feature of a fiber optic sensor lies in real-time, in-situ 

qualitative as well as quantitative determination of LOX and/or LN2 from their mixture sample 

on the basis of spectrum analysis for various sample compositions. Prior to this study, efforts 

have been made to develop a gas sensor for monitoring gaseous phase mixtures of nitrogen and 

oxygen.9  Online characterization of cryogenic fluid mixtures like liquid nitrogen and liquid 

oxygen by optical diagnostics is an area that has not yet been explored to the best of our 

knowledge.  Various issues involved in monitoring super critical fluid mixtures, like sample 

vaporization/condensation, system optimization, signal/noise ratio and other safety parameters, 

have been well addressed and provide a novel vision for encountering challenges involved in 

processing/controlling cryogenic fuels. 

 Certain distinct advantages of optical fiber sensors over conventional sensors, like 

remote sensing, multiplexing and distributed sensing, immunity towards EM signals, etc., make 

them more advantageous in real field applications. On the other hand, laser Raman spectroscopy 

(LRS) has been known for years as a relatively simple analytical method for identification of 

molecules in gases, liquids and solids by scattering of laser light.  Raman spectroscopy is based 

on the Raman effect that results from energy exchange between incident photons and the 

scattered molecules.10-21  The Raman scattered light occurs at frequencies that are shifted from 

the incident laser light by the change in vibrational, rotational or electronic energies of a 

molecule. By measuring the frequency and intensity of inelastically scattered light from the 
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sample, the molecules in the sample can be qualitatively and quantitatively measured.  In order 

to explore various possibilities of employing a low cost, portable optical sensor based on LRS in 

the harsh environment of a rocket engine, we evaluated three excitation light sources for the 

sensor.  Two frequency doubled 532-nm continuous wavelength (CW) Nd:YAG lasers (TEM00 

and Multimode) were first used as excitation light source with a fiber optic state-of-the-art 

miniaturized Raman probe.  Then a diode laser operating at 670-nm was used as the excitation 

source in an attempt towards configuring a cost effective optical sensor, which caters to the 

needs of various national laboratories and cryogenic industries.  The sensor performances with 

different excitation sources in the measurements of liquid nitrogen in liquid oxygen are 

compared and the results are reported in this paper. 

 

2. Experimental Details 

The main focus of this research effort was to develop a real-time optical fiber sensor that 

employs a CW 532-nm laser as an excitation light source for monitoring the concentration of 

LN2 in LOX/LN2 liquid mixture.  In the process of developing a miniaturized and cost effective 

optical fiber Raman sensor, we have also evaluated a diode laser as an excitation light source. 

The details of the excitation sources used in this study are given in Table 1. 

In the initial experiment, an optical fiber Raman sensor is set up using a frequency 

doubled 532-nm continuous wavelength (CW) Nd:YAG laser (Coherent DPSS 532) as the 

excitation light source, with maximum output power at 330 mW.  The laser output energy was 

attenuated through proper neutral density filters in order to protect the detector from potential 

damage by the high intensity light.  The experimental set-up is shown in Fig. 1(a). The sensor 

configuration employed a modified In-Photonics fiber optic state-of-the-art miniaturized Raman 
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probe.  This probe consisted of just two parallel optical fibers; one (90-µm core diameter) was 

guiding the launched light to the liquid sample mixture enclosed within the dewar, whereas the 

other (200-µm core diameter) was collecting the emitted Raman signal and feeding it to a USB 

spectrometer (USB 2000, Ocean Optics Inc.).  This spectrometer had 1200 1/mm grating along 

with a 2048-element charge-coupled device (CCD) attached to the exit of the spectrograph, and 

was interfaced with a computer via a USB port.  Probe performance in terms of Raman signal 

response and background noise level was improved by incorporating a miniaturized lens at the 

tip of the probe with a working distance of about 30-mm. Experiments were carried out for the 

multiple concentration (weight) ratios of the liquid N2/O2 and mixed to ensure homogeneity 

within the mixture.  For each sample, a 3-s sampling time was used to minimize errors due to 

rapid phase transforming, i.e., liquid to gaseous phase nature of the sample constituents. Owing 

to the continuous vaporization of the supercritical liquid mixture, the greatest challenge of the 

experiment was to minimize the vaporization loss, and also the accuracy with which the weight 

ratio of the sample constituents were determined during the preparation of mixtures.  In the 

initial experiment, a cap with a hole was mounted on the dewar. Though it allowed a clear 

passage for the laser light to be focused onto the liquid N2/O2 mixture from the probe, it could 

not prevent the vapors from escaping and condensing onto the tip of the fiber probe.  As a result, 

attenuation in the laser power was observed that severely hampered the liquid N2/O2 spectrum, 

thereby reducing the signal-to-noise ratio of the Raman signal.  To overcome this problem, two 

identical quartz windows (1/4”) were introduced into the dewar cap hole to provide optical 

access as well as to prevent vapors from reaching the tip of the probe.  A dryer was also installed 

in the vicinity of the fiber probe to eliminate the remote possibility of vapor deposition onto the 

tip of the probe and thus to achieve long-term stable operation of the Raman sensor. 
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To study the effects of laser property to Raman signal, the Raman data from a narrow 

band 532-nm laser (Coherent DPSS 532) and a high-power and inexpensive broadband 532-nm 

laser (Milles Griot GHS 309) were compared.  The experimental configuration was kept the 

same as we recorded these data.  A neutral density filter was applied to the broadband 532-nm 

laser output to attenuate the laser power so that the laser energy on the sample mixture was about 

~ 140 mW from both lasers. 

Later we designed a prototype Raman sensor based on a 700 mW power, CW diode laser 

(Power Technology Inc.), operating at 670-nm, as an excitation light source and a Y-shaped 

reflection/backscattering probe (R200-REF, Ocean Optics Inc.).  Figure 1(b) shows the 

schematic diagram of this system.  This Y-shaped probe consists of seven optical fibers, each 

having 200 µm core diameters and 0.22 as numerical aperture with one launching fiber and six 

surrounding collecting fibers.  Uniqueness of the prototype sensor lies in its compact design 

configuration that included carefully aligned optical components, viz., laser diode, filter holder, 

cut-off filter (725-nm) and a compact OOI spectrometer (USB 2000). Raman Spectrums of 

different concentration ratio mixtures of LOX and LN2 were recorded with the prototype Raman 

sensor in the same manner as described earlier. 

3. Results and Discussions 

The present study was primarily focused on quantitative as well as qualitative analysis of 

component ratio of liquid N2/O2 mixtures at varied levels of their weight ratio.  The mixture 

sample was prepared by adding liquid O2 in liquid N2, owing to the fact that the molecular weight 

of oxygen is higher than nitrogen, and therefore suppressing the rate of vaporization of liquid 

nitrogen.22  Raman Spectrum recorded for 40% of LOX and 60% of LN2 mixture is shown in the 

Fig.2 (a). Raman bands of LOX (~ 580-nm) and LN2  (~ 607-nm), corresponding Raman shift for  
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O2 at 1556.4 cm-1 and N2  at  2330.7cm-1, were marked on the spectrum.23 The concentration of 

LN2 was varied from 1% to 100% against LOX at normal atmospheric pressure and temperature, 

while maintaining a total mixture weight of 100 gram. The Raman band intensity corresponding 

to LN2 was increasing as the concentration of LN2 was increased against the LOX in the sample 

mixture as shown in Fig. 2(b).  A narrow band Coherent CW laser, operating at 532-nm, was 

used in this experiment.  

The observed Raman bands of LOX and LN2 were critically analyzed in terms of spectral 

band shape, S/N ratio, peak intensity, etc.  Peak intensity corresponding to LN2/LOX, at various 

concentrations of their weight ratio, was estimated for obtaining a calibration curve as shown in 

Fig. 3.  Sensor response exhibits a linear trend within the concentration limit of 1 % to 60 % of 

LN2 and observed to be saturating in the concentration range of 60% to 80% LN2 in a sample 

mixture. Slower response of the sensor towards a higher concentration ratio of LN2 attributes to 

the fact that the vaporization rate of liquid nitrogen increases manifolds resulting in the 

formation of a cloud of semi-liquid gaseous phase mixture; and thereby affecting the sensor 

performance. We further calculated the spectral band area ratios of Raman LN2 and LOX peaks. 

This calculation was performed for all the sets of spectra corresponding to a particular 

concentration ratio of LOX/LN2, and averaged to obtain a single data point. As a result, error due 

to the fluctuation in the peak intensity was minimized.  Finally, a calibration curve was drawn 

between the averaged spectral band area ratios of Raman LN2 and LOX peaks against the 

corresponding weight ratios as shown in Fig. 4.  The following conclusions have been drawn 

from the experimental results obtained above. 

 First, the sensor system is capable of successfully monitoring the LN2/LOX level in a 

LN2/LOX liquid mixture. Second, the Raman peak area follows the same characteristics as the 
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intensity ratio curve.  For example, both intensity and area ratio curves exhibit a linear trend 

within a low concentration range of LN2 which tend to saturate above 60% LN2 concentration. 

This implies that the sensor has high detection sensitivity in low concentration range and can 

measure LN2 percentages as low as 1% in a sample mixture.  For a typical sample mixture of 

60% LN2 and 40% LOX, Limit of Detection (L.O.D.) of sensor was calculated as ~1%.  Also, 

intensity/area ratio data points are least fluctuating as reflected by the error bars on the 

calibration curves which are barely visible in Fig. 3 and Fig. 4.  This signifies not only the long-

term stable operation of the sensor but also the reproducibility in the sensor response towards 

analyte concentration.  Although the calibration curve obtained by the area ratio method 

involved statistical averaging of multiple sets of spectra, it did not provide better sensor 

response. The linear calibration data for LN2/LOX ratio indicates that the fiber optic Raman 

sensor has a great potential for qualitative as well as quantitative monitoring of sample 

constituent in supercritical LN2/LOX liquid mixtures. 

 To develop a less expensive sensor for this application, the feasibility of using an 

inexpensive, high power, broadband  laser (Milles Griot) operating at 532-nm as an excitation 

light source was tested.  Using the same laser energy as with Coherent laser (~140 mW), and 

same experimental setup, spectra were recorded for various concentration ratios of LOX and LN2 

and compared with the 532-nm Coherent laser used in the previous case.  Comparative analysis 

of spectra recorded with two lasers suggest that in both the cases, spectra share common features 

and depending upon the requirement, either of these could be employed as excitation light 

sources.  The laser line-width of a Milles Griot laser(~0.18nm) is higher than that of a Coherent 

laser(~0.00047nm) and showed a slightly higher spectral background in comparison with a 
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Coherent laser.  Also, a Milles Griot laser could be operated in the high range of power which is 

suitable for trace LN2/LOX monitoring. 

To develop a prototype sensor using a 670-nm diode laser, we first estimated the 

performance of the sensor by considering the laser energy and detector response near 532 and 

670 nm.  Since the Raman cross-section depends inversely on the fourth power of the laser 

wavelength (λ),21  the Raman signal is also affected by the excitation wavelength.  The various 

parameters that can affect Raman signal are summarized in Table 2.  Estimation based on these 

parameters (the effects of optical response from other optics at these two wavelengths are not 

included in this calculation) shows that the prototype sensor should give about 4.4 times less 

signal than with the system with more expensive 532-nm excitation source. This signal level 

should be good enough for this type of application.  A typical spectrum of a 60% LN2 and 40% 

LOX sample mixture, recorded with the prototype sensor that included a 670nm laser as an 

excitation light source, is shown in Fig. 5(a), where the LN2  Raman peak corresponds to ~ 795-

nm and the LOX peak corresponds to ~ 749-nm, respectively.  The Limit of Detection (L.O.D.) 

of the prototype sensor for 60%LN2 and 40% LOX was calculated as ~20% which is much 

higher in comparison to the L.O.D. of the sensor with a 532-nm laser (~1%) for the same 

concentration ratio mixture.  The spectrum recorded with the 670-nm laser diode also shows a 

strong background that severely affects the Raman signal of LOX/LN2.  The overall spectral 

quality (signal-to-noise) of the prototype sensor using a 670-nm diode laser is not as good as that 

observed in the case of a 532-nm laser (see Fig. 2a).  The performance of the sensor systems with 

different lasers is actually determined by many factors such as the spectral characteristics of the 

laser systems, the optics, and also the scattered light. Due to the broadband spectral line width of 

the 670-nm laser diode, a cut-off filter, centered on 725-nm, is unable to suppress the scattered 
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incident laser light. The scattered light has contributed to part of the strong background we 

observed.  The optical fiber can also give rise to its Raman spectral feature and fluorescence 

background signal that will superimpose on the LOX and LN2 spectrum.  Our current prototype 

sensor is very compact, and we are unable to effectively remove these background features.  To 

suppress the background and to improve the signal/noise ratio of the Raman signal, appropriate 

combinations of various filters will need to be tested and added to the collection optics of the 

miniaturized prototype sensor. However, we can apply some data processing technique to 

improve the quality of the data. Figure 5(b) shows the processed Raman LOX and LN2 spectrum 

of the prototype sensor.  This spectrum was obtained by subtracting the raw data from the 

background spectrum (the background spectrum was obtained by fitting with some polynomial 

functions).  The spectral averaging can also be applied to further improve the signal-to-noise 

ratio.  Intensity ratios for a LN2 and LOX weight ratios of 1.5 were calculated to be ~1.4 from 

background subtracted spectrum obtained from the prototype sensor.  The Intensity ratios 

obtained with a 532-nm laser for the same weight ratios of LN2/LOX is about 1.3.  

4. Conclusions 

 This paper presents a consistent optical fiber Raman sensor for cryogenic applications 

and the evaluation of sensor performance with different excitation light sources.  The sensor 

performance with two different 532-nm lasers and an Inphotonic probe was employed.  Efficient 

light collection optics and good signal-to-noise ratio of Raman LN2/LOX signal make these 

laser-based sensor systems an effective tool for rapid as well as sensitive monitoring of 

LN2/LOX during the testing of a rocket engine.  To design a low-cost, reliable sensor for this 

type of application, we have also tested with a compact and an inexpensive diode laser.  

Although this miniaturized prototype sensor system yielded a low signal-to-noise ratio of Raman 
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LN2/LOX signal, we have shown that with an appropriate data processing technique, the 

extracted intensity ratio of Raman signal of LN2 and LOX  are close to that obtained from the 

more-expensive 532-nm excitation systems.  The miniaturized sensor system offers a great deal 

of flexibility and provides a cost effective solution for measuring the quality as well as quantity 

of cryogenic fluids. However, due to the relatively poor signal-to-noise ratio and background 

problem, the performance of the miniaturized sensor system is not suitable for real time 

monitoring.  On the other hand, the system with a high-power 532-nm laser can offer good 

quality LOX/LN2 spectra with reasonable response time, and therefore it is more suitable for 

real-time application.  Future research will be focussed on improving the performance of the 

sensor for high cryogenic liquids pressure. 
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Table 1. The excitation sources used in this study 

 

*1/e2 at waist 
 

 

 

 532-nm Laser 670-nm Diode Laser 
Maximum Laser Power on Sample 140 mW 380 mW 

CCD Detector  Efficiency 2.3 0.4 
Grating Efficiency 60% 72% 

Relative Raman Cross Section (λ-4  ) 12.48 4.96 

Overall Relative Raman signal 4.44 1 
 

Table 2. Estimation of the Raman Signal from 532-nm and 670-nm laser 

 

Excitation 
 Source 

Wavelength 
(nm) 

Laser Line 
Width 
(nm) 

Max.  
Power 
(mW) 

Beam 
Diameter* 

(mm) 

Transverse 
Mode 

A. 532-nm laser 
 Coherent 
 Milles Griot 

 
B.670-nm diode laser 

Power 
Technology Inc. 

 
532 
532 

 
670 

 
 

 
    0.00047 
    0.18 
 
    0.70 

 
    330 
    3000 
 
    700 

 
     0.70 
     0.24 
 
     1.5 

 
TEM00 
Multimode 
 
Multimode 
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Fig. 1. Experimental set-up of optical fiber Raman sensor. (a) InPhotonic Raman Probe based  

 system (b) Reflection probe based prototype Raman system. 

Fig. 2. (a) Raman Spectrum of 40% LOX and 60% LN2 liquid mixture. Laser wavelength:   

 532nm 

Fig. 2 (b) Sensor response to the liquid N2 /O2 mixture as a function of LN2 concentration. 

Fig. 3 Sensor response to the liquid N2 /O2 mixture as a function of LN2/LOX weight ratio. 

Fig. 4. The area ratio variation of LN2/O2 against their weight ratios. 

Fig. 5 Raman spectrum for 60% LN2 & 40% LOX with 670nm diode laser (a) actual spectrum 

 (b) background subtracted spectrum 
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(a) 

 

(b) 

 

 

Fig. 1. Experimental set-up of optical fiber Raman sensor. (a) InPhotonic Raman Probe based 

system (b) Reflection probe based prototype Raman system. 
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Fig. 2. (a) Raman Spectrum of 40% LOX and 60% LN2 liquid mixture. Laser wavelength: 

 532nm 

 

 

 

 

 

 

 

 

 

Fig. 2 (b) Sensor response to the liquid N2 /O2 mixture as a function of LN2 concentration. 
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Fig.3 Sensor response to the liquid N2 /O2 mixture as a function of LN2/LOX weight  ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

LN2(gm)/LOX(gm)

In
te
ns
ity
(L
N
2/
LO
X)

RELEASED - Printed documents may be obsolete; validate prior to use.RELEASED - Printed documents may be obsolete; validate prior to use.



 
 

20

 

 

 

 

 

 

 

 

Fig. 4. The area ratio variation of LN2/O2 against their weight ratios. 
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Fig. 5 Raman spectrum for 60% LN2 & 40% LOX with 670nm diode laser (a) actual spectrum 

(b) background subtracted spectrum 
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