Sm-Nd AND Rb-Sr AGES FOR MIL 05035: IMPLICATIONS FOR SURFACE AND MANTLE SOURCES.

L. E. Nyquist1, C-Y. Shih2, and Y. D. Reese3, 1Mail Code KR, NASA Johnson Space Center, Houston, TX 77058, laurence.e.nyquist@nasa.gov, 2Mail Code JE-23, ESCG/Jacobs Sverdrup, P.O. Box 58477, Houston, TX 77058, chi-yu.shih@nasa.gov, 3Mail Code JE-23, ESCG/Muniz Engineering, Houston, TX 77058, young.reese@.nasa.gov.

Introduction: The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757 [1]. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions [2,3] as well as the TiO₂ abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar assymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

Sm-Nd age: The Sm-Nd age (TSm-Nd) = 3.80±0.05 Ga for MIL 05035 (Fig. 1) and agrees within mutual error limits with TSm-Nd = 3.87±0.06 Ga for A-881757 [1]. Initial εNd = +7.2±0.4 for MIL 05035 compared to +7.4±0.5 [1] for A-881757.

Rb-Sr age: The isochron values are TRb-Sr = 3.90±0.04 Ga and ISr (initial 87Sr/86Sr) = 0.699089±0.000014 (Fig. 2). The Rb-Sr age reported by [1] for A-881757 is 3.89±0.03 Ga when adjusted to λ(87Rb) = 1.402 x 10⁻¹¹ y⁻¹ in excellent agreement with the MIL 05035 value. ISr = 0.69910±0.00002 for A-881757 [1] also agrees well with the MIL 05035 value.

Discussion: The Sm-Nd and Rb-Sr data as well as Sm-isotopic data not given here suggest that MIL 05035 and A-881757 are isotopically identical. The internal Pb-Pb isochron age reported by [1] for A-881757 was 3.94±0.03 Ga, whereas the 206Pb/204Pb Ar age was 3.80±0.01 Ga. Recent 39Ar-40Ar age measurements [4] gave younger ages of 3.69±0.07 Ga for A-881757 and 3.71±0.11 Ga for Yamato-793169, thought to be launch-paired with A-881757. Y-
the age data, but seems less likely for reasons given below.

Lunar basalt ages [5] are plotted vs. the longitude of the known or estimated (YAM, LAP 02205 [6]) sampling sites in Fig. 3. Comparing Fig. 3 to Fig. 12 of [2] summarizing mare basalt ages by the crater size-frequency method shows both similarities and differences. Crater size-frequency ages are lacking for cryptomaria corresponding to some A14 breccia clast ages, and Luna 16 and Luna 24 sampling sites, i.e., the maria Fecunditatis and Crisium, respectively. The sampled L-24 basalts are VLT basalts with TiO2 abundances about half the TiO2 abundances of the YAM basalts (Fig. 4.). TiO2 in Mare Crisium ranges ~1-8% [7]. Candidate surface units for the YAMs in Mare Humorum [2] correspond to spectral units hDSP and mISP of [8] with estimated TiO2 of ~3.5-5.0 and <~3 wt. %, resp. More recent estimates for the same areas [7] are ~8-9 and ~5-8 wt. %, resp.; higher than TiO2 ~ 2 wt. % for the YAMs [9]. Also, the Humorum basin lies within the boundaries of the Procellarum KREEP Terrain (PKT) [10], and basalts from the PKT have relatively high ISr values in contrast to the YAM and L-24 basalts.

The YAM basalts differ from the L-24 basalts by having higher ISr values in contrast to the YAM and L-24 basalts. Low ISr for MIL 05035 and A-881757 shows derivation from a lunar mantle source with a low Rb/Sr ratio compared to the sources of basalts sampled during the Apollo missions. Similarly, low source region Rb/Sr ratios were found only for basalts from the eastern maria Fecunditatis and Crisium sampled by the Luna 16 and Luna 24 missions [11, 12].

The YAM basalts derived from the L-24 basalts by having higher ISr values as for the ISr data, the εNd values may be used to estimate 2-stage model source region 147Sm/144Nd ratios (Fig. 6). Those data show the mantle source of the YAM basalts to be very LREE-depleted. Thus, the YAM source was deficient in LREE as well as K-correlated Rb, both characteristic of the urKREEP lunar differentiate. Also, the YAM source is characterized by very low 238U/204Pb [1].

Figure 3. Estimated source 87Rb/86Sr for lunar basalts vs. longitude of known or estimated sampling sites.

Figure 4. TiO2 contents of lunar basalts vs. longitude of known or estimated sampling sites.

Figure 5. Summary of information obtained by converting ISr values to source region 87Rb/86Sr ratios via a 2-stage model. Low ISr for MIL 05035 and A-881757 shows derivation from a lunar mantle source with a low Rb/Sr ratio compared to the sources of basalts sampled during the Apollo missions. Similarly low source region Rb/Sr ratios were found only for basalts from the eastern maria Fecunditatis and Crisium sampled by the Luna 16 and Luna 24 missions [11, 12].

Figure 6. Estimated source 147Sm/144Nd for lunar basalts vs. longitude of known or estimated sampling sites.

Conclusions: The YAM basalts are the products of early melting of sources composed mainly of olivine and orthopyroxene [1], early cumulates in a magma ocean model. The absence of urKREEP from their sources suggests that melting was not due to radiogenic heating. The probable absence of urKREEP-enriched reservoirs beneath the eastern maria suggests an asymmetry in lunar mantle compositions related to the PKT.

References: