NASA
SpaceWire Architectures: Present & Future

Glenn Parker Rakow
NASA – Goddard Space Flight Center

2006 MAPLD International Conference
Washington, D.C.
September 25, 2006
Current SpaceWire Architectures: Swift Data Flow

- **SpaceWire point-to-point links**
 - 16 links from segmented detector array & readout Electronics to Instrument CDH
 - Science Data & Commands

- **PCI**
 - Instrument CDH to Memory
 - Memory to DSP
 - MIL-STD-1553
 - CMD bus to Spacecraft
Current SpaceWire Architectures: LRO Data Flow

• Routed SpaceWire traffic
 • End-node routers on C&DH boards
 – Used as Serial backplane
 » Single Board Computer Board
 » Instrument Interface Board
 » S-Band Communication Board
 » Ka-Band Communications Board
 • Interface to moderate rate instruments
 • Not memory mapped like RMAP or GAP
 • Side band signaling using Time-Codes
 – 1pps
 – Barker code detect – uplink
 – Upper level flow control on downlink frames

• MIL-STD-1553
 • Interface to spacecraft subsystem
 • Used for low-rate heritage instruments
Current SpaceWire Architectures: JWST Data Flow
Current SpaceWire Architectures

- **JWST**
 - Routed SpaceWire traffic
 - From 4 instruments to local router to end node router (Instrument C&DH [IC&DH]) (cable)
 - ICDH end node router to hardware processors (same box over backplane)
 - Hardware processors to compression engine (same box over backplane)
 - Compression engine to recorder (cable)

- **GOES-R** – Point-to-point links
 - Instrument - C&DH with Reliable Data Delivery Protocol
- Different physical interfaces using different protocols that require unique hardware and software to bridge between them.
- Serial interface at one point per enclosure @ NIC.
- Extra board area and more power for multiple interfaces.
- Only boards in same enclosure have memory mapped access via arbitration.
- Enclosures represent limited access.
- Reuse & reconfigurability limited.

Legend:

- **Red** – High-speed interface
- **Black** – Discrete sync pulse
- **Blue** – TDMA low rate bus (MIL_STD-1553)
- **Purple** – Parallel Backplane
Future Systems

- Same protocols supported across both physical interfaces: SpaceWire and SpaceFibre
- Bridged by hardware router
- Low-level protocols (RMAP & GAP) for memory mapped DMA or single transactions – no software required & blurs enclosure boundaries
- Plug and Play network mapping and Change-of-Status indication supported in hardware – Coming soon!
- Tunnel higher layer protocols

Legend:

Red – SpaceFibre (optical or copper)
Blue – SpaceWire
Lt Blue – Local port interface (parallel)
Advantages
System Engineer Toolkit

SpaceFiber (cell based virtual channels)
- Long distance
- Isolation
- EMC/EMI
- Bridge to SpW via hardware router

- Full Duplex
- Cmd & Tlm opposite directions

- Dedicated link for low latency

- Multiple SpW local ports to prevent blocking, increase throughput

- Redundant paths

- Redundant cables

- Priority routing

- Time-code expansion
 - Interrupts
 - Polling
 - Multi-TimeCode

- Time-codes
 - Near zero jitter across entire network
 - Synchronization
 - TDMA
 - 1pps

- Router blockage prevention
 - Time-out
 - Max length

Group Adaptive Routing
- Multiple SpW links

- Message sharing
 - Time-critical network
 - Consensus computing

MAPLD 2006 International Conference
Conclusions

• Simple protocol that is being developed from bottom up to meet advanced spacecraft applications

• One bus standard can meet requirements
 – Real time control
 – Large data throughput
 – Safety
 • Guaranteed Low latency
 • High reliability

• Reuse & reconfiguration of systems easier with standard interface
 – Modular functions with standard interface
 • Serial interface
 – cable
 – backplane

• Provide system engineers more “tools” for more efficient designs