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ABSTRACT

Aerogels are of interest to the aerospace community primarily for their thermat
properties, notably their low thermal conductivities. While the gels are typically fragile,
recent advances in the application of conformal polymer layers to these gels has made
them potentially useful as lightweight structural materials as well. In this work, we
investigate the strength and fracture behavior of silica aerogels using a molecular statics-
based computer simulation technique. The gels' structure is simulated via a Diffusion
Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures

representing experimentally observed aggregates of so-called secondary particles,
themselves composed of amorphous silica primary particles an order of magnitude
smaller. We have performed multi-length-scale simulations of fracture in silica aerogels,
in which the interaction between two secondary particles is assumed to be described by a
Motse pair potential parameterized such that the potential range is much smalfler than the
secondary particle size. These Morse parameters are obtained by atomistic simulation of
models of the experimentally-observed amorphous silica "bridges," with the fracture
behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential
for silica. We consider the energetics of the fracture, and compare qualitative features of
low-and high-density gel fracture.

INTRODUCTION

Aerogels are low-density materials possessing propertics that have maintained
interest for a wide variety of applications [1-3]. In particular, the low thermal
conductivities characteristic of such gels have led to the acrospace community’s interest
in these materials as lightweight thermal insulation.

Aerogels are also notoriously fragile, and to develop thermal insulation that is
mechanically robust, researchers in our laboratory have developed a method for applying
conformal polymer coatings aerogels that greaily improve the gels' strength while
minimally impacting their insulating properties [4]. In order to provide a microscopic
understanding of the mechanical behavior of the gels, and to provide a predictive tool of
use in their further development, we have constructed a multiscale model for fracture in
silica aerogels. The model is built on computer simulations using a modified diffusion-
limited cluster aggregation (DLCA) scheme [5] for gel cluster structure, and an
interparticle interaction potential based on results of atomistic simulations.

STRUCTURAL MODEL

Silica aerogels are known to ¢xhibit a low-density pearl-necklace structure that
consists of tangled strands of roughly spherical “secondary” particles. These particles



themselves exhibit complex internal structure, and are usually considered to consist of
smaller “primary” particles of amorphous silica of less than bulk density. For the current
work, we ignore this small-scale structure and assume that the secondary particles are of
a uniform density less than that of bulk amorphous silica, p = 2.20 g/em’ [6]; an in-chain
density of about 1.8 g/cm’ has been reported by Woignier et al [7]. X-ray and neutron
probes of gel structure[8-11], suggest that the gels consist of disordered aggregates of
connected fractal clusters, with fractal behavior evident over a limited range of length
scales.

Several computer simulation techniques have been developed with the goal of
producing aggregates that mimic the structures of low-density compact or fractal
materials, notably the Eden model [12], ballistic aggregation [13], diffusion-limited
- aggregation (DLA) [14], and diffusion-limited cluster aggregation (DLCA) [5].

In the current work, we make use of a modified version of the off-lattice DLCA
model. Briefly, the DLCA model consists of a number of particles, initially distributed at
random without overlap through a computational cell. Particle sizes may be uniform, or
chosen randomly from a distribution, as in our work, where a log-normal distribution is
used. A particle {or a cluster of them, as the aggregation process proceeds) is chosen at
random, with a probability given by P; = (m; /myg)®, where m; and my are the masses of the
moving cluster and the lightest cluster in the cell, respectively, and ¢ is a scaling
parameter, here taken to be -0.5. The particle or cluster is moved in a random direction,
and is then inspected for collisions with other particles or clusters. If one or more
collisions occur, the colliding clusters and particles are merged into a single cluster. The
move-merge procedure is repeated until all particles have merged into a large single
cluster.

MULTISCALE FRACTURE MODEL

The DLCA simulations described above provide a model of the structure of the cluster of
secondary particles that make up the gel, and these model clusters exhibit the low-density
chain structure characteristic of real gels. Based on examination of micrographs, we
assume that the chains consist of secondary particles connected by cylindrical bridges
whose diameter is fypically smaller than those of the connected particles. Failure is
assumed to occur through the breaking of the bridges, with the particles themselves
remaining intact.

To describe the details of fracture, we use a multiscale model, in which
interparticle interactions are described via a simple interaction potential whose
parameters are obtained from a higher-fidelity atomistic simulation of the energetics of
bridge strain. Bridge strain energetics are obtained as follows. A cylindrical
computational cell of amorphous silica is construcied, with slabs at the top and bottom of
the cell {each consisting of 20 percent of the cell vertical dimension) held atomically
rigid. The cell is strained by applying a small displacement to the top slab, and the center
60 percent of the cell is allowed to relax via a molecular statics procedure, in which each
atom is moved along the local energy gradient. Interatomic interactions include Morse
and Coulomb contributions, with fixed partial atomic charges. Potential parameters are
shown in Table 1.

V(r)= V[exp(yr, /n,) - 2explrm; 21| + g, /7 | (1)



Table 1. Potential parameters

Voergs rg,Cm Y
Si-S1 2.0537E-14 3.4103E-8 © 1 11.7139
Si-O 3.1957E-12 1.6148E-8 8.8022
0-0 3.7260E-14 3.7835E-8 10.4112

gsi=1.22¢; go=-0.61e

To describe the behavior of the gel cluster, we fit the bridge energy versus strain curve to
a Morse potential of the same form as the first term in Equation 1. Note, however, that in
an atomistic context, the range of the potential is comparable to the size of the interacting
atoms; as used to describe secondary particle interactions, however, the potential’s range

is much smaller than the typical secondary particle diameter.

RESULTS AND DISCUSSION

We have performed simulations for a range of initial densities (assuming secondary
particle density equal to the reported in-chain density), mcludmg three which we have
characterized as low (0.0130g/cm’ ), medium (0.0603g/cm®) and high (0.593g/cm’).
These densities bracket the observed densities of actual silica gels; for example, Rousset
et al. report SEM observations on gels having densities of 0.107, 0.23, and 0.36 g/em’[3].

Micrographs of two coated acro els of d1fferent densities are shnwn in Figure 1.
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Figure 1. Silica aerogels. 0.016 g/cm’ (left), 0.450 g/em® (right).

Hlustrations of the final states of low, medium and high-density computational cells
are presented in Figures 2 (a-c). Fractal dimensions of the clusters are computed from
scaling exponent of the cluster mass. The high-density cluster yields a fractal dimension
of 2.8, close to the value of 3 exhibited by compact clusters. The medium- and low-
density clusters show an inflection point in the In(M(r)) versus In(r) curve suggestive of a
fractal-to-compact transition; both clusters show a fractal dimension 0f 2.7-2.9 at large 1,
with values of 2.0 {(medium density) and 1.8 (low density) at small r. The small-r value
for the low-density cluster is consistent with the fractal dimension of about 1.75 reported
for other colloidal materials [15}




Figure 2. Acrogel clusters from DLCA simulations. (a) 0.0130/cm
0.593g/cm’.

(b) 0.0603g/cm’ ()

Bridge strain energetics are shown in Figure 3. The curve of energy versus strain is
typical of phenomena consistent with the Universal Binding Energy Relation (UBER) of
Rose, Ferrante and Smith [16]. Such interactions are typical able to be fit reasonably well
with a Morse potential, as is done here.
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Figure 3. Bridge strain energy

With secondary particle interactions described by this Morse potential, a tensile
strain is applied to a series of low-, medium- and high-density DLCA clusters, using the
same molecular statics procedure described above. The evolution of a typical high-
density computational cell is shown in Figure 4. Energies as a function of strain for low-,
medium- and high-density clusters (averaged over 10, 10 and 9 cells, respectively) are
shown in Figure 5.



Figure 4. Evolution of failure of high-density cluster
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Figure 5. Cluster average energy versus strain

Aerogel fracture is generally considered to be brittle, though the application of such
terminology to a gel material may be inappropriate. Regardless, brittle fracture is
typically characterized by a lack of necking of a sample fractured in tension, and by an
increase in energy with strain, followed by an abrupt decrease in energy when fracture
occurs. It is evident from Figure 4 that little or no necking is in evidence. However, the
energy versus strain curves in Figure 5 are more ambiguous. The high-density cells
appear to exhibit a reasonably abrupt decrease in energy. The medium- and low-density
cells show a less abrupt decrease, and it is not clear whether it is appropriate to
characterize the failure there as brittle. We are currently awaiting experimental results
- which we expect to resolve this issue. Because the DLCA clusters at a given density
differ slightly in size, an exact calculation of the strain at which failure accurs, based on



energies averaged over a number of cells of different size, is of limited usefulness.
However, failure occurs at between one and two percent strain for all cluster densities.

A possible explanation for the strain energy behavior is suggested by examining the
final stage in the evolution of the computational cell in Figure 4, It appears that some of
the “pearl necklace” strands have uncoiled and stretched in the direction of the applied
strain, and this uncoiling may tend to make the energy decrease at failure less abrupt. We
suspect that this uncoiling may be a consequence of the spherical symmetry of the
secondary particle interaction potential; in our model, there is no energy penalty involved
when a particle slides across the surface of another. In reality, such motion would involve
at least a good deal of chemical bond strain, and, for a significant displacement, the
breaking and possible reforming of a number of chemical bonds. For this reason, we are
modifying our mode! to include an angular energy contribution, to be computed
atomistically in the same manner as the bond strain energy used here.



CONCLUSIONS

We have performed computer simulations of the fracture of silica acrogels, based on a
diffusion-limited cluster aggregation mode! for the gel structure, and a multiscale model
for fracture. The simulations were carried out at levels of density that span the range of
densities exhibited by real aerogels, with cluster fractal dimensions that are increasing
functions of density, and range from 1.9 to 2.9. Model gel fracture occurs at strains of
approximately one percent. Strain energetics suggest that the model may not fully capture
the brittle behavior exhibited by real gels, and modifications to the particle interaction
potential are under way to enhance the fidelity of the simulations.
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