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Introduction: It is expected that Comet Wild-2 

dust should resemble anhydrous carbon-rich, chon-
dritic porous (CP) interplanetary dust particles (IDPs) 
collected in the stratosphere because some CP IDPs are 
suspected to be from comets [1,2].  The rarity of car-
bonaceous grains and presolar silicates, as well as the 
presence of high-temperature inner solar nebula miner-
als in the Wild-2 sample (e.g. osbornite and melilite), 
appear incompatible with most CP IDPs [3-5].  How-
ever, it is premature to draw firm conclusions about the 
mineralogy of comet Wild-2 because only ~1% of the 
sample has been examined. 

The most abundant silicates in CP IDPs are GEMS 
(glass with embedded metal and sulfides) [6].  Non-
solar O isotopic compositions confirm that at least 
some GEMS in IDPs are presolar amorphous silicates 
[7,8].   The presence or absence of GEMS in the Wild-
2 sample is important because it addresses, (a) the rela-
tionship between CP IDPs and comets, and (b) the hy-
pothesis that other GEMS in IDPs formed in the solar 
nebula [9].  Here we show that most of the “GEMS-
like” materials so far identified in Stardust aerogel 
were likely impact generated during collection.  At the 
nanometer scale, they are compositionally and crystal-
lographically distinct from GEMS in IDPs.  

GEMS in IDPs: Most GEMS are 0.1-0.5 µm 
amorphous silicate spheroids [6,10].  Their bulk com-
positions are typically within a factor of ~3 chondritic 
[9]. They contain nanometer-sized inclusions of body 
centered cubic (bcc) low-Ni α-iron (kamacite) and 
low-Ni hexagonal pyrrhotite embedded in Mg-silicate 
glass [6,10,11].  Some GEMS contain “relict” sulfide 
and silicate crystals [6,10].  Often GEMS have Fe3O4 
rims, a result of heating during atmospheric entry.  
Truly pristine GEMS may be rare in IDPs.  

GEMS in comet Wild-2?:  “GEMS-like” material 
is abundant in the Stardust tracks. Figure 1 shows a 
200 keV darkfield image of a “GEMS-like” object in a 
ultramicrotomed thin section of a track in aerogel.    
The matrix is amorphous ~SiO2, but in other cases, the 
silicate matrices contain up to 15 atomic % Mg, 5 % 
Al and 0.3 % Ca.  The inclusions are Fe(Ni) sulfides 
and Fe(Ni) metal. Fe, Ni and S contents of the sulfides 
are highly variable.  Some sulfides also contain Cu 
(Fig. 2) and Cr.  Stoichiometric sulfides exhibit lattice 
parameters consistent with low-Ni hexagonal pyr-
rhotite.  Sulfide grains with reduced metal cores are 
common (Figs 3a & 3b).  Fe:Ni ratios in the metal are 
variable (up to ~ 40 at. % Ni) and some contain Cr.  

Two Fe(Ni) metal crystal structures have been identi-
fied, low-Ni bcc α-iron (kamacite) and high-Ni fcc γ-
iron (taenite) (Fig. 4).   

Discussion: The “GEMS-like” material in Stardust 
impact tracks differs significantly from GEMS in 
IDPs.  First, the amorphous matrices are often almost 
pure (Mg-free) SiO2.  Second, the metal inclusions 
include both α and γ structures with a range of Fe:Ni 
ratios (Figs 3a & 4), and some contain Cr. Third, 
Fe(Ni) sulfide inclusions exhibit a range of Fe, Ni and 
S contents, and some contain Cu and Cr.  Fourth, sul-
fide inclusions often have reduced cores (Figs. 3a & 
3b).   

It is possible that the above differences reflect 
modification of Wild-2 GEMS during hypervelocity 
impact into aerogel. However, much of the “GEMS-
like” material was produced in-situ when comet grains 
decelerated in the aerogel.  It is noteworthy that Cu 
(and Cr) are present both in sulfide inclusions in the 
“GEMS-like” material (Fig. 2) and in discrete cubanite 
(CuS) and Cu-rich Fe(Ni) sulfide crystals in the tracks 
[4].  Some sulfides melted or fragmented and were 
incorporated into aerogel “snowballs”, others melted 
and recrystallized as droplets, others melted with loss 
of S and in-situ reduction of Fe2+ and Ni2+ to metallic 
Fe(Ni) (Figs. 3a & 3b).  In extreme cases, sulfides lost 
both S and Fe leading to highly Ni-enriched sulfides.  

  More interesting are Mg-rich “GEMS-like” mate-
rials in Stardust [12].  The simplest explanation is that 
they formed during impact when cometary Mg-rich 
silicates (glasses or crystals) and sulfides melted and 
mixed with aerogel. Another is that they are in fact 
GEMS from Wild-2, and this possibility cannot yet be 
ruled due to the limited statistics available. 

 
 
Fig 1:  High angle annular darkfield (HAADF) image of 
“GEMS-like” object in a Stardust impact track in aerogel.  



Conclusion: Our early PET observations established 
that “GEMS-like” materials are widespread in the 
Stardust sample [4,12]. However, the nanoscale prop-
erties of this material (Figs. 1-4) are distinct from those 
of GEMS in IDPs, which underscores the limitations of 
interpreting nanomaterials based on appearance and 
bulk properties alone. Most and possibly all of the 
“GEMS-like” material so far identified in the Stardust 
tracks formed in-situ during hypervelocity impact of 
sulfides and silicates into the Stardust aerogel. If it 
ultimately turns out that there are no GEMS in the 
Wild-2 sample, a hot solar nebula origin for some of 
the GEMS in IDPs [9] is less probable.  
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Fig 2:  Energy-dispersive x-ray spectrum of a Cu-containing 
FeNi sulfide inclusion in “GEMS-like” material in Stardust 
aerogel.  (Specimen is mounted on a gold grid).  Cu-bearing 
sulfides have not yet been identified in GEMS in IDPs. 
 
Fig 4 (right):  Lattice-fringe image of a ~12 nm diameter fcc 
γ-FeNi (taenite) crystal (~16.8 at. % Ni) in “GEMS-like” 
material in Stardust aerogel. The FFT of the image (lower 
left) indicates the [011] zone axis. Taenite has not yet been 
identified in GEMS in IDPs. 

 
 
Fig 3a:  Lattice-fringe image of an FeNi metal grain (~ 4.8 
at. % Ni) at the core of a sulfide crystal (see also Fig 3b). 
 

Fig 3b: Intensity profiles of S and Fe L-edges from an EELS 
line-scan across the sulfide crystal with a metal grain in the 
core (inset, dashed line is the trace of the line scan). The 
profile of Fe L3/L2 ratio confirms that Fe in the core has a 
lower valency than the surrounding sulfide.   Sulfide crystals 
with metal cores have not yet been identified in GEMS in 
IDPs. 
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