An Overview of Spray-On Foam Insulation Applications on the Space Shuttle’s External Tank: Foam Applications and Foam Shedding Mechanisms

Roy M. Sullivan* ‡ Bradley A. Lerch* Patrick R. Rogers†
Research Engineer Research Engineer Aerospace Engineer
Jeffery S. Sparks†
Materials Engineer

The Columbia Accident Investigation Board (CAIB) concluded that the cause of the tragic loss of the Space Shuttle Columbia and its crew was a breach in the thermal protection system on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel No. 8 at 81.9 seconds after launch. The CAIB conclusion has spawned numerous studies to identify the cause of and factors influencing foam shedding and foam debris liberation from the External Tank during ascent.

The symposium on the Thermo-mechanics and Fracture of Space Shuttle External Tank Spray-On Foam Insulation is a collection of presentations that discuss the physics and mechanics of the ET SOFI with the objective of improving analytical and numerical methods for predicting foam thermo-mechanical and fracture behavior. This keynote presentation sets the stage for the presentations contained in this symposium by introducing the audience to the various types of SOFI applications on the Shuttle’s External Tank and by discussing the various mechanisms that are believed to be the cause of foam shedding during the Shuttle’s ascent to space.

*Mechanics and Lifing Branch, NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135
†NASA Marshall Space Flight Center, Marshall Space Flight Center, AL 35812
‡Corresponding Author; Contact Email: Roy.M.Sullivan@nasa.gov
An Overview of Spray-On Foam Insulation Applications on the Space Shuttle’s External Tank: Foam Applications and Foam Shedding Mechanisms

Roy M. Sullivan and Bradley A. Lerch
NASA Glenn Research Center

Patrick R. Rogers and Jeffery S. Sparks
NASA Marshall Space Flight Center

presented at the
43rd Annual Technical Meeting of the Society of Engineering Science
The Pennsylvania State University
University Park, PA

August 14, 2006
The Columbia Accident Investigation Board (CAIB) found that …

“the cause of the loss of Columbia and its crew was a breach in the Thermal Protection System on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel #8 at 81.9 seconds after launch.”
Glenn Research Center at Lewis Field

Image from CAIB Report

Showing shuttle ramp and wing

Bipod

Ramp

Impact

Point
Post-Mission Testing Confirmed the Potential for Damage to Reinforced Carbon-Carbon Wing Leading Edge from Foam Impacts
The Space Shuttle’s External Tank
- Length: 154 ft
- Diameter: 27.6 ft
- Gross weight: 1,674,000 lbs.
- Empty weight: 58,000 lbs.
- Contains 526,000 gallons of liquid hydrogen and oxygen
- Average thickness of metallic tank wall: 1/8 inch
- Average thickness of foam insulation: 1.0 inch
LH2 tank during fab

LH2/Intertank Flange

LOx tank

Glenn Research Center at Lewis Field
Forward SRB interface

Aft end of tank showing SRB attachment fittings

Orbiter interface (fwd)

Orbiter interface (aft)
External Tank Spray-On Foam Insulation
External Tank’s Spray On Foam Insulation (SOFI) is applied to maintain cryogenic propellant quality, minimize ice/frost formation, and protect the structure from ascent, plume and reentry heating.
The Thermal Protection System is applied to the ET to maintain cryogenic propellant quality, minimize ice/frost formation, and protect the structure from ascent, plume, and re-entry heating.
External Tank Spray-On Foam Insulation (SOFI)

Acreage Foam

• Automated spray
• NCFI24-124 (Polyisocyanurate)

Manual Close-outs

• Sprayed or molded around fittings/flanges where automated spraying is not possible.
• Manual Sprayed Close-outs: BX-265 (Polyurethane)
• Molded Close-outs: PDL-1034 (Polyurethane)
Bipod Fitting and Ramp Closeout
Protrusion Air Load (PAL) Ramp

Added early in Shuttle Program to avoid any potential aerodynamic instability resulting from the pressurization lines and cable tray.
Ice Frost Ramps

Cover the pressurization line and cable tray support fittings to prevent ice formation.
Typical Flight Loads on ET Foam Applications

- Aerodynamic Heating
- Aerodynamic Shear
- Cryogenic Temperatures (-423F/-297F)
- Tank Wall
- Foam Insulation
- Substrate Flexure and Membrane Forces
Expected Foam Temperature Profile

Temperatures:

- **Ablated Material**: > 500 °F
- **Char Layer**: 200 - 500 °F
- **Heat Affected**: 70 - 200 °F
- **Virgin SOFI Foam**: 423 - 70 °F
- **Tank Wall**: -423 °F

Diagram:

- **Aerodynamic Heating**
 - Ablated Material
 - Char Layer
 - Heat Affected
 - Virgin SOFI Foam
 - Tank Wall
Foam Microstructure

- 97% air; R=0.03
- polymeric cell walls
- due to its microstructure, material is anisotropic (possess different material properties in different directions)
Local Material Directions and Knitlines

Knit Lines

Knit Line Distance

Rise Direction

Knit Line Cells
Knitline direction and local material directions vary with position within the foam applications.
Types of Significant Foam Defects

- **Rollover**
 - Rising foam overlaps and creates long pocket

- **Void**
 - Rising foam grows together and seals in a void. More equiaxed shape than a rollover.

- **Crack**
 - Stress relief from thick application

- **Knitline Delamination**
 - Incorrect overlap time.
 - Second pass applied too thin or too thick.
Foam Shedding Mechanisms
How Spray Defects Can Lead to Divoting

Aerodynamic Heating

Spray defect containing air at 1 atm pressure

As heat penetrates the foam, pressure in defect void rises.

Possibly resulting in foam failure and divot.
Popcorning
Cryo-pumping

• Internal discontinuities, with a path to the surface, can pull nitrogen or air into the foam through a process of densification.
• Rapid warming during ascent can cause vaporization, a rapid rise in pressure and foam divots.
Sub-layer Cracking, Crack Propagation and Subsequent Delamination from Substrate
Design and Process Changes to Reduce Propensity and Severity of Foam Loss During Ascent
Redesigned the Bipod Closeout and Fitting

- Remove Foam Ramp
- Add Heaters (to prevent ice formation)
- Inconel fitting (higher temperature metal for external aerodynamic heating)
- Insulated fitting from cold cryogen with phenolic insulator
Improved Spray Techniques (Tighter Specs) to minimize occurrence and severity of foam defects and voids.

- Rigorous process validation with dissections
- Tightened spray parameters:
 - Temperature
 - Relative humidity
 - Time between subsequent spray passes
- Two operators for all sprays ("second set of eyes")
- Witness panels and high-fidelity mockups
- Video reviews
Removed the LOx and LH$_2$ PAL ramps
Space Shuttle Flight Safety Certification is Based on…

1) Eliminating or mitigating critical sources of debris by design
 • Bipod redesign
 • PAL ramp elimination
 • LH2 flange redesign

2) Understanding the maximum expected size and transport mechanism for remaining debris that is generated.

3) Understanding the impact tolerance for any debris that can still be generated and can reach the shuttle.

4) Contingency plans
 • Impact detection and on orbit inspections
 • Safe haven at International Space Station
Continue to improve the engineering infrastructure to ensure safe and reliable foam applications by......

- improving structural analysis methods for spray-on foam applications
- improving ability to detect voids/flaws in foam applications
- improving understanding of crack propagation and fracture behavior of External Tank foams
Improving Structural Analysis Methods for Foam Applications

- Accurate representation of thermo-structural response over wide temperature range: cryogenic hydrogen (-423 °F) to 500 °F.
- Account for the cellular nature of the material.
- Account for internal cell gas pressures and their effect on structural response.
- Account for orthotropic material behavior and arbitrary orientation of the knitlines w.r.t. global coordinates.
- Method should be embedded in a finite element analysis to be capable of modeling the complex geometries of the various foam applications.
Improving ability to detect voids/flaws in foam applications

- Non-destructive evaluation (NDE) techniques being developed for ET foam
 - Backscatter X-ray
 - Terahertz
 - Shearography
- Inspection techniques have not yet been certified, data used for engineering information only
Improving Fracture Mechanics Analysis Methods for Foam

How valid is linear elastic fracture mechanics for ET foams?