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35-WORD ABSTRACT 
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INTRODUCTION 
  
Accurate knowledge of the interplanetary Galactic Cosmic Ray (GCR) environment is critical to planning and 
operating manned space flight to the moon and beyond. In the early 1990’s Badhwar and O’Neill developed a GCR 
model based on balloon and satellite data from 1954 to 1992 [1-5]. Also, the CREME 96 model 
(https://creme96.nrl.navy.mil/), readily available to a large group of users, still uses GCR spectra based on old 
balloon and satellite data. Since August 1997 the Advanced Composition Explorer (ACE) has provided 
significantly more accurate GCR energy spectra due to its much larger collection power. 
 
The original Badhwar – O’Neill GCR Model was revised in 2004 with a much improved and simplified model 
using ACE energy spectra measurements. The B-O'04 Model is described in detail in the COSPAR2004 paper [6].  
 
In 2004, the ACE data started at solar minimum and ended in solar maximum.The new data extends to the end of 
cycle 23's solar minimum and enables us to precisely correlate GCR flux with the Climax neutron monitor rate over 
a complete solar cycle. This paper describes this correlation and demonstrates that quiet time GCR energy spectra 
for each element from 1951 to present is well defined by the B-O model with ACE GCR energy spectra and the 
solar modulation parameter defined by the Climax count. 
 
The B-O Model determines the energy spectrum of each element by propagating a constant Local Intersteller 
Spectrum (LIS, the spectrum at the outer boundary of the heliosphere) through the heliosphere to the point of 
interest in the heliosphere. The level of modulation is a function of solar activity and the value of solar modulation 
uniquely determines the GCR energy spectra of all the elements. The ACE data itself, as it varies over the cycle, 
defines the solar modulation parameter for cycle 23. However, for periods when the ACE data is not available 
(prior to 1997 and when ACE fails), the GCR energy spectra are precisely determined by one number - the solar 
modulation parameter.  
 
Fortunately, besides ACE, there are other consistent and accurate sources that can be used to determine the solar 
modulation parameter. Neutron monitor count, sun spot numbers, tree rings, even the content of old wine bottles 
have been correlated with the solar cycle and used to derive the modulation parameter.  
 
In this paper we have detemined a new  approach to determining the solar modulation parameter from the Climax 
Neutron Monitor by relating the neutron count at ground level to the galactic cosmic ray flux at the top-of-the-
atmosphere by the known yield function for neutrons [7]. The correlation of Climax and ACE derived modulation 
parameters from 1997 to present ensures that the Climax derived values are valid whenever Climax data is 
available. Since hourly Climax data is available continously since 1951, and is expected to be available 
indefinately, the GCR spectra can be determined accordingly. 
 
Therefore, the worst GCR fluxes at each of the solar minima over the past 56 years can be found. This is 
particularly important to mission planners who must design adequate protection for astronauts and electronic 
systems. 
 
BADHWAR-O'NEILL '07 MODEL 
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The intensity and energy of galactic cosmic rays in the heliosphere is accurately determined by the steady-state, 
spherically symmetric Fokker-Planck partial differential equation accounting for diffusion, convection, and 
adiabatic deceleration of these particles. A single 
parameter describes the effect of the sun’s magnetic field 
on particles entering the heliosphere. The solar 
modulation parameter, Φ(t), describes the effect of 1) 
stronger magnetic field, 2) more magnetic disturbances, 
and 3) an expanding magnetic field. Therefore it is 
closely related to solar activity.  The solar modulation 
parameter, Φ(t) in MV, is related to the energy and 
rigidity required for interstellar particles in order to 

Figure 1 ACE CRIS energy spectra for typical 
abundant (C, Si, & Fe) and for rare (P) GCR elements 
compared to the B–O'07 Model. 
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propagate through the heliosphere to the radius in question (1 AU for Earth, 
Moon, or Mars).  
 
The Advanced Composition Explorer (ACE) Cosmic Ray Isotope 
Spectrometer (CRIS) measurements are the foundation of this Badhwar-
O’Neill Model update. The measurements are available continuously since 
August 1997. The daily average fluxes were readily obtained from the ACE 
web site (http://www.srl.caltech.edu/ACE/).  
 
The Advanced Composition Explorer (ACE) is stationed at the Earth-Sun L1 
libration point (about 1.5 million km from earth). The energy spectra for 
boron through nickel are in the range of highest modulation from roughly 50 
to 500 MeV / nucleon. The ACE CRIS geometric factor is 250 cm2 –sr. 
Collecting continuously since 1997, the collection power of CRIS is much 
larger than any of the previous satellite or balloon GCR instruments for GCR 
measurements in the 50 – 500 MeV/n range. Most of the old satellite 
instruments were < 10 cm2-sr.  
 
Since ACE CRIS has operated continuously since 1997, its total collection 
power provides a unique opportunity to refine our GCR models. Davis et al. 
[8] estimates the residual systematic uncertainty of the spectra measured by 
CRIS to be less than 5%. 
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With the solar modulation parameter, ΦACE(t), defined from 1997 to 2007 
from the ACE Oxygen data, the value of the LIS energy power law 
exponent (γ) was determined for the remaining ACE elements (boron to nickel) by fitting the measured energy 
spectra.  

Table 1shows the LIS energy power 
law exponent (γ)  derived from solar 
cycle 23 ACE energy spectra and 
average RMS error of  B-O'07 model 
for cycle 23  

 
Figure 1 shows typical correspondence between the ACE CRIS measurements and the Badhwar – O’Neill Model. 
For the more abundant elements (Carbon, Nitrogen, Oxygen, Iron, etc) the model agrees with the data within 4 - 6% 
RMS. However, some of the elements (Phosphorous, Fluorine, Cobalt, etc) are so rare that even with the high 
collection efficiency of ACE the data is so spread that it can only be fit with an RMS error of ~15%.  
 
Table 1 shows the results of the γ fit for the new data (2007). Compared to the 2004 data fit, the update had only a 
minor effect on the LIS power exponent,  the change was well below 1% for every element. No other parameters of 
the model were changed. Table 1 also shows the average RMS error of the B-O'07 model (compared to ACE) for 
each element for the 10 year period 1997 - 2007. For selected elements the average RMS error is also shown (in 
parentheses) when the solar modulation parameter derived from the 
Climax Neutron count (see below) is used instead of the value from ACE 
Oxygen. 
 
SOLAR MODULATION PARAMETER, ΦCLI(t), FROM CLIMAX 
NEUTRON MONITOR 
  
The solar modulation parameter, ΦACE(t), based on the ACE CRIS 
Oxygen (z=8) data provides values of Φ(t) over most of Solar Cycle 23 - 
from 1997 to 2007. However, values are needed over solar cycles in the 
past and for future times when ACE may not be available.  

Figure 2 Neutron yield 
function Y(E) defines the 
number of neutrons 
produced in the earth's 
atmosphere for each incident 
TOA proton as dependent on 
proton energy  

 
Fortunately, the Climax Neutron count is a reliable and accurate source for 
determining Φ(t). The hourly count is readily available on the internet 
(http://ulysses.uchicago.edu/) continuously from 1951 to present (and in the 
future).  
 



The neutron monitor can be treated as if it were an 
instrument collecting cosmic rays just like ACE. Due 
to the geomagnetic cutoff, the Climax neutron count 
mainly depends on the high-energy (above 5 GeV) 
proton flux at the top of the atmosphere (TOA) and is 
monotonically related to it. Knowing the GCR proton 
flux (at 5 GeV) determines the solar modulation 
parameter because even at 5 GeV there is sufficient 
variability of the flux to derive Φ(t).  
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The TOA proton flux (>5 GeV) is determined from the 
Climax neutron count and the neutron yield function 
Y(E) by the integral [7]: 
   
Climax Count = ∫TOA Proton Flux(E) Y(E) dE                                                    
 Figure 3Solar modulation parameter derived from 

the Climax neutron count (line) and ACE CRIS 
oxygen measurements are correlated  

The yield function defines the number of neutrons produced 
in the earth's atmosphere for each incident TOA proton as a 
function of proton energy - see Figure 2. 
 
The TOA >5 GeV proton flux defines the value of Φ(t) for all the Climax measurements to date (since 1951) by 
simply solving for the value of Φ(t) that fits the ACE modeled proton flux at 5 GeV. Note that every Forbush 
Decrease must be manually removed and the hourly Climax count must be accumulated and averaged until 
sufficient protons are collected to provide a meaningful flux measurement before these calculations are done.  
 
WORST CASE COSMIC RAYS - SOLAR MINIMUM 
 
For deep space missions cosmic ray intensities at 
solar minimum pose the greatest threat to crew 
safety [9, 10]. Figure 4 shows the solar 
modulation parameter derived from the Climax  
count for the past 56 years. This period shows 6 
solar minima at which the GCR flux was 
maximum. This figure shows that a modulation 
of 450 MV represents the worst case GCR flux 
for mission design purposes.   
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CONCLUSION 
 
The updated Badhwar – O’Neill Model is shown 
to be accurate to about 5%, for the more 
abundant elements such as Oxygen, Carbon, 
Iron, etc which have sufficient abundance that 
over 1000 ions are captured in each energy bin 
within a 30-day period.   The statistical relationship 
between the number of ions captured by the 
instrument in a given time and the precision of the 
model for each element has been clearly demonstrated 
[6]. 

Figure 4 Solar modulation parameter derived from the 
Climax neutron count (line) and ACE CRIS oxygen 
measurements. Note that solar minimum has solar 
modulation of  ~450 MV. 

 
The BO'07 GCR Model provides interplanetary mission planners with highly accurate GCR environment spectra 
for radiation protection for astronauts and radiation hardness assurance for electronic equipment. The GCR spectra 
are available for any time from 1951 to present using the solar modulation parameter derived from Climax.  
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Table 2 shows that for the more abundant elements the Climax solar modulation parameter, ΦCLI(t).  provides 
spectra accuracy better than ~15% (see Table 1 for overall accuracy for all the elements). 
 
The software model may be downloaded from the NASA JSC Parts, Packaging, and Manufacturing Branch’s Web 
Site - http://www4.jsc.nasa.gov/org/Ev/ev5/index.html or by sending an e-mail to Patrick.m.oneill@nasa.gov. 
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