Applied Nanotechnology for Human Space Exploration

Leonard L. Yowell
NASA Johnson Space Center

February 20th, 2007
NASA's Strategic Vision

Deep Space Exploration

Mars Manned

Lunar Manned

Mars Robotic

Crew Exploration Vehicle

Lunar Robotic

ISS Complete

2005

2010

2015

2020

2035
Exploration Architecture

- Lunar / Interplanetary Transfer
- Lunar Surface Operations
- Planetary Operations (Human/Robotic)
- Launch Vehicles
- Crew Exploration Vehicle (CEV)
- ISS Operations
Future Exploration Mission Requirements Cannot Be Met with Conventional Materials

Vehicles and Habitats
- Reduced mass and volume
- High strength
- Thermal and radiation protection
- Self-healing, self-diagnostic
- Multi-functionality
- Improved durability
- Environmental resistance (dust, atmosphere, radiation)

EVA Suits
- Reduced mass
- Increased functionality and mobility
- Thermal and radiation protection
- Environmental resistance

Satellites and Rovers
- Reduced mass and volume
- Reduced power requirements
- Increased capability, multifunctionality
Nanomaterials: Single Wall Carbon Nanotubes

Unique Properties
- Exceptional strength
- Interesting electrical properties (metallic, semi-conducting, semi-metal)
- High thermal conductivity
- Large aspect ratios
- Large surface areas

Possible Applications
- High-strength, light-weight fibers and composites
- Nano-electronics, sensors, and field emission displays
- Radiation shielding and monitoring
- Fuel cells, energy storage, capacitors
- Biotechnology
- Advanced life support materials
- Electromagnetic shielding and electrostatic discharge materials
- Multifunctional materials
- Thermal management materials

Current Limitations
- High cost for bulk production
- Inability to produce high quality, pure, type specific SWCNTs
- Variations in material from batch to batch
- Growth mechanisms not thoroughly understood
- Characterization tools, techniques and protocols not well developed

Size Comparison
C_{60}, Nanotubes, and Atoms

[C60 molecule, single wall carbon nanotube, and atoms with dimensions labeled]
Applied Nanotechnology at JSC: Fundamentals to Applications

Characterization
- Purity, Dispersion, Consistency, Type
- SWCNT Load Transfer
- Single Fiber Diffusivity

Processing
- Purification
- Functionalization
- Dispersion
- Alignment

Collaborations
- Academia, Industry, Government

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>PARTNERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercapacitors</td>
<td>EP, GRC, Industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ESD / EMI Shielding</td>
<td>EV, OA, Rice, UTPA, UTD, Industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regenerable CO₂ Removal</td>
<td>EC, ARC, Rice, UTA Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Disinfection & Recovery</td>
<td>EC, Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active / Passive Thermal Management Materials for Space</td>
<td>EC, Rice, Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanotube-Based Structural Materials & Advanced Repair</td>
<td>EC, MA, ES3, Rice</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Dosimeter</td>
<td>NX, Rice, PV, Ames</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technology Readiness Levels (TRL)

TRL 9
System Test, Launch & Operations

TRL 8
System/Subsystem Development

TRL 7
Technology Demonstration

TRL 6
Technology Development

TRL 5
Research to Prove Feasibility

TRL 4
Basic Technology Research

TRL 3
Basic principles observed and reported

Component and/or hardware validation in laboratory or space environment

Component and/or hardware validation in relevant environment

Component and/or hardware demonstration in a space or ground environment

System prototype demonstration in a space or ground environment

Actual system completed and "flight qualified"

Actual system "flight proven" through successful mission operations
Growth, Modeling, Diagnostics and Production

Laser Ablation

Objective: Ensure a reliable source of single wall carbon nanotubes with tailored properties (length, diameter, purity, chirality).

High Pressure CO (HiPco)

- Continuous process
- 10-100's g/day
- Small diameters (0.9nm)
- Company spin-off (CNI)

Modeling, Diagnostics, and Parametric Studies
Growth, Modeling, Diagnostics and Production

NASA / Rice University
3rd Single-Wall Nanotube Growth Mechanisms Workshop
April 2007
Canyon of the Eagles Ranch, Texas
Applications for Human Space Exploration

- Advanced Life Support
 - Regenerable CO₂ Removal
 - Water recovery

- Thermal Protection and Management
 - Ablators and ceramic nanofibers
 - TPS repair materials
 - Passive / active thermal management (spacesuit fabric, avionics)

- Nano-Biotechnology
 - Health monitoring (assays)
 - Countermeasures

- Multi-functional / Structural Materials
 - Primary structure (airframe)
 - Inflatables

- Power / Energy Storage Materials
 - Proton Exchange Membrane (PEM) Fuel Cells
 - Supercapacitors / batteries

- Electromagnetic / Radiation Shielding and Monitoring
 - ESD/EMI coatings
 - Radiation monitoring
Exploration Life Support

CHALLENGE:

Supply the daily needs of humans for long duration missions

- Air Revitalization
- Food Management
- Solid Waste Management
- Thermal Control
- Water Reclamation

Human consumable and throughput values in kg/crewmember/day Klaus et al, 2005
Exploration Life Support:
Atmosphere Revitalization System

MISSION:
- Vehicle cabin atmospheric pressure & quality
- Atmospheric gas storage, supply and distribution
- Carbon dioxide partial pressure control
- Trace contaminant & particulate control
- Resource recovery, storage and distribution
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

Timeline and Milestones:

<table>
<thead>
<tr>
<th>Year</th>
<th>Crew Exploration Vehicle</th>
<th>Lunar Sortie</th>
<th>Lunar Outpost</th>
<th>Systems Engineering</th>
<th>Air Revitalization Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>PDR▲</td>
<td>PDR▲</td>
<td></td>
<td>Systems Analysis</td>
<td>Open Loop Regenerative</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td>PDR ▲</td>
<td>Subsystem & System</td>
<td>Advanced Adsorbants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Testing</td>
<td>Particulate Management</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pressure Systems</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closed Loop Regenerative</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced Life Support: Regenerable CO₂ Removal

CHALLENGE:
- Long duration space flight requires a regenerable system for air revitalization
- NASA need: lower mass, higher performance, reduced volume

SOLUTION:
- Carbon Nanotubes: superior surface area & thermal conductivity
- Functionalized with CO₂ scrubbing chemistry – less volatile
- Suitable for both EVA and vehicle applications
- Applicability to smokestack applications on Earth

COLLABORATION:
- Rice University: Nanotube functionalization
- UTA: Primary amine chemistry
- JSC (EC): Requirements for space systems
- NASA Ames: Nanomaterials for trace contaminant control system & CO₂ Sensors
- Energy industry participation interest

Current RCRS materials: Zeolites and amine-coated polymer beads.

To be replaced by Single Wall Carbon Nanotube (SWCNT) Structure

Micro-scale testing with thermo-gravimetric analysis
NanoMaterial Solution:

- Use SWCNT functionalized with CO₂/H₂O scavenging amines
- Amines require lower energy for regeneration than present molecular sieve
- Higher surface area reduces system size/weight

Functionalized SWCNT CO₂ Receptor + CO₂

Functionalized SWCNT + CO₂

Nanotube functionalization chemistry
(Chattopadhyay et al, 2005)

CO₂ Gas

Absorbent Material

Bubbler

CO₂ Sensor

CO₂ capacity testing
Transport and storage of wastewater from human interfaces

Primary processing: organic and nitrogenous contaminant reduction

Secondary processing: inorganic contaminant reduction

Brine dewatering: water removal from highly concentrated brine

Post-processing and disinfection: polishing to meet potability standards

Storage and transport of potable water prior to consumption

Secondary Treatment
Inorganic Removal

Primary Treatment
Organic Removal

Brine Dewatering

Post-processing

Disinfection

Wastewater Storage

Potable Water Storage
Advanced Life Support: Water Disinfection / Recovery

CHALLENGE:
- NASA requires renewable chemical-free systems to purify water in space
- Current solution: Iodine – toxic to astronauts and non-regenerable

SOLUTION:
- C$_{60}$/fullerene enhances disinfection property of UV light
- Singlet oxygen production enhances the rate at which bacteria are killed
- Chemical-free system for closed loop water purification
- Commercial Potential - Portable water disinfection devices

COLLABORATION:
- NASA JSC Advanced Life Support (EC)
- Rice University: C$_{60}$ deposition

UV light energizes fullerenes. Upon relaxation, photons are emitted and the excited fullerenes interact with oxygen molecules in water to produce singlet oxygen.

Singlet oxygen kills bacteria.
Power & Energy: Supercapacitors

Challenges:
- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications.
- NASA requires increased power & energy densities, increased cycle life, reduced mass.

Solution:
- Carbon nanotube surface area and nanoporosity superior to current materials for electrolyte ion support.
- Carbon nanotube electrolyte supports: enhanced electrical and thermal conductivity.
- Potential for enhanced performance and longer cycle life.

Collaboration:
- NASA Glenn: Separator materials
- JSC (EP): Requirements
- Georgia Tech: Functionalized nanomaterials
- ReyTech Corp.: Improved fabrication & packaging
Power & Energy: Fuel Cells

CHALLENGE:
- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications.
- NASA requires increased power & energy densities, increased cycle life, reduced mass.

SOLUTION:
- Novel carbon nanotube high surface area, high thermal & high gas diffusivity catalyst support.
- Reduced activation polarization – increased reliability.
- Higher power density from more efficient utilization of platinum catalysts.

COLLABORATION:
- NASA Glenn: High temperature membranes.
NanoMaterials for EMI Shielding

CHALLENGE:
- Control of electromagnetic emission and susceptibility characteristics of electronic, electrical, and electromechanical equipment and subsystems for space exploration

SOLUTION:
- Single-wall carbon nanotubes (SWCNT) offer low material density and high electrical conductivity
- Can be integrated into polymer matrices as thin transparent conductive coatings
- Cheap and easy to fabricate for application to off-the-shelf products: Laptops, PDAs, etc.

COLLABORATION:
- UTD
- UTPA
- Rice
- U of Florida
- JSC (EV)

Translucent Appliqués: Potential coatings for LCD screens

EMI testing in collaboration with UTPA

Nanotube materials

Nanomaterials functionalization

EMI testing & test development

Testing, requirements
Active Radiation Dosimeter

CHALLENGE:
- Acute radiation sickness poses a risk to astronaut health for interplanetary travel
- Currently no "real-time" personal radiation detecting sensor for extravehicular activity
- Current technologies lack desired sensitivity

SOLUTION:
- Use radiation sensitive functionalized SWCNTs to measure radiation dose rates and total dose.
- High surface area nanomaterials can increase sensitivity

COLLABORATION:
- JSC (SF) Dosimeter
- JSC (EB) Sensors
- JSC (EC) Advanced EVA
- NASA Ames Gas sensors
- Rice Univ. Nanotube functionalization
- PVAM Radiation Testing
Advanced Thermal Protection System (TPS) Repair

CHALLENGE:
- Improve and expedite curing and repair processes for current missions
- Long duration missions need more effective repair processes: On Orbit/En Route/On the surface

SOLUTION:
- Use microwave energy to heat nanotubes in polymer and ceramic matrices for localized heating, curing & bonding
- Repair of RCC and tiles, CEV materials
- Potential commercial applications including composite curing

COLLABORATION:
- Rice: Nanotube microwave research (Tour) Functionalized nanomaterials

~ 1:1 Energy transfer in nanotubes
Microwaves:Heat
CHALLENGE:
- Thermal protection system with impact and radiation protection
- Lower weight = Greater performance
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

SOLUTION:
- Use SWCNT impregnated into Phenolic Impregnated Carbon Ablator (PICA) Thermal Protection System (TPS) – additional strength
- Enhanced radiation protection via integration of polyethylene
- Nextel and/or Kevlar fabric incorporated for impact protection

COLLABORATION:
- NASA Ames: TPS Lead
- JSC (ES3): Composites, Arc Jet Testing

- Carbon Fiberform
- Vacuum Impregnation
- Gelling cycle
- Drying Cycle

- Carbon nanotubes for char strength
- Polyethylene for radiation protection

- PICA with phenolic resin impregnated
- PICA - Fiberform before impregnation
<table>
<thead>
<tr>
<th>Basic Biomedical Research</th>
<th>Major Medical Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role that forces play on cell mechanisms</td>
<td>Contrast agents to target specific sites for surgery</td>
</tr>
<tr>
<td>(gravitational forces)</td>
<td>Bio-mimetic or engineered compounds to help wound healing</td>
</tr>
<tr>
<td>Molecular machines (ATPase, Kinesin, Microtubules,</td>
<td>Miniaturized electron microscopes for biopsies</td>
</tr>
<tr>
<td>Polymerase, etc.)</td>
<td></td>
</tr>
<tr>
<td>In vivo monitoring of ultra-low concentration</td>
<td></td>
</tr>
<tr>
<td>proteins and biomolecules</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal Biomedical Monitoring</th>
<th>Life Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of molecular indicators for onset</td>
<td>High surface area materials for CO₂ removal</td>
</tr>
<tr>
<td>of conditions</td>
<td>Inorganic coatings that catalyze the revitalization of air and</td>
</tr>
<tr>
<td></td>
<td>water</td>
</tr>
<tr>
<td>High sensitivity assays</td>
<td>Sensors to monitor harmful vapor/gases</td>
</tr>
<tr>
<td>Short prep-time assays, no prep-time assays and</td>
<td></td>
</tr>
<tr>
<td>in vivo monitoring</td>
<td></td>
</tr>
<tr>
<td>Multiple simultaneous assays</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal Countermeasures</th>
<th>Toxicology & Ethics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed drug release</td>
<td>Biodistribution of nanoparticles</td>
</tr>
<tr>
<td>Targeted drug therapy</td>
<td>Toxicology of nanoparticles</td>
</tr>
<tr>
<td>Triggered drug release</td>
<td>Ethical use of information from nanotech devices</td>
</tr>
<tr>
<td>Indicators for drugs effectiveness</td>
<td></td>
</tr>
</tbody>
</table>

Systems Integration	
--	
Develop 'common toolkit' for bio-nano chemistry	
and assembly processes	
Applied Nanotechnology for Human Space Exploration

Questions?

leonard.yowell-1@nasa.gov
281-483-2811