

A Coordinated Initialization Process for the
Distributed Space Exploration Simulation (DSES)

Robert Phillips, Dan Dexter and David Hasan
L3 Communications, Inc.

1002 Gemini Avenue, Suite 200
Houston, TX 77058

(281) 483-0926, (281) 483-1142, (281) 480-4101
robert.g.phillips@L-3Com.com, dan.dexter@L-3Com.com, david.hasan@L-3Com.com

Edwin Z. Crues, Ph.D.
Simulation and Graphics Branch (ER7)

Automation, Robotics and Simulation Division
NASA Johnson Space Center

2101 NASA Parkway
Houston, TX 77058

281-483-2902
edwin.z.crues@nasa.gov

Keywords:
Distributed Simulation, Space, Exploration, NASA

ABSTRACT : This document describes the federate initialization process that was developed at the NASA Johnson
Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the
Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE
1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of
the paper is to describe a generic initialization sequence that can be used to create a federate that can:

 1. Properly initialize all HLA objects, object instances, interactions, and time management
 2. Check for the presence of all federates
 3. Coordinate startup with other federates
 4. Robustly initialize and share initial object instance data with other federates.

1 Introduction
This document describes the federate initialization
process that was developed at the NASA Johnson
Space Center (JSC) with the HIIA Transfer Vehicle
Flight Controller Trainer (HTV FCT) simulation and
refined in the Distributed Space Exploration
Simulation (DSES) [1][2]. These simulations use the
High Level Architecture (HLA) IEEE 1516 to provide
the communication and coordination between the
distributed parts of the simulation (federates) [3]. This
document assumes a basic understanding of the HLA
IEEE 1516 standard, and C++ programming.

2 Background
The HTV FCT simulation was the first distributed
simulation developed at JSC that used the IEEE 1516
standard. After the original concept had been proven,
engineers at JSC started adding generic IEEE 1516
capabilities to the Trick simulation development
package.

Engineers at JSC then worked with other NASA
engineers at Ames Research Center, Langley Research
Center, and Marshall Spaceflight Center to test some
distributed simulation ideas for the Crew Exploration
Vehicle (CEV) and Constellation programs in the
DSES simulation.

It became clear during initial discussions about the
DSES simulation that certain features would be
important for the proposed environment. In particular,
the ability to dynamically configure which vehicles
(each represented by a federate) participate in a given
run and the ability to dynamically share the initial
configuration of each participating vehicle would both
be very useful.

A generalized initialization routine usable by all
federates was developed and tested that ensured a
robust simulation run start regardless of participating
federates or startup order and also allowed generic
exchange of initial data. Since the other centers were
not then using Trick and were not familiar with IEEE
1516, previous versions of this paper served as a “how
to get started” document.

3 The Initialization Process
The initialization sequence described in this paper
consists of the following steps, which are executed by
each participating federate.

1. Create the federation
2. Publish and subscribe
3. Create object instances
4. Confirm all federates are joined
5. Achieve “initialize” Synchronization Point
6. Update object instance(s) with initial data
7. Wait for object instance reflections
8. Set up time management
9. Achieve “startup” Synchronization Point

3.1 Create the Federation
In this step, each participant in the simulation ensures
that the federation exists and then joins it.

Every federate attempts to create the federation and, of
course, only the first attempt will succeed. Subsequent
attempts will generate an exception indicating that the
federation already exists, which is not a failure
condition but rather indicates that some other federate
already created it. Following that, the federate joins the
federation. (See Code Example 1.)

3.2 Publish and Subscribe
In this step, each federate publishes1 and subscribes all
relevant objects and interactions.

1 In HLA, the term publish refers to a federate’s
announcement to the RTI of its intention to create and update
object attributes or interactions. No data is actually sent
during publishing.

Publishing and subscribing for objects is done on an
attribute-by-attribute basis. Consequently, federates
must specify each object and its attributes of interest.
On the other hand, publishing and subscribing to
interactions includes all parameters. Consequently,
federates only specify the interaction when publishing
or subscribing to interactions. (See Code Examples 2
and 3.)

3.3 Create Object Instances
In this step, each federate creates instances2 of the
objects attributes of which it intends to publish.

Although it is not strictly necessary for the federate to
immediately create instances of objects that are neither
present at startup nor used during initialization, the
DSES approach is to consolidate all instance creation
code in one place. In any event, all objects used during
initialization must be created at this point.

Instance names. It is possible that different federates
will create object instances for the same object. Two
instances of the object, VehicleState , could exist,
for example, for the space station and crew exploration
vehicle. This means that a federate that subscribes to an
object might discover multiple instances and must be
able to distinguish between them. To provide for this,
IEEE 1516 allows federates to tag object instances with
federation-unique names.

The DSES naming convention uses the space vehicle
component names as a kind of de facto namespace for
the object instance names. DSES vehicle names are
used as name prefixes: CLV_S1, CLV_S2, CEV_SM,
CEV_CM, and LAS (for Crew Launch Vehicle Stage 1
and Stage 2, CEV Service and Command Modules, and
Launch Abort System).

A more general naming convention is to use a
combination of the federate name and the object name.
For example, if a federate publishes only one instance
of a given object, it could name the instance
<federate-name>_<object-name> . If a
federate publishes one or more instances of a given
object, it could name the instances <federate-
name>_<object-name>_<instance-name> .

For example, if federate named F1 publishes an object
named VehicleState , it could name the object
instance F1_VehicleState . If the federate needs to

2 In HLA, an object is a like a Java/C++ type or class, and an
instance is a specific instantiation of that type/class.

create two instances of that object for vehicles A and
B, it could use names F1_VehicleState_A and
F1_VehicleState_B .

Registering instance names. To assign names to
object instances federates reserve the names with the
Runtime Infrastructure (RTI) and then wait for
confirmation. For the reserved name to be valid, it must
be unique in the federation and not start with the prefix
HLA. (See Code Example 4.) In response, the RTI
invokes a federate ambassador callback indicating
whether or not the reservation request succeeded. (See
Code Example 5.) Once the reservation has been
confirmed by the RTI, the federate may register an
instance of the object with that name. (See Code
Example 6.) Finally, after a publishing federate has
registered an object instance, the RTI will invoke a
federate ambassador callback for each subscribing
federate to notify them of the new instance. (See Code
Example 7.)

3.4 Confirm All Federates Are Joined
In this step, each federate must wait until all the
expected federates have joined the federation.

Each federate could execute logic to ensure that all the
other federates have joined, but DSES uses a
mechanism in which only one federate does this. The
approach uses two synchronization points: one called
initialize that marks when all federates are ready
to exchange initialization information and one called
startup that marks when all federates have
completed initialization and are ready to execute3.

Registering synchronization points. Each federate
attempt to register both synchronization points. (See
Code Example 8.) In response, the RTI invokes
federate ambassador callbacks indicating whether or
not the registration request succeeded. Since only one
federate can succeed in registering each
synchronization point, all but one receive an “already
exists” indication from the failure callback. This is not
an error, rather it indicates that one of the other
federates already registered the synchronization point.
The federate that successfully registers the
initialize synchronization point becomes the
master federate4. (See Code Example 9.) All federates

3 The startup synchronization point is actually not used
until later; however, DSES initializes both the
synchronization points together.
4 Any federate might end up being the master.

wait for both synchronization points to be registered
before proceeding. (See Code Example 10.)

Waiting for joiners. At this point, the federates wait
for all of the expected federates to join the federation.
The DSES approach is to have the master federate do
the work while the others wait for the master. The non-
masters wait for the master at the initialize
synchronization point. (See Code Example 11.)

In order to detect joined federates, the master federate
uses an object from the Management Object Model
(MOM) interface5. This MOM federate object has an
attribute that gets updated as each new federate joins
the federation, and the master federate subscribes to
this attribute. (See Code Example 12.) The RTI
invokes callbacks when this object is discovered and its
attribute reflected. The value of the newly reflected
attribute holds the name of a federate that has just
joined the federation. The callback records this name in
a data structure that lists all joined federates. (See Code
Example 13.)

In DSES, every federate is configured with a run-time
list of names of all the expected federates. The master
federate repeatedly compares the list of expected
federates to the list of joined federates until all the
expected federates have joined. (See Code Example
14.)

This approach is crucial, because it allows the
simulation to be easily started across multiple locations
without a required startup order, and allows the set of
participating federates to be easily modified before a
run by editing the list of expected federates.

3.5 Achieve “initialize” Synchronization Point
In this step, each federate waits for the master federate
to determine that all the expected federates have indeed
joined the federation and that all other federates are
ready to exchange initial data.

When the master federate reaches this step, it has
assured that all expected federates have joined the
federation. Furthermore, each federate upon reaching
this step is completely ready to exchange initial data,
because all required objects and interactions have been
published and subscribed to, and all object instances
have been registered.

5 This object instance is published and reflected by the RTI
itself (not by one of the federates).

Each federate achieves the initialize
synchronization point to indicate that it is ready to
exchange initial data, then enters a loop to wait for the
federationSynchronized callback from the
RTI. (See Code Example 15.) This callback is invoked
when all federates have achieved the synchronization
point, so each federate knows that the entire federation
is present and ready to exchange initial data. (See Code
Example 16.)

3.6 Update Object Instances With Initial Data
In this step, the federates exchange initial data. Each
publishing federate reflects the initial values for all the
attributes it owns, and these initial data are delivered to
all subscribers.

There must be some agreement between federate
implementers about which object instances are
initialized statically by each federate and which will
have initial data sent at run time by the owning
federate. DSES federates exchange initialization data
for all object instances at run time, because this avoids
the configuration management issues associated with
consistently duplicating static initialization data at the
various federate locations. If instead, for example,
static initialization data is read from input files, then
each federate must have an input file that contains the
initial values for the data published by the other
federates.

Before sending initial data, DSES federates enable
asynchronous delivery of Receive Order object
instance reflections. Without this call, the federate will
not receive the initialization data until it requests a time
advance. Since the simulations have not started at this
point, time ordered delivery is meaningless. The initial
values may be set in any order, as long as they all get
set. Enabling asynchronous delivery is needed so that
data reflections can be received while the federate is
paused.

After the federate has enabled asynchronous delivery,
it sends the updates for the desired object instances.
(See Code Example 17.)

All of the data in the DSES simulation is defined as
Time Stamp Ordered (TSO). Since the initial data is
sent before the federates have enabled time regulation
and time constraints, it will be delivered as Receive
Order (RO). Even if time regulation and constraints
had been activated, the initial data could be sent as RO
by using the updateAttributeValues() call
without a time stamp.

3.7 Wait for Object Instance Reflections
In this step, each federate executes a wait loop until the
expected initial object instance reflections from all
other federates have been received. (See Code Example
18.)

In the Federate Ambassador, something like Code
Example 19 will store reflected initialization values
from the other federates and check to see if all
federates have updated data for their initialization
object instances.

3.8 Set Up Time Management
In this step, the federates activate time management.

3.8.1 Time Frames
Time management defines how the RTI synchronizes
and relates the time for various federates. To
understand this, it is important to keep in mind the
distinction between RTI time, real time, and simulation
time.

Most simulations of time-propagated dynamical
systems have natural simulation time scales. However,
this is typically not the case for either distributed or
real-time simulations. In fact, a typical IEEE 1516
federate must operate in several distinct time frames
simultaneously.

Real Time. This is the computer’s concept of time
passage in the physical world. This most often ties to
registers in the computer’s hardware that store values
incremented in conjunction with an oscillator of known
frequency and fidelity. These values can then be
translated into a current time. In some cases, external
interrupts or external clock registers are used.

Real time is sometimes referred to as wall clock time. It
is important when a simulation is interfacing with time
critical hardware or software or has elements that
provide or require human interaction.

Simulation Time. This is the natural time scale for the
dynamic systems being simulated. From a simulation’s
(and therefore a federate’s) point of view, this is its
“actual” time -- the time that it is currently simulating.

Simulation time advancement is determined by the
needs of the dynamic system being simulated. For
instance, Trick [4][5] based orbital dynamics
simulations are often propagated in 0.01-second time
steps (100 Hz). Trick based robotic simulations,
however, are often propagated at 0.001-second time
steps (1000 Hz).

In certain circumstances, the simulation time can keep
up with or go faster than wall clock time. When
simulation runs at the same rate as real time, the
simulation is said to run real time.

RTI Time. This is the time that the RTI thinks the
federate is at and therefore is the timetag associated
with data reflected by the RTI. Since the RTI time can
advance at a different rate (1Hz for all federates in the
HTV FCT federation, 4Hz for all federates in the
DSES federation) than the simulation time and the RTI
time advances involve asynchronous callbacks from
the RTI, the RTI time and simulation time are only
loosely coupled.

Update Time. This is the earliest time for which the
federate is allowed to publish. It is identical to the
federate’s Greatest Allowed Logical Time, or GALT.
This is related to the RTI time as follows: if the
federate is not in Time Advancing mode, the update
time is equal to the federate’s current RTI time plus its
lookahead time interval. If the federate is in Time
Advancing mode, then the update time is equal to the
RTI time that the federate is advancing to plus its
lookahead time interval. A federate is in Time
Advancing mode after it has made a Time Advance
Request or Time Advance Request Available, but
before the corresponding Time Advance Grant has
been received.

3.8.2 Time Management
In both the HTV FCT and the DSES federations, the
default mode of operation is to have all federates be
both time regulating and time constrained [6]. The time
regulation uses a lookahead interval the same as the
rate of data sending, e.g., 4Hz sending with 0.25
second lookahead. (See Code Example 20.) HLA does
not require this, but it simplifies things to do so.

3.9 Achieve “startup” Synchronization Point
In this step, the federates synchronize at the startup
synchronization point.

When all federates have done this and the federation
has been synchronized, then the DSES initialization is
complete and the federates can begin running the
simulation. (See Code Examples 21 and 22.)

4 Concluding Remarks
It is clear that far more than the Federation Object
model (FOM) and Simulation Object Model (SOM) are
necessary to coordinate federates in an IEEE 1516
federation. This paper has presented an approach to
standardizing federation initialization that addresses
several general issues.

• It ensures that all necessary federates are joined
before the simulation starts.

• It allows the set of necessary federates to be easily
modified.

• It doesn’t force a specific federate start sequence.

• It allows dynamic exchange of initial object
attribute values during startup.

Simulations like DSES have multiple federates that
represent separate systems with many possible
configurations. The ability to ensure robust dynamic
initialization without centralized control is crucial in
this kind of environment.

5 References
[1] G. Lauderdale, E. Crues, D. Snyder, D. Hasan, “A

Feasibility Study for ISS and HTV Distributed
Simulation,” AIAA Modeling and Simulation
Technologies Conference and Exhibit, Austin,
Texas, 11-14 August 2003.

[2] G. Lauderdale, E. Crues, D. Snyder, D. Hasan,
“Further Studies On The Feasibility Of A
Distributed ISS and HTV Simulation,”
Proceedings of the Fall 2003 Simulation
Interoperability Workshop and Conference,
Orlando, Florida, 15-18 September 2003.

[3] Simulation Interoperability Standards Committee
(SISC) of the IEEE Computer Society, “IEEE
Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) Federate Interface
Specification”, The Institute of Electrical and
Electronics Engineers, 3 Park Avenue, New York,
NY 10016-5997, USA, 9 March 2001, ISBN 0-
7381-2622-5 SS94883.

[4] K. Vetter, “Trick User’s Guide 2005 Release,”
NASA Technical Publication, NASA Johnson
Space Center, September 2005.

[5] K. Vetter, “Trick Simulation Environment – User
Training Material 2005 Release,” NASA
Technical Publication, NASA Johnson Space
Center, September 2005.eren

[6] R. Phillips, E. Crues, “Time Management Issues
and Approaches For Real Time HLA Based
Simulations,” Proceedings of the Fall 2005
Simulation Interoperability Workshop and
Conference, Orlando, Florida, September 2005.

Author Biographies

ROBERT G. PHILLIPS is a chief software engineer
and project manager at L-3 Communications,
supporting the Simulations and Robotics Division of
the Engineering Directorate at Johnson Space Center.
He is the lead designer and developer on the HIIA
Transfer Vehicle (HTV) Flight Controller Trainer
(FCT) simulation, works on the Distributed Space
Exploration Simulation (DSES), and is currently
helping design the HTV Space Station Training
Facility (SSTF) simulation. He has developed training
and flight-related software at JSC for over 18 years. He
has a Masters of Computer Science from Rice
University.

DAN E. DEXTER is a chief systems engineer at L-3
Communications, supporting the Simulations and
Robotics Division of the Engineering Directorate at
Johnson Space Center. He is the lead designer and
developer of the Trick High Level Architecture
(TrickHLA) simulation model and is currently working
on the Distributed Space Exploration Simulation
(DSES). He has developed nonlinear signal and image
processing, distributed supercomputing, and flight-
related software at JSC for more than 12 years. He
received a B.S. degree in Electrical Engineering from
the University of Kansas.

DAVID A. HASAN works for L-3 Communications,
supporting the Simulations and Robotics Division of
the Engineering Directorate at Johnson Space Center.
He has 14 years of experience developing software,
including distributed expert systems, mission control
center middleware and applications, embedded GPS-
based autonomous navigation systems, distributed
computing systems, automated computer fault
detection, and metering and billing systems for grid
computing. He received B.S. degrees in Aeronautical
and Astronautical Engineering and Political Science
from the University of Illinois and a M.S. in Aerospace
Engineering from the University of Texas.

EDWIN Z. CRUES, PH.D. has supported the
Automation, Robotics and Simulation Division at
NASA Johnson Space Center for the past 14 years.
Since 2004, he has been a member of the Simulation
and Graphics Branch where he leads the research and
development of distributed simulation technologies. In
this capacity, he leads the development of the HTV
Flight Controller Trainer (FCT) and the NASA
Distributed Space Exploration Simulation (DSES). The
DSES work is in support of the Modeling and
Simulation and Data Architectures (MS&DA) group
for the Constellation program. Dr. Crues also supports
dynamics model development for the Trick Simulation
Environment and the Common Model set.

Appendix: Code Examples

Example 1: Create the Federation
// Try to create the federation
RTIambassadorFactory * rtiAmbFactory = new RTIambas sadorFactory();
rtiAmbassador = rtiAmbFactory->createRTIAmbassador(…);
try {
 rtiAmbassador->createFederationExecution(…);
catch (RTI::FederationExecutionAlreadyExists &e) {
 // This is ok. Some other federate must have alr eady created the federation.
}

// Join the federation. One of the arguments is the federate ambassador.
// If this call succeeds, then the program has beco me a “federate”.
federate_id = rtiAmbassador->joinFederationExecutio n(…);

Example 2: Publish/Subscribe Object Attributes
// This is the object whose attributes we are inter ested in.
object_id = rtiAmbassador->getObjectClassHandle(ob ject_name);

// These are the attributes of that object that we are interested in.
attribute_id_1 = rtiAmbassador->getAttributeHandle(object_id, attribute_name_1);
attribute_id_2 = rtiAmbassador->getAttributeHandle(object_id, attribute_name_2);
…
attribute_id_n = rtiAmbassador->getAttributeHandle(object_id, attribute_name_n);

// Put the attribute ids into a map. This is a coll ection of the attributes we
// are interested in. It does not need to include a ll the attributes of the object.
attributes_map = …;

// To publish the attributes in the map, we do this .
rtiAmbassador->publishObjectClassAttributes(object _id, attributes_map);

// To subscribe to the attributes in the map, we do this.
rtiAmbassador->subscribeObjectClassAttributes(obje ct_id, attributes_map, true);

Example 3: Publish/Subscribe Interactions
// This is the interaction we are interested in.
interaction_id = rtiAmbassador->getInteractionClass Handle(interaction_name);

// To publish an interaction, we do this.
rtiAmbassador->publishInteractionClass(interaction _id);

// To subscribe to an interaction, we do this.
rtiAmbassador->subscribeInteractionClass(interacti on_id);

Example 4: Reserve Object Instance Names
// Ask the RTI to reserve an object instance name.
wstring instance_name = L”MyFederateName_MyObjectNa me”;
rtiAmbassador->reserveObjectInstanceName(instance_ name);

Example 5: Name Reservation Callbacks
// This callback is invoked by the RTI when a name reservation request succeeds.
void MyFedAmbassador:: objectInstanceNameReservationSucceeded(
 wstring const & theObjectInstanceName)
throw (RTI::UnknownName, RTI::FederateInternalErro r)
{
 // Record the fact that the reservation of this name succeeded.
 setNameReserved(theObjectInstanceName, true);
}

// This callback is invoked by the RTI when a reser vation fails.
void MyFedAmbassador:: objectInstanceNameReservationFailed(
 wstring const & theObjectInstanceName)
throw (RTI::UnknownName, RTI::FederateInternalErro r)
{
 setNameReserved(theObjectInstanceName, false);
 // Handle the fact that the reservation failed. This is generally fatal.
 error(…);
}

Example 6: Register Object Instances
// Wait for the RTI to confirm that the name was su ccessfully registered.
while(! isNameReserved(instance_name)) {
 usleep(100);
}

// Register an object instance using that name.
instance_id1 = rtiAmbassador->registerObjectInstanc e(object_type_id, instance_name);

Example 7: Object Instance Discovery Callback
// This callback is invoked by the RTI to notify th e federate that a new object instance
// has been discovered, i.e., some other federate h as registered it.
void MyFedAmbassador:: discoverObjectInstance(
 ObjectInstanceHandle const & theObject,
 ObjectClassHandle const & theObjectClass,
 wstring const & theObjectInstanceName)
throw (RTI::CouldNotDiscover,
 RTI::ObjectClassNotKnown,
 RTI::FederateInternalError)
{
 // Record the fact that this object instance has been discovered.
 saveInstance(theObject , theObjectClass, theObj ectInstanceName);
}

Example 8: Register Synchronization Points
// The “initialize” synchronization point is used t o mark when all federates are
// joined and ready to initialize data. Here is how we register it.
rtiAmbassador->registerFederationSynchronizationPoi nt(L"initialize", …);

// The “startup” synchronization point is used to d etermine when
// to start the simulation. Here is how we register it.
rtiAmbassador->registerFederationSynchronizationPoi nt(L"startup", …);

Example 9: Synchronization Point Registration Callbacks
// This callback is invoked by the RTI whenever syn c point registration succeeds.
void MyFedAmbassador:: synchronizationPointRegistrationSucceeded(
 wstring const & sp_label)
throw (RTI::FederateInternalError)
{
 // We only have special logic for the “initializ e” sync point.
 if (sp_label.compare(sp_label,L"initialize") == 0) {
 set_master(true);
 set_initialize_sp_exists(true);
 } else if(sp_label.compare(sp_label,L"startup") == 0) {
 set_master(false);
 set_startup_sp_exists(true);
 }
}

// This callback is invoked by the RTI whenever syn c point reservation fails.
// Sometimes this is because another federate has a lready reserved it.
void MyFedAmbassdor:: synchronizationPointRegistrationFailed(
 wstring const & sp_label,
 SynchronizationFailureReason reason)
throw (RTI::FederateInternalError)
{
 bool because_nonunique =
 (reason == SynchronizationFailureReason: :synchronizationPointLabelNotUnique());

 if (because_nonunique) {
 if (sp_label.compare(sp_label,L"initialize") == 0) {
 // Someone else registered the “initialize ” sync point.
 // That means we are NOT the “master feder ate”. But that also means that
 // the “initialize” sync point does indeed exist.
 set_master(false);
 set_initialize_sp_exists(true);
 } else if (sp_label.compare(sp_label,L"start up") == 0) {
 set_startup_sp_exists(true);
 }
 } else {
 error(…);
 }
}

Example 10: Wait for Synchronization Point Registration
// Wait for both sync points to be successfully reg istered. These conditions should
// eventually be set to true when the RTI invokes t he sync point registration callbacks
// in the federation ambassador. (See Code Example 9.)
while(! fedAmbassador.initialize_sp_exists() && !f edAmbassador.startup_sp_exists()) {
 usleep(100);
}

Example 11: Wait for All Federates to Join
// The “initialize” sync point has been registered already. (See Code Example 8.)

if(master()) {
 // This federate is indeed the “master federate” . Therefore it needs to determine
 // determine which federates have joined and to wait until they all have.
 …subscribe to joined federates… // (See Code Ex ample 10A.)
 …compare joined to expected federates… // (See C ode Example 10B.)
} else {
 // This federate is NOT the “master federate”. T here is nothing else to do.
}

// All federates proceed to the “initialize” sync (described elsewhere). The
// non-masters will end up waiting for the master, at which point they can all proceed.
// (See Code Example 15.)

Example 12: Subscribe to Joined Federates
// Get the ID for the MOM federate object.
MOM_federate_object_id =
 rtiAmbassador->getObjectClassHandle(L"HLAobject Root.HLAmanager.HLAfederate");
// Get the ID for the attribute we’re interested in .
MOM_federate_attribute_id =
 rtiAmbassador->getAttributeHandle(MOM_federate_ object_id, L"HLAfederateType");
… Create a one-entry map, attrs , containing MOM_federate_attribute_id .
// Subscribe to the attribute.
rtiAmbassador->subscribeObjectClassAttributes(MOM_ federate_object_id, attrs, true);

// Force the RTI to send an immediate data update f or the subscribed to object.
// This is sometimes necessary to force the RTI to do an immediate data update.
try {
 rtiAmbassador->requestAttributeValueUpdate(MOM_ federate_object_id, attrs, …);
} catch(RTI::exception & e) {
 error(…);
}

Example 13: Object Discovery and Reflection Callbacks
// This callback is invoked by the RTI to notify th e federate that a new object instance
// has been discovered, i.e., some other federate h as registered it.
void MyFedAmbassador:: discoverObjectInstance(
 ObjectInstanceHandle const & theObject,
 ObjectClassHandle const & theObjectClass,
 wstring const & theObjectInstanceName)
throw (RTI::CouldNotDiscover,
 RTI::ObjectClassNotKnown,
 RTI::FederateInternalError)
{
 // Is this the MOM federate object to which we s ubscribed?
 int isMOMFederateObject =
 …; // Compare theObjectClass to MOM_federate_object_id from Code Example 12 .

 if (isMOMFederateObject) {
 … Save theObject in MOM_federate_instance_id (to recognize reflected attributes).
 … Create a joined-federates data structure (initially empty).
 } else {
 // handle other object instances
 …
 }
}

// This callback is invoked by the RTI to notify th e some attribute values of an object
// to which we subscribed have been reflected.
void MyFedAmbassador:: reflectAttributeValues(
 ObjectInstanceHandle const & theObject,
 std::auto_ptr< AttributeHandleValueMap > theAttr ibuteValues,
 UserSuppliedTag const & theUserSuppliedTag,
 OrderType const & sentOrder,
 TransportationType const & theType)
throw (RTI::ObjectInstanceNotKnown,

 RTI::AttributeNotRecognized,
 RTI::AttributeNotSubscribed,
 RTI::FederateInternalError)
{
 if (…theObject is the same as MOM_federate_inst ance_id?…) {
 // This callback API designed for the general case where federates subscribe to
 // many attributes, which is why the second a rgument is a map. In our case,
 // we’ve only subscribed to one attribute, so we expect the map to contain
 // a single value. Take it out of the map.
 AttributeHandleValueMap::iterator attribute_i terator =
 theAttributeValues.find(MOM_federate_attr ibute_id);
 AttributeValue attribute_value = attribute_it erator->second;

 // This value is a bunch of raw bytes. Get th e bytes.
 int num_bytes = attribute_value.size();
 char* data = (char*) attribute_value.data();

 // The first four bytes represent the number of two-byte characters that
 // are the string. For example, a federate na me of "CEV" would have the
 // following ASCII decimal values in the arra y.
 //
 // 0 0 0 3 0 67 0 69 0 86
 // ---+--- | | |
 // len = 3 C E V
 //
 // Assuming ASCII names, then we grab every o ther byte starting at the
 // sixth byte. Together they form the name of the joining federate.

 wstring joining_federate_name(L””);
 for(int i = 5; i < num_bytes; i += 2) {
 joining_federate_name.append(data+i, data +i+1);
 }

 … Add joining_federate_name to the joined_federates data structure.
 } else {
 // handle other attributes
 …
 }
}

Example 14: Waiting Until All Federates Have Joined
// Wait until all the expected federates have joine d.
while (! all_federates_joined) {
 if(…All entries in expected_federates are present in joined_federates ?…) {
 break; // They’ve all joined.
 } else {
 // Sleep a while. Maybe a new federate will j oin. If so, the reflect callback
 // will update joined_federates with the name of the new federate.
 usleep(100);
 }
}
// If we reach this point, then all the expected fe derates have joined,
// so we’re no longer interested in the MOM federat e object.
rtiAmbassador->unsubscribeObjectClass(MOM_federate _object_id);

Example 15: Achieve “initialize” Synchronization Point
// Try to achieve the “initialize” sync point. The achieve won’t be successful until
// all the federates have tried this.
rtiAmbassador->synchronizationPointAchieved(L”init ialize”);

// Wait for all federates to get to this point. Whe n they do, the RTI will have
// invoked the federationSynchronized callback, and this will have set the flag
// all_federates_waiting_at_initialize_sync_point. Assuming this flag is initialized
// to false, this loop will hang until all federate s are ready to proceed.
while (… all_federates_waiting_at_initialize is false) {
 usleep(100);
}

Example 16: Synchronization Point Achieved Callback
// This callback is invoked by the RTI when a sync point has been achieved.
void MyFedAmbassador:: federationSynchronized(wstring const & label)
throw (RTI::FederateInternalError)
{
 if (label.compare(L"initialize") == 0) {
 // This means all the federates (including the mast er-federate) have arrived.
 // Set a flag to indicate that fact.
 … set all_federates_waiting_at_initialize to true
 }
}

Example 17: Federate Update with Initial Object Attribute Values
rtiAmbassador->enableAsynchronousDelivery();

// Now update the attributes of any relevant attrib utes with initial values
rtiAmbassador->updateAttributeValues(instance_1, a ttributeValues_1, …);
rtiAmbassador->updateAttributeValues(instance_2, a ttributeValues_2, …);
…
rtiAmbassador->updateAttributeValues(instance_n, a ttributeValues_n, …);

Example 18: Federate Waits for All Initial Data
// Don’t go any further until all instances have be en properly initialized.
// See Code Example 16 to where this flag eventuall y gets set.
while (! all_instances_initialized) {
 usleep(100); // or some method of non-blocking wait
}

Example 19: Initial Attribute Value Reflection Callback
// This callback is invoked by the RTI whenever new values are reflected. This
// example demonstrates how a flag indicating succe ssful initialization may be set
// after all the initial reflections have been carr ied out.
void MyFedAmbassador:: reflectAttributeValues(
 ObjectInstanceHandle const & theObject,
 auto_ptr< AttributeHandleValueMap > theAttribute Values,
 UserSuppliedTag const & theUserSuppl iedTag,
 OrderType const & sentOrder,
 TransportationType const & theType)
throw (RTI::ObjectInstanceNotKnown,
 RTI::AttributeNotRecognized,
 RTI::AttributeNotSubscribed,
 RTI::InvalidLogicalTime,
 RTI::FederateInternalError)
{
 if (theObject == instance_a->get_instance_id()) {
 instance_a->reflect_data(*theAttributeValues);
 if (! instance_a->initialized())
 instance_a->set_initialized(true);
 }
 else if (theObject == instance_b->get_instance_ id()) {
 instance_b->reflect_data(*theAttributeValues);
 if (! instance_b->initialized())
 instance_b->set_initialized(true);
 }
 else if (theObject == instance_c->get_instance_ id()) {
 instance_c->reflect_data(*theAttributeValues);
 if (! instance_c->initialized())
 instance_c->set_initialized(true);
 … etc …
 }
 check_all_instances_initialized();
}

Example 20: Initialize Time Management
rtiAmbassador->enableTimeConstrained();
rtiAmbassador->enableTimeRegulation(lookahead_inte rval);

Example 21: Achieve startup Synchronization Point
rtiAmbassador->synchronizationPointAchieved(L”star tup”);
while (! startup_sp_synchronized) {
 usleep(100); // or some method of non-blocking wait
}

Example 22: Ready to Start Simulation
void MyFedAmbassador:: federationSynchronized(
 wstring const & label)
throw (RTI::FederateInternalError)
{
 ...
 if (label.compare(L"startup") == 0) {
 federate->set_startup_sp_synchronized(true) ;
 }
}

