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The engineering design and analysis of air-breathing propulsion systems relies heavily
on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and
combustion efficiency, etc.) for figures of merit. The extraction of these parameters from
experimental data sets and/or multi-dimensional computational data sets is therefore an
important aspect of the design process. A variety of methods exist for extracting perfor-
mance measures from multi-dimensional data sets. Some of the information contained in
the multi-dimensional flow is inevitably lost when any one-dimensionalization technique
is applied. Hence, the unique assumptions associated with a given approach may result
in one-dimensional properties that are significantly different than those extracted using
alternative approaches. The purpose of this effort is to examine some of the more popu-
lar methods used for the extraction of performance measures from multi-dimensional data
sets, reveal the strengths and weaknesses of each approach, and highlight various numeri-
cal issues that result when mapping data from a multi-dimensional space to a space of one
dimension.

Introduction

The design and analysis of high-speed air-breathing propulsion systems has historically relied heavily on
modular 1, 2 or quasi-one-dimensional 3 cycle analysis codes for performance assessment. Examples from this
class of tools include the RamJet Performance Analysis (RJPA) 4 code developed at the Applied Physics Labs,
the GASL1D 5 code developed at the General Applied Science Labs, and the SRGULL 6 code developed at
the NASA Langley Research Center. The high-end parallel computing capabilities that exist today, coupled
with the maturation of algorithms for the integration of partial differential equations, have significantly
reduced the turn-around time required for high-fidelity Reynolds-Averaged Navier-Stokes simulations. These
advances, accompanied by the parallel development of advanced grid generation and flow visualization tools,
have allowed the use of multi-dimensional analysis for a variety of scramjet engine components. The current
state-of-the-art processes for high-speed propulsion component design and analysis involves a combination of
one-dimensional and multi-dimensional analysis approaches. This scenario necessitates the need to reduce (or
increase) the dimensionality of the analysis results where an exchange of data between the various approaches
is required. The reliance on multi-dimensional approaches in the design and analysis of engine components
will inevitably increase as high-performance computing capabilities continue to improve. The need to extract
performance estimates, however, will still require an ability to relate the multi-dimensional flowfield to an
equivalent one-dimensionalized representation.

This paper compares a variety of one-dimensionalization techniques commonly employed for internal
flows. The various strengths and weaknesses of each approach are highlighted for a variety of flowfields
ranging from purely analytical solutions to realistic scramjet flowpaths. The goal of this paper is not to
suggest that one procedure be employed in lieu of another. Instead, the various characteristics of each
approach are presented with detailed discussions describing why significant differences often appear between
one-dimensionalized properties obtained from different methodologies. Suggestions for dealing with key
numerical issues are also discussed, when appropriate.
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One-Dimensionalization Techniques

In general, one-dimensionalization techniques can be categorized as either a weighted or flux-based ap-
proach. The weighted approaches are easy to implement, tend to yield uniform properties that “visually”
mimic the original multi-dimensional data, and tend to maintain the qualitative physical features of the
parent multi-dimensional flow (e.g. non-decreasing entropy changes). The dilemma with these approaches
is that fluxes reconstructed from the weighted variables will, in general, not match those obtained from the
multi-dimensional data set. As a result, this averaging approach is not well suited for coupling a multi-
dimensional analysis with one-dimensional engineering analysis tools. Flux-based approaches attempt to
address this deficiency by formulating a set of one-dimensional flow properties that precisely reproduce some
specified set of fluxes from the multi-dimensional data set. Three different flux-based approaches are con-
sidered in this effort: the Conserved Mass/Momentum/Energy (CMME) method (sometimes referred to as
the stream-thrust average), the Conserved Mass/Momentum/Energy approach with the Langley distortion
methodology, 7 and the Conserved Mass/Energy/Entropy (CMES) method (referred to as the thermody-
namic state average in Refs. 8, 9). The mapping of the multi-dimensional flowfield to a one-dimensional
representation is realized by applying a given one-dimensionalization approach to a family of computational
surfaces (or lines in two dimensions) as illustrated in Fig. 1. The surfaces of interest will generally correspond
to the cross-flow planes.

Weighted Average

Weighted approaches are generally expressed as,

φ =

∫

φ w dA
∫

w dA
(1)

where φ is the property to be one-dimensionalized, w is the weighting function, and A is the area over which
the average is being performed. Popular choices for the weighting factor are w = 1 (area-weighting) and
w = ρ(~v ·~n) (mass flux-weighting). Other weighted approaches, particularly those designed for experimental
data sets that are often incomplete, are discussed elsewhere. 10, 11

Conserved Mass/Momentum/Energy Method

The CMME method produces a set of uniform flow properties that satisfy the integral relations for conser-
vation of mass, momentum, and energy, i.e.,

fm
mass =

∫

[ρ (~v · ~n) Ym] dA (2a)

~fmomentum =

∫

[ρ (~v · ~n)~v + P~n] dA (2b)

fenergy =

∫

[ρ (~v · ~n) H ] dA (2c)

where f represents the flux quantities being conserved, ρ is the mixture density, ~v is the velocity vector, ~n is
the unit vector normal to the surface of integration, Ym is the mass fraction of species “m”, P is the static
pressure, and H is the total enthalpy (sum of the static enthalpy and kinetic energy).

The uniform flow properties that satisfy these integral flux relations are defined based on the following
expressions,

fm
mass = [ρ (~v · ~n) Ym] A (3a)

~fmomentum = [ρ (~v · ~n) ~v + P~n] A (3b)

fenergy = [ρ (~v · ~n) H] A (3c)

where the bold-faced quantities denote one-dimensional parameters. The equation set is closed by introducing
an equation of state, e.g. P = ρRT. This method results in a nonlinear system of coupled equations, and the
procedure used to decode the one-dimensional flow properties from this equation set is given in Appendix A.
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It should be noted that the properties extracted from this methodology result in an effective uniform flow
characterization of the multi-dimensional flowfield, and is not necessarily a one-dimensionalization of the
flowfield (i.e. cross flow velocity components may be present). If one-dimensional properties are desired, then
one should convert the momentum vector into a scalar momentum equation (i.e. a stream-thrust equation).
This step is accomplished by defining the unit normal, ~n, to be parallel to the “streamwise” direction, and
taking the dot product of this vector with the momentum vector prior to the decomposition process.

Langley Distortion Methodology

The Langley distortion methodology 7 satisfies the same flux expressions given in Eq. 2, but additional
flux relations are introduced to provide information on the impact of three-dimensional effects (i.e. flow
distortion). The additional flux relations are the mass flux-weighted kinetic energy components,

∫

ρ (~v ·
~n) u2 dA,

∫

ρ (~v ·~n) v2 dA,
∫

ρ (~v ·~n) w2 dA, and the pressure force components,
∫

P ~n dA. This additional
information simplifies the decomposition process, since the velocity (via the kinetic energy components)
and the pressure are readily available, but results in an over-constrained system of equations. Additional
unknowns (distortion parameters) are introduced to allow the uniform flow properties to simultaneously
satisfy these constraints and the desired conservation relationships (Eq. 2). The uniform flow properties
obtained from the Langley distortion methodology satisfy the following expressions,

fm
mass = [ρ (~v · ~n) η1Ym] A (4a)

fmomentum = [ρ (~v · ~n) η2 (~v · ~n) + η4Pref ] A (4b)

fenergy =
[

ρ (~v · ~n)
(

h + η3 (~v · ~n)
2
/2
)]

A (4c)

where

η1 =

∫

ρ (~v · ~n) dA

ρ (~v · ~n) A
(5a)

η2 =

∫

ρ (~v · ~n) (~v · ~n) dA

ρ (~v · ~n) (~v · ~n) A
(5b)

η3 =
(~v · ~v)

2

(~v · ~n)
2

(5c)

η4 =
P

Pref

(5d)

In principle, Pref can be tailored to force the pressure to follow a desired thermodynamic path (e.g. a
path that recovers the entropy flux from the parent three-dimensional flowfield). In this work, however, η4

has been defined as unity (i.e. Pref = P). This assumption is consistent with how the one-dimensional
analysis codes that utilize this technique are typically exercised. Note that the momentum equation (a
vector expression) has been reduced to a scalar equation by taking the dot product of this vector with the
unit vector, ~n. Hence, the resulting uniform flow properties represent a true one-dimensionalization of the
multi-dimensional parent flowfield, with the flow direction dictated by the choice of this unit vector. It can
be shown that this methodology results in uniform properties that are analogous to those obtained based on
the following operations:

• Area-weighting the pressure (assuming that η4 = 1)

• Mass flux-weighting the mean kinetic energy components

• Mass flux-weighting the static enthalpy

• Thermodynamic closure with an equation of state

Conserved Mass/Energy/Entropy Method

The CMES method (or thermodynamic state average) was first introduced by Riggins et al. 8, 9 The pri-
mary motivation behind this method was to address the deficiencies of the existing conserved-flux approaches
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as related to violations of the second law of thermodynamics. The CMME method (with or without dis-
tortion effects) introduces an entropy increase due solely to the “mixing loss” associated with the one-
dimensionalization process. The CMES method attempts to rectify this problem by explicitly conserving
the entropy flux obtained from the parent multi-dimensional flowfield. Hence, this method results in uniform
flow properties that satisfy the integral relations for conservation of mass, energy, and entropy, i.e.,

fm
mass = [ρ (~v · ~n)Ym] A (6a)

fenergy = [ρ (~v · ~n)H] A (6b)
∫

[ρ (~v · ~n) s] dA = fentropy = [ρ (~v · ~n) s] A (6c)

The conservation of these fluxes ensures equivalency of mass addition, heating, and irreversible losses between
the parent multi-dimensional flowfield and the one-dimensional flowfield. This statement holds regardless
of the level (or type) of flow distortion that may be present because changes in mass, total enthalpy, and
entropy are not influenced by flow distortion. Changes in these fluxes can only occur due to mass and/or heat
addition (or extraction) and irreversible phenomena. The momentum flux, on the other hand, is affected
by flow distortion, and its impact on the stream-thrust is accounted for in this method via the introduction
of a single distortion parameter, η. This distortion parameter is defined in a manner that forces a match
between the multi-dimensional stream-thrust and the one-dimensional value, i.e.,

∫

[ρ (~v · ~n)~v + P~n] · ~n dA = η [ρ (~v · ~n) ~v · ~n + P] A (7)

Similar to the Langley distortion methodology, the CMES method produces a true one-dimensionalization
of the multi-dimensional flow properties. The amount of distortion that is present in the flow is influenced
by the choice of the unit vector, ~n. The procedure used to decode the one-dimensional flow properties for
the CMES approach is given in Appendix B.

Results

Three examples have been compiled to illustrate various features associated with each of the one-
dimensionalization approaches considered in this effort. The first case involves the one-dimensionalization of
a flowfield with an oblique shock wave. This example has an analytic solution with uniform flow properties
in front of and behind the shock wave. Two grids were superimposed onto this flowfield. The first grid was
aligned with the shock wave, while the second was representative of what would be used for CFD analyses.
The second case considered was inviscid flow through a converging/diverging nozzle, and the third case
was a representative scramjet isolator component. Cases 1 and 2 were specifically chosen to address issues
associated with extracting one-dimensional parameters from multi-dimensional data sets. Case 3 was cho-
sen to illustrate the performance of each averaging methodology for a representative high-speed propulsion
component.

Case 1

The first case is an inviscid Mach 5 flow over a 20 degree compression corner. The analytic solution has
uniform flow in front of the 29.8 degree shock wave and uniform flow behind the shock wave. The pre- and
post-shock properties are given in Table 1. The exact solution was one-dimensionalized along the cross-flow
grid lines for each of the methods. Two different grids were used to determine the effect of grid topology
on the one-dimensional properties. The first grid is shown in Fig. 2. This grid is composed of two blocks,
divided by the shock wave, with grid lines that conform to the shock angle. The upper boundary of the
solution domain represents a dividing streamline so that mass conservation is maintained. The two uniform
flow regions, separated by the shock wave, can be seen in the Mach contours of Fig. 3.

Each one-dimensionalization strategy should be capable of returning the uniform flow properties provided
by the multi-dimensional data set. Equation 1 shows that the weighted approach will always recover the
correct uniform flow properties, since Eq. 1 reduces to

φ = φ

∫

w dA
∫

w dA
= φ (8)
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Table 1: Analytic Shock Properties

Property Pre-Shock Post-Shock

Pressure [kPa] 101.325 713.066

Temperature [K] 300.0 636.8

Density [kg/m3] 1.1765 3.9007

u [m/s] 1736.2 1436.7

v [m/s] 0.0 522.9

Mach number 5.0 3.022

when φ does not vary spatially. The properties returned by the conserved-flux approaches, however, are
dependent upon how the unit normal, ~n, is defined. If the parent multi-dimensional data is uniform, then
Eq. 2 reduces to

fm
mass =

[

ρ

(

~v ·
∫

~ndA

)

Ym

]

(9a)

~fmomentum =

[

ρ

(

~v ·
∫

~ndA

)

~v + P

∫

~ndA

]

(9b)

fenergy =

[

ρ

(

~v ·
∫

~ndA

)

H

]

(9c)

Comparing Eqs. 3 and 9 shows that the CMME method will return the correct uniform flow properties
provided that ~n is defined as

~n =

∫

~ndA

A
(10)

Another choice for the unit vector that will recover the correct uniform flow properties is one aligned with
the velocity vector. In this scenario, a scalar momentum equation (stream-thrust) is formed by taking the
dot product of the momentum vector with ~n ≡ ~v/|~v|. This step aligns the momentum with the direction
of the flow velocity, and results in an equation set that is locally one-dimensional. Any other choice for the
unit normal will not reproduce the analytical data for this flow. This feature is illustrated in Fig. 4 which
compares the Mach number obtained by the CMME method based on the unit normal given by Eq. 10,
with that of one chosen to be aligned with the x-coordinate. The Mach number obtained by the weighted
approach is also shown for reference purposes. The use of a unit normal aligned with the x-coordinate
removes the contributions from the y-momentum equation during the decomposition process. This “loss”
of momentum prevents the matching of properties downstream of the shock. It should be noted that the
distance variable used to plot the one-dimensional data is defined as the average of the x-coordinate along
the line (or plane) of integration.

The choice made for the unit normal has no effect on the flow variables extracted from the Langley
distortion methodology, but it will affect the values obtained for the distortion coefficients. The distortion
coefficients will be unity (for this uniform flow case) only if the unit normal is defined to be parallel to
the velocity direction. Any other choice will result in non-unity distortion coefficients due to the lack of
alignment with the velocity field. The CMES method does not contain a vector flux quantity, and velocity
only appears in the form of (~v · ~n). The decomposition process for this approach requires the evaluation of
the kinetic energy (i.e. velocity magnitude). Thus, the only logical choice for the unit normal is one that
is aligned with the velocity vector, since this choice results in (~v · ~n) =

√
~v · ~v. The distortion coefficient

is also unity (as it should be for uniform flow) with the unit normal chosen in this manner. Since (~v · ~n)
is the only velocity information available with this approach, the velocity components for flow alignment
must be supplied by some external means (such as mass flux-weighting). Figure 5 verifies that the Langley
distortion methodology and the CMES method (with the unit normal aligned with the velocity direction)
recover the parent uniform properties. Although not shown, the distortion coefficients are all unity. Based
on the observations outlined above, all remaining properties based on the CMME method will utilize a unit
normal based on Eq. 10, and a unit normal aligned with the velocity vector will be used for the Langley
distortion and CMES methods.
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The second grid, shown in Fig. 6, is typical of a grid topology that would be used in a shock-capturing
CFD simulation. The grid has a single block with vertical grid lines in the cross-flow direction. Hence,
the distance variable in all of the uniform flow property plots will precisely coincide with each streamwise
integration plane. The area-weighted and mass flux-weighted properties (ρ, u, v, and P ) for this grid are
given in Figs. 7 and 8. Both averaging methods give the exact pre- and post-shock values for grid lines in
regions of uniform flow (i.e. near the inflow and outflow planes). Along grid lines passing through both pre-
shock and post-shock flow, the two methods give significantly different values. For this problem, a weighted
property can be written in the following form,

φ = (φ1 − φ2) G + φ2 (11)

where

G =
w1 A1

(w1 A1 + w2 A2)
(12)

and the subscripts 1 and 2 refer to the pre- and post-shock properties, respectively. For area-weighting (i.e.
w = 1), G reduces to

G =
ymax − x tan β

ymax − x tan θ
for 0 ≤ x ≤ ymax

tan β
(13)

where ymax is the height of the inflow streamline, β is the shock angle, and θ is the turning angle. This is a
non-linear relationship in x and gives the curved distributions shown in the figures. For mass flux-weighting,
i.e. w = ρ (~v · ~n), G reduces to

G =
ρ1 u1 (ymax − x tan β)

ṁ
for 0 ≤ x ≤ ymax

tan β
(14)

The mass flow rate is conserved, so ṁ is constant leading to a relationship that is linear in x. As a result,
all of the mass flux-weighted properties vary linearly for integration planes that cross the shock wave.

There are two approaches that can be used to compute a set of weighted properties. The first is to
simply weight every property of interest independently. The second is to weight only a minimum number of
properties, and compute all additional properties using thermodynamic and gas-dynamic relationships. These
two approaches are illustrated in Fig. 9, which shows the Mach number and total pressure distributions using
both approaches. The solid and dashed lines are the mass flux-weighted and area-weighted distributions,
while the symbols are the distributions computed from the weighted density, velocity, and pressure. The
weighted Mach numbers and total pressures follow the behavior defined above, whereas the values computed
from the minimum set of weighted averages are significantly different. This is a direct result of the non-linear
relationships between the flow properties. For this particular minimum set of properties, the total pressure
distribution shows a local minimum, which is a violation of the second law of thermodynamics. Somewhat
different results would be obtained if a another set of weighted properties had been chosen.

The property distributions computed with the CMME, Langley distortion, CMES, and mass flux-weighted
methods are plotted in Figs. 10 and 11. The CMME, Langley distortion, and CMES methods give similar
results for the static pressure distribution, but each of these deviate significantly from the mass flux-weighted
values. The x-velocity distributions are similar for all approaches except for the values obtained from the
CMES method. Interestingly, the Mach number obtained from the CMES method compares favorably with
the mass flux-weighted Mach number; indicating that the static temperature given by this method is greater
than the mass flux-weighted value. The total pressure distributions that result from the CMME and Langley
distortion methods have a local minimum, similar to what was observed with the weighted averages when
the weighting process was not performed independently. The CMES method does not show this behavior for
the total pressure because the entropy, which is closely coupled to the total pressure, is one of the quantities
that was conserved.

Case 2

The second case is a two-dimensional inviscid flow through a converging/diverging nozzle with an exit Mach
number of 3. The contour was generated with the IMOCND (Irrotational Method of Characteristics for
Nozzle Design) code, 12 and has a throat defined by a Gaussian curve with a radius of curvature equal to one
half of the throat height. The grid and Mach contours for this flowfield are shown in Fig. 12. It is common
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practice in CFD to take advantage of any symmetry present in the geometry to reduce the time required
to compute steady-state solutions. This convention can have an affect on the properties computed by the
various one-dimensionalization methods. Figure 13 shows the distributions of the y-component of velocity
computed from the full nozzle solution and the solution of just the upper half of the nozzle. When only
the upper half of the geometry is processed, all of the methods produce a negative y-velocity distribution
upstream of the throat (where the flow is turned towards the centerline), and a positive y-velocity distribution
downstream of the throat (where the flow is turned away from the centerline). When the complete geometry
is processed, all of the methods produce a zero cross-flow velocity except for the Langley distortion method.
The Langley distortion method extracts the velocity magnitudes from the kinetic energy fluxes, i.e.,

u2 =

∫

ρ (~v · ~n) u2 dA

ṁ
(15a)

v2 =

∫

ρ (~v · ~n) v2 dA

ṁ
(15b)

w2 =

∫

ρ (~v · ~n) w2 dA

ṁ
(15c)

Hence, there exists no cancellation of velocity components across the line of symmetry, as is the case for
each of the other methods. Note that this method also produces larger y-velocity components than the
other methods (for the half geometry). This behavior can be explained by comparing the expressions for the
weighted average of velocity

v =

(

∑npts

n=1
wnvn

∑npts

n=1
wn

)

≈ 1

npts

npts
∑

n=1

vn (16)

with that of the square root of the weighted average of the velocity squared

v =

(

∑npts

n=1
wnv2

n
∑npts

n=1
wn

)
1

2

≈
(

1

npts

npts
∑

n=1

v2

n

)

1

2

(17)

In the above expressions, it has been assumed that the weighting factors are approximately equal at each
point. A close examination of these expressions reveals that Eq. 17 produces velocity values that are greater
than or equal to those obtained from Eq. 16.

Other than the y-velocity component, the weighted averages obtained from the full nozzle match those
of the half nozzle. The flux-conserved methods, on the other hand, involve a system of coupled equations.
Hence, a change in any one property can affect other properties. Figures 13 and 14 show the distributions
of various properties through the nozzle for each of the one-dimensionalization approaches. The largest
differences between full and half geometry properties occur when the CMME method is utilized. Both
the Mach number and total pressure show noticeable deviations from the values obtained with the other
averaging approaches. The total pressure distributions are particularly interesting because this quantity
should be constant for the isentropic flowfield considered here. The CMME value for the full nozzle solution
shows nearly a 20% total pressure drop in regions where the y-component of velocity is large. The half
nozzle solution also shows a drop in total pressure, but the drop is considerably smaller (approximately
5%). The larger total pressure drop seen with the full nozzle is a result of an inconsistent accounting of
the kinetic energy between the three-dimensional and one-dimensional spaces. The kinetic energy computed
from the full nozzle solution only includes contributions from the x-velocity component (the y-component
vanishes), leading to a value for the kinetic energy that is smaller than that computed for the half nozzle.
Total enthalpy is one of the properties that is conserved, so the static enthalpy (or static temperature):

h(T,Ym) = H − 1

2
(~v · ~v) (18)

will be larger for the full nozzle. This larger temperature results in the smaller Mach number and total
pressure values seen in Fig. 14. The results obtained with the CMME method, and to a lesser extent the
Langley distortion methodology also show a violation of the second law of thermodynamics. This undesirable
behavior is avoided when the weighted average or the CMES method is employed.

7 of 19

American Institute of Aeronautics and Astronautics Paper AIAA-2007-0639



Case 3

The third case is a two-dimensional, turbulent flow through a model scramjet isolator. The inflow conditions
simulated are given in Table 2, along with the assumed surface temperature and applied back-pressure. The
lower wall of the isolator is part of the facility flowpath, while the upper wall is a flat plate extension placed
into the test section. This produces an asymmetric boundary layer structure, providing a more realistic
simulation of what would occur with a flight engine. The back-pressure was set high enough to force a shock
system into the isolator, simulating the pre-combustion shock train flow physics of a scramjet operating in
dual-mode. The grid and Mach contours of the back-pressured isolator flowfield are shown in Fig. 15. As one
would expect, the thicker boundary layer on the lower surface separated to a larger extent than the adjacent
boundary layer on the upper surface. The CFD simulation for this configuration was performed using the
VULCAN flow solver 13, 14 with the Wilcox (1998) k-w turbulence model. 15 The turbulent kinetic energy
is a contributor to the total enthalpy flux, and the decomposition required for the one-dimensionalization
methods took this into account, i.e.

H = h(T,Ym) +
1

2
(~v · ~v) + k (19)

where
∫

[ρ (~v · ~n) k] dA = ftke = [ρ (~v · ~n)k] A (20)

Table 2: Isolator Conditions

Nominal Isolator Conditions Inflow

Mach Number 2.22

Total Temperature [K] 286.1

Total Pressure [kPa] 923.9

Surface Temperature [K] 250.0

Back Pressure [kPa] 400.0

The shock system in the isolator introduces a high level of flow distortion; presenting a significant challenge
for any one-dimensionalization methodology. Figure 16 shows the distributions of Mach number and total
pressure through the isolator for the CMME, Langley distortion, CMES, and mass flux-weighted approaches.
The oblique shock pattern in the isolator causes a reduction in Mach number from a supersonic condition
at the isolator entrance, to a subsonic condition near the exit of the isolator. The cross-sectional area in
the isolator, however, is constant. Under these circumstances, the CMME method relationships (Eq. 3)
can permit only two solutions: a supersonic (shock-free) solution and a subsonic (normal-shock) solution.
Hence, this one-dimensionalization approach is not capable of predicting the gradual compression through
the isolator. The Langley distortion method includes distortion coefficients that allow for an “effective” area
change; providing a mechanism for capturing the effects of the oblique wave patterns through the isolator.
The shock wave patterns in the Mach distribution obtained from this approach match those of the mass
flux-weighted Mach distribution quite well. The Mach number extracted with the CMES method exhibits a
behavior similar to that given by the CMME approach. However, since entropy is a quantity that is explicitly
matched, a physically consistent monotonic drop in total pressure is realized with this methodology. Both
of the CMME methodologies predict a non-monotonic change in total pressure. This behavior has been a
consistent trend for each test case when non-negligible levels of flow distortion are present. This observation
(to a large degree) motivated the development of the CMES methodology.

The distortion coefficients extracted from the Langley distortion and CMES methods are given in Fig. 17.
The η3 distortion parameter (present in the Langley distortion method) never deviates from unity. This is a
direct result of choosing the unit normal to be aligned with the velocity vector. All other distortion param-
eters deviate significantly from unity. The gradual reduction seen for the η1 and η2 distortion parameters
upstream of the shock system is primarily a boundary layer displacement effect. The onset of the shock sys-
tem causes a rapid drop in these distortion parameters, and they remain low until the flow has been shocked
down to subsonic conditions. The η1 and η2 parameters gradually rise downstream of the shock system as
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the flow attempts to become re-attached. The distortion parameter present in the CMES method, η, shows
a gradual rise through shock system up to the point where the subsonic solution (see Fig. 16) is achieved.
At this point, the distortion parameter drops discontinuously and gradually increases for the remainder of
the re-attachment process.

Conclusions

Issues involved with the extraction of uniform properties from experimental data sets and/or multi-
dimensional computational data sets have been examined for a variety of methodologies. The unique as-
sumptions associated with each one-dimensionalization approach were shown to significantly affect the values
computed by each method. In general, the conserved-flux approaches all had difficulty producing expected
one-dimensional flow properties when the primary flow direction was not uniform. The conserved-flux ap-
proaches that did not explicitly account for the entropy flux were particularly troublesome, since these
methods were susceptible to violations of the second law of thermodynamics. The assumption of symmetry
often used in CFD analysis was also shown to have an impact on the one-dimensionalization process. In
general, the assumption of symmetry helped to maintain the correct kinetic energy levels for the conserved-
flux methodologies, which led to an improved uniform flow representation of the nozzle flowfields studied in
this effort. Finally, while no general arguments can be given for one averaging approach over another, some
basic observations can be made for each class of approach. The weighted methods, particularly the mass
flux-weighted approach, consistently predicted the qualitative trends present in the multi-dimensional data.
As a result, this approach is attractive when one simply wants to qualitatively examine how properties are
varying through the flowpath. The shortcoming of this approach appears when one wants to interface with a
one-dimensional engineering tool (or in any other situation where strict consistency between the flow prop-
erties is required). In this situation, the approach used to one-dimensionalize the data should be consistent
with the fluxes used by the engineering tool, and the interface should be placed at a plane with minimal flow
distortion.
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Appendix A. CMME Method - Variable Decomposition

The uniform flow properties that satisfy the integral flux relations for mass, momentum, and energy
conservation can be written as

fm
mass = [ρ (~v · ~n) Ym] A (1a)

~fmomentum = [ρ (~v · ~n) ~v + P~n] A (1b)

fenergy = [ρ (~v · ~n) H] A (1c)

The introduction of the total mass flux, ṁ,

ṁ =

ns
∑

m=1

fm
mass (2)

allows these relations to be recast as

fm
mass = ṁ Ym (3a)

~fmomentum = ṁ ~v + P ~n A (3b)

fenergy = ṁ H (3c)

The mass expression provides an explicit relationship for the uniform composition variables,

Ym =
fm

mass

ṁ
(4)

and the energy expression provides a direct relationship for the uniform total enthalpy

H =
fenergy

ṁ
= h(T,Ym) +

1

2
(~v · ~v) (5)

The momentum expression can be rearranged to yield an expression for the velocity vector,

~v =
~fmomentum −P ~n A

ṁ
(6)

This expression can be simplified to a scalar equation by taking the dot product of this vector with the unit
normal (~n),

~v · ~n =
fmomentum − PA

ṁ
(7)

where
fmomentum ≡ (~fmomentum · ~n) (8)

Further manipulations are possible with the introduction of the equation of state,

P = ρRT =
ṁ RT

(~v · ~n) A
(9)

resulting in the following relationship for (~v · ~n)

~v · ~n =
fmomentum − PA

ṁ
=

fmomentum

ṁ
− RT

(~v · ~n)
(10)

This equation is quadratic with respect to (~v · ~n), hence the quadratic formula can be used to obtain:

~v · ~n =
fmomentum/ṁ ±

[

(fmomentum/ṁ)
2 − 4RT

]
1

2

2
(11)

Equations 4, 5, 6, 9 and 11 can be combined to yield a single expression with static temperature as the only
unknown.
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In principle, any root solving algorithm can be used to solve for the static temperature. Unfortunately,
this function is multi-valued with respect to temperature, requiring additional logic and/or information
in order to choose the desired root for a given set of fluxes. The function, F (T ), has the general shape
displayed in Fig. A1. This figure shows that two values of temperature can satisfy F (T ) = 0. In this
effort, two bisection solves are performed to determine each temperature value that satisfies F (T ) = 0. The
first bisection method finds the root that is bounded between [Tmin, TFmax

], and the second finds the root
that is bounded between [TFmax

, Tmax]. TFmax
is the temperature that maximizes the function F (T ). This

temperature can be found from the solution of dF/dT = 0. The maximum allowable temperature (Tmax) is
the temperature that forces the discriminant of Eq. 11 to be zero, i.e.,

T =
(fmomentum/ṁ)

2

4R
(12)

and Tmin can be taken as either zero, or the minimum temperature specified for the polynomial fits of the
thermodynamic data. The solution that is retained is the solution that yields a Mach number that lies
closest to the mass flux-weighted Mach number, which must be externally supplied. As a final note, one
may be tempted to assume that the two roots that satisfy F (T ) = 0 represent a subsonic and a supersonic
solution to the flux equations. A careful examination of Eq. 11 reveals that this is not necessarily the case.
The Mach number (based on ~v · ~n) that appears when the discriminant vanishes corresponds to a value of
1/

√
γ, where γ is the ratio of specific heats. Hence, the two temperature values that satisfy F (T ) = 0 can

correspond to two subsonic solutions, or a subsonic and a supersonic solution.
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Figure A1: General form of the CMME function (colored lines denote the two branches of Eq. 11)
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Appendix B. CMES Method - Variable Decomposition

The uniform flow properties that satisfy the integral flux relations for mass, energy, and entropy conser-
vation can be written as

fm
mass = [ρ (~v · ~n)Ym] A (1a)

fenergy = [ρ (~v · ~n)H] A (1b)

fentropy = [ρ (~v · ~n) s] A (1c)

The introduction of the total mass flux, ṁ,

ṁ =
ns
∑

m=1

fm
mass (2)

allows these relations to be recast as

fm
mass = ṁ Ym (3a)

fenergy = ṁ H (3b)

fentropy = ṁ s(T,P,Ym) (3c)

leading to explicit relationships for the uniform composition variables, total enthalpy, and entropy. If the
unit normal is defined to be aligned with the velocity vector (i.e., ~n = ~v/|~v|), then

(~v · ~n) =
√

~v · ~v (4)

allowing (~v · ~n) to be extracted from the definition of total enthalpy,

(~v · ~n) = [2 (H − h(T,Ym))]
1

2 (5)

It should be noted that the velocity vector is not present in the equations that govern the CMES method.
Therefore, it must be supplied by some other means (e.g. by mass flux-weighting the velocity components)
to define the unit normal. Finally, an expression for the pressure is obtained by combining the equation of
state with the total mass flux, i.e.

P = ρRT =
ṁ RT

(~v · ~n) A
(6)

Equations 3, 5, and 6 can be combined to yield a single expression with static temperature as the only
unknown. The resulting function, F (T ), has the general shape displayed in Fig. B1. This figure shows that
two values of temperature can satisfy F (T ) = 0. One of the roots results in a solution for subsonic flow, and
the other yields a solution for supersonic flow. In this effort, two bisection solves are performed to determine
each temperature value that satisfies F (T ) = 0. The first bisection method finds the root that is bounded
between Tmin and the temperature at the sonic point, and the second finds the root that is bounded between
the temperature at the sonic point and the stagnation temperature. The stagnation temperature is obtained
from the solution of

H(T◦,Ym) = 0 , (7)

the sonic temperature is the temperature that satisfies

γ(T∗,Ym) R T∗ = 2 (H − h(T∗,Ym)) , (8)

and Tmin can be taken as either zero, or the minimum temperature given for the polynomial fits of the
thermodynamic data. The solution that is retained is the solution that yields a Mach number that lies
closest to the mass flux-weighted Mach number (which must be externally supplied).
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Figure B1: General form of the CMES function
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Figure 1: Surface/Line of integration and the unit normal for one-dimensionalization
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Figure 2: Grid 1 - Two blocks aligned with the shock wave
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Figure 3: Mach number contours for the compression corner
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Figure 4: Variation of uniform CMME properties with choice of unit normal (the distance variable is defined
as the average x-value along a given integration surface)
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Figure 5: Uniform properties obtained with the Langley distortion and CMES methodologies (the distance
variable is defined as the average x-value along a given integration surface)
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Figure 6: Grid 2 - Single block typical of a grid used for CFD
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Figure 7: Static density and x-velocity distributions on grid 2 using weighted averages
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Figure 8: Static pressure and y-velocity distributions on grid 2 using weighted averages
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Figure 9: Mach number and total pressure distributions on grid 2 using weighted averages
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Figure 10: Static pressure and x-velocity distributions on grid 2 using conserved-flux approaches
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Figure 11: Mach number and total pressure distributions on grid 2 using conserved-flux approaches
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Figure 12: Grid (every fourth point removed for clarity) and Mach number contours for the nozzle
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Figure 13: y-velocity and static pressure distributions for the half and full nozzle geometry
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Figure 14: Mach number and total pressure distributions for the half and full nozzle geometry
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Figure 15: Grid and back-pressured isolator Mach contours
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Figure 16: Mach number and total pressure distributions for the back-pressured isolator
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Figure 17: Distortion coefficients for the back-pressured isolator
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