Exploration Architecture

Lunar / Interplanetary Transfer

Launch Vehicles

Crew Exploration Vehicle (CEV)

ISS Operations

Planetary Operations
(Human/Robotic)

Lunar Surface Operations
Future Exploration Mission Requirements Cannot Be Met with Conventional Materials

Vehicles and Habitats
- Reduced mass and volume
- High strength
- Thermal and radiation protection
- Self-healing, self-diagnostic
- Multi-functionality
- Improved durability
- Environmental resistance (dust, atmosphere, radiation)

EVA Suits
- Reduced mass
- Increased functionality and mobility
- Thermal and radiation protection
- Environmental resistance

Satellites and Rovers
- Reduced mass and volume
- Reduced power requirements
- Increased capability, multifunctionality
Nanomaterials: Single Wall Carbon Nanotubes

Unique Properties
- Exceptional strength
- Interesting electrical properties (metallic, semi-conducting, semi-metal)
- High thermal conductivity
- Large aspect ratios
- Large surface areas

Possible Applications
- High-strength, light-weight fibers and composites
- Nano-electronics, sensors, and field emission displays
- Radiation shielding and monitoring
- Fuel cells, energy storage, capacitors
- Biotechnology
- Advanced life support materials
- Electromagnetic shielding and electrostatic discharge materials
- Multifunctional materials
- Thermal management materials

Current Limitations
- High cost for bulk production
- Inability to produce high quality, pure, type specific SWCNTs
- Variations in material from batch to batch
- Growth mechanisms not thoroughly understood
- Characterization tools, techniques and protocols not well developed
Applied Nanotechnology at JSC: Fundamentals to Applications

Characterization
- Purity, Dispersion, Consistency, Type
- SWCNT Load Transfer
- Single Fiber Diffusivity

Processing
- Purification
- Functionalization
- Dispersion
- Alignment

Collaborations
- Academia, Industry, Government

Applications Table

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>PARTNERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercapacitors</td>
<td>EP, GRC, Industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ESD / EMI Shielding</td>
<td>EV, OA, Rice, UTPA, UTD, Industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regenerable CO₂ Removal</td>
<td>EC, ARC, Rice, UTA Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Disinfection & Recovery</td>
<td>EC, Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active / Passive Thermal Management Materials for Space</td>
<td>EC, Rice, Industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanotube-Based Structural Materials & Advanced Repair</td>
<td>EC, MA, ES3, Rice</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Dosimeter</td>
<td>NX, Rice, PV, Ames</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRL
- 1: Initial Concept
- 2: Feasibility Demonstrated
- 3: Feasibility Demonstrated
- 4: Feasibility Demonstrated
- 5: Qualified for Engineering Development

Technology Readiness Levels (TRL)

TRL 9
- Actual system “flight proven” through successful mission operations

TRL 8
- Actual system completed and “flight qualified” through test and demonstration (Ground or Flight)

TRL 7
- System prototype demonstration in a space environment

TRL 6
- System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

TRL 5
- Component and/or breadboard validation in relevant environment

TRL 4
- Component and/or breadboard validation in laboratory environment

TRL 3
- Analytical and experimental critical function and/or characteristic proof-of-concept

TRL 2
- Technology concept and/or application formulated

TRL 1
- Basic principles observed and reported
Objective: Ensure a reliable source of single wall carbon nanotubes with tailored properties (length, diameter, purity, chirality).

High Pressure CO (HiPco):
- Continuous process
- 10-100's g/day
- Small diameters (0.9nm)
- Company spin-off (CNI)

Growth, Modeling, Diagnostics and Production

Laser Ablation
- Batch process
- ~1g/day
- Large diameters (~1.4nm)
- Graphite Co, Ni Catalysts
- Fullerences + SWCNT + Impurities
- Argon gas
Characterization: Purity, Dispersion & Consistency

Standard Nanotube Characterization Protocol

SEM

TEM

UV-Vis Spectroscopy

Optical Dispersion Analysis

Raman

TGA

New Purity Reference Standard

NIST ANSI ISO

Areppalli, et al., Carbon, 2004
Applications for Human Space Exploration

Multi-functional / Structural Materials
- Primary structure (airframe)
- Inflatable

Advanced Life Support
- Regenerable CO₂ Removal
- Water recovery

Power / Energy Storage Materials
- Proton Exchange Membrane (PEM) Fuel Cells
- Supercapacitors / batteries

Thermal Protection and Management
- Ablators and ceramic nanofibers
- TPS repair materials
- Passive / active thermal management (spacesuit fabric, avionics)

Electromagnetic / Radiation Shielding and Monitoring
- ESD/EMI coatings
- Radiation monitoring

Nano-Biotechnology
- Health monitoring (assays)
- Countermeasures
Exploration Life Support

CHALLENGE:

Supply the daily needs of humans for long duration missions

- Air Revitalization
- Food Management
- Solid Waste Management
- Thermal Control
- Water Reclamation

Human consumable and throughput values in kg/crewmember/day

Klaus et al, 2005
Exploration Life Support:

Atmosphere Revitalization System

MISSION:

- Vehicle cabin atmospheric pressure & quality
- Atmospheric gas storage, supply and distribution
- Carbon dioxide partial pressure control
- Trace contaminant & particulate control
- Resource recovery, storage and distribution
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Exploration Vehicle</td>
<td></td>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar Sortie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar Outpost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Engineering</td>
<td></td>
<td>Systems Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subsystem & System Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Revitalization Systems</td>
<td></td>
<td>Open Loop Regenerative Advanced Adsorbants Particulate Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Systems Closed Loop Regenerative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental Regenerable System

LiOH Canisters
Advanced Life Support: Regenerable CO₂ Removal

CHALLENGE:

- Long duration space flight requires a regenerable system for air revitalization
- NASA need: lower mass, higher performance, reduced volume

SOLUTION:

- Carbon Nanotubes: superior surface area & thermal conductivity
- Functionalized with CO₂ scrubbing chemistry – less volatile
- Suitable for both EVA and vehicle applications
- Applicability to smokestack applications on Earth

COLLABORATION:

- Rice University: Nanotube functionalization
- UTA: Primary amine chemistry
- JSC (EC): Requirements for space systems
- NASA Ames: Nanomaterials for trace contaminant control system & CO₂ Sensors
- Energy industry participation interest

Current RCRS materials: Zeolites and amine-coated polymer beads.

To be replaced by Single Wall Carbon Nanotube (SWCNT) Structure

Micro-scale testing with thermo-gravimetric analysis
NanoMaterial Solution:

- Use SWCNT functionalized with CO$_2$/H$_2$O scavenging amines
- Amines require lower energy for regeneration than present molecular sieve
- Higher surface area reduces system size/weight

Nanotube functionalization chemistry
(Chattopadhyay et al, 2005)

Diagram:

- **Functionalized SWCNT CO$_2$ Receptor**
- **CO$_2$ Gas**
- **Absorbent Material**
- **Bubbler**
- **CO$_2$ Sensor**
- **CO$_2$ capacity testing**
- Transport and storage of wastewater from human interfaces
- Primary processing: organic and nitrogenous contaminant reduction
- Secondary processing: inorganic contaminant reduction
- Brine dewatering: water removal from highly concentrated brine
- Post-processing and disinfection: polishing to meet potability standards
- Storage and transport of potable water prior to consumption
Advanced Life Support: Water Disinfection / Recovery

CHALLENGE:
- NASA requires renewable chemical-free systems to purify water in space
- Current solution: Iodine – toxic to astronauts and non-regenerable

SOLUTION:
- C_{60}/fullerene enhances disinfection property of UV light
- Singlet oxygen production enhances the rate at which bacteria are killed
- Chemical-free system for closed loop water purification
- Commercial Potential - Portable water disinfection devices

UV light energizes fullerenes. Upon relaxation, photons are emitted and the excited fullerenes interact with oxygen molecules in water to produce singlet oxygen.

Singlet oxygen kills bacteria.

COLLABORATION:
- NASA JSC Advanced Life Support (EC)
- Rice University: C_{60} deposition

Water purifier cell UV Light source
CHALLENGE:
- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications
- NASA requires increased power & energy densities, increased cycle life, reduced mass

SOLUTION:
- Carbon nanotube surface area and nanoporosity superior to current materials for electrolyte ion support
- Carbon nanotube electrolyte supports: enhanced electrical and thermal conductivity
- Potential for enhanced performance and longer cycle life

COLLABORATION:
- NASA Glenn: Separator materials
- JSC (EP): Requirements
- Georgia Tech: Functionalized nanomaterials
- ReyTech Corp.: Improved fabrication & packaging
Power & Energy: Fuel Cells

CHALLENGE:
- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications
- NASA requires increased power & energy densities, increased cycle life, reduced mass

SOLUTION:
- Novel carbon nanotube high surface area, high thermal & high gas diffusivity catalyst support
- Reduced activation polarization – increased reliability
- Higher power density from more efficient utilization of platinum catalysts

COLLABORATION:
- NASA Glenn: High temperature membranes
- JSC (EP): Testing, requirements
NanoMaterials for EMI Shielding

CHALLENGE:
- Control of electromagnetic emission and susceptibility characteristics of electronic, electrical and electromechanical equipment and subsystems for space exploration

SOLUTION:
- Single-wall carbon nanotubes (SWCNT) offer low material density and high electrical conductivity
- Can be integrated into polymer matrices as thin transparent coatings
- Cheap & easy of fabrication for application to off-the-shelf products: Laptops, PDAs etc.

COLLABORATION:
- UTD
- UTPA
- U of Florida
- Rice
- JSC (EV)
Active Radiation Dosimeter

CHALLENGE:
- Acute radiation sickness poses a risk to astronaut health for interplanetary travel.
- Currently no "real-time" personal radiation detecting sensor for extravehicular activity.
- Current technologies lack desired sensitivity.

SOLUTION:
- Use radiation sensitive functionalized SWCNTs to measure radiation dose rates and total dose.
- High surface area nanomaterials can increase sensitivity.

COLLABORATION:
- JSC (SF)
- JSC (EB)
- JSC (EC)
- NASA Ames
- Rice Univ.
- PVAM

Radiation Testing
- Device Under Test (DUT) Board
Advanced Thermal Protection System (TPS) Repair

CHALLENGE:

- Improve and expedite curing and repair processes for current missions
- Long duration missions need more effective repair processes: On Orbit/En Route/On the surface

SOLUTION:

- Use microwave energy to heat nanotubes in polymer and ceramic matrices for localized heating, curing & bonding
- Repair of RCC and tiles, CEV materials
- Potential commercial applications including composite curing

COLLABORATION:

- Rice: Nanotube microwave research (Tour)
 Functionalized nanomaterials

~ 1:1 Energy transfer in nanotubes
Microwaves: Heat
CHALLENGE:
- Thermal protection system with impact and radiation protection
- Lower weight = Greater performance
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

SOLUTION:
- Use SWCNT impregnated into Phenolic Impregnated Carbon Ablator (PICA) Thermal Protection System (TPS) – additional strength
- Enhanced radiation protection via integration of polyethylene
- Nextel and/or Kevlar fabric incorporated for impact protection

COLLABORATION:
- NASA Ames: TPS Lead
- JSC (ES3): Composites, Arc Jet Testing
Nanotechnology: Astronaut Health Management

Basic Biomedical Research
- The role that forces play on cell mechanisms (gravitational forces)
- Molecular machines (ATPase, Kinesin, Microtubules, Polymerase, etc.)
- In vivo monitoring of ultra-low concentration proteins and biomolecules

Major Medical Operations
- Contrast agents to target specific sites for surgery
- Bio-mimetic or engineered compounds to help wound healing
- Miniaturized electron microscopes for biopsies

Personal Biomedical Monitoring
- Identification of molecular indicators for onset of conditions
- High sensitivity assays
- Short prep-time assays, no prep-time assays and in vivo monitoring
- Multiple simultaneous assays

Life Support
- High surface area materials for CO$_2$ removal
- Inorganic coatings that catalyze the revitalization of air and water
- Sensors to monitor harmful vapor/gases

Personal Countermeasures
- Timed drug release
- Targeted drug therapy
- Triggered drug release
- Indicators for drugs effectiveness

Toxicology & Ethics
- Biodistribution of nanoparticles
- Toxicology of nanoparticles
- Ethical use of information from nanotech devices

Systems Integration
- Develop ‘common toolkit’ for bio-nano chemistry and assembly processes
Applied Nanotechnology for Human Space Exploration

Questions?

leonard.yowell-1@nasa.gov
281-483-2811