ABSTRACT

High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (~1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability.

PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3×10^{-6} torr, at three temperatures, 227 °C, 277 °C, and 316 °C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and micro-cracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated.

This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

KEY WORDS: High temperature polymer composite, Pitch-based carbon fiber, Facesheet/Fin, Space Radiator, Thermal conductivity, Thermal expansion, Space durability, Nano-composites
High Thermal Conductivity Polymer Matrix Composites for Advanced Space Radiators

E. Eugene Shin1, Cheryl Bowman2, Duane Beach2

1 Ohio Aerospace Institute, 2 NASA Glenn Research Center

MS49-1 21000 Brookpark Rd., Cleveland, OH 44135;
Tel: 216-433-2544, Fax: 216-977-7132
E-mail: Euy-Sik.E.Shin@nasa.gov

Sedona, Arizona
February 12 - 15, 2007

Sponsored by NASA Prometheus program and Adv Space Technology program under Exploration Systems Mission
Contributors

Jane Manderscheid, GRC: Radiator sub-panel design
Derek Quade, GRC: PMC panel & radiator sub-panel fabrication
Dave Kowalski, GRC: PMC vacuum Thermal aging
Michelle Cybulski, U. of Dayton-summer intern
Dan Scheiman, ASRC/GRC: PMC thermal properties; Vac. Thermal aging
Rohit Mital, OSU-summer intern: PMC thermal conductivity & Image analysis
Richard Martin, CSU/GRC: IR Thermography NDE of radiator sub-panels
Demetrios Papadopoulos, U. of Akron/GRC: PMC mechanical properties
Linda McCorkle, OAI/GRC: PMC SEM Micrographs; thermal conductivity
Linda Inghram, OAI/GRC: PMC NDE & acid digestion
Chris Burke, ASRC/GRC: Thermal cycling test of radiator sub-panels
Don Jaworske, GRC: Radiation testing
Tim Ubienski, Joe Lavelle, SLI/GRC: PMC machining & test fixture fabrication
Sangwook Sihn, UDRI-AF: PMC panel lamination lay-up analysis
Paul Biney, Prairie View A&M U.: Thermal spiking experiment
UDRI and Nanosperse, MRI: Nano formulation and compounding
YLA, Inc.: PMC prepregging
Canyon composites: PMC panel fabrication
Subject Matter

- Background
- PMC Radiator Panel Design & Material Selection
- PMC Facesheet Design and Fabrication
- PMC Performance & Feasibility Evaluation
 - Thermal conductivity and Nano-composites
 - Effects of micro-cracks
 - Vacuum thermal aging
 - Radiation hardness
- PMC Radiator Sub-Panel Fabrication
 - Overwrap co-cure vs. 2ndary bonding
 - Thermal performance
 - HT-PMC bonding evaluation
- Summary and Future work plan
Background

✓ Larger area, significant mass driver
✓ Wider range of temperatures (200 – 550°F)
✓ Sophisticated deployment, possibly similar to ISS

PMC with high thermal conductivity carbon fibers (Coal tar pitch-based w/ up to 1000 W/mK) → Higher potential!
Polymer Matrix Composites

DESCRIPTION
- Varieties of material choices; fibers, resins
- Commonly used for spacecraft structural members and lower temperature radiators
- Inherently low resin thermal conductivity; but improved by the use of nano-fillers \(\rightarrow \) transferable to continuous fiber PMCs?

<table>
<thead>
<tr>
<th>ROM PROPERTIES</th>
<th>PROS AND CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1100/polymer 60% Fiber Vol</td>
<td>(+) High specific stiffness & strength</td>
</tr>
<tr>
<td>CTE ((\mu \text{m/mK}))</td>
<td>(+) Least expensive composite form</td>
</tr>
<tr>
<td>RT Density (g/cm(^3))</td>
<td>(+) Tailorable CTE, thermal conductivity, mechanical properties</td>
</tr>
<tr>
<td>RT Conductivity (W/mK)</td>
<td>(+) Established manufacturing base</td>
</tr>
<tr>
<td>Strength (GPa)</td>
<td>(-) Durability insufficiently characterized</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>(-) Poor thru-thickness T conductivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Axial</th>
<th>Trans.</th>
<th>0° ± 30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1100/polymer 60% Fiber Vol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTE ((\mu \text{m/mK}))</td>
<td>-1.2</td>
<td>~40</td>
<td>-</td>
</tr>
<tr>
<td>RT Density (g/cm(^3))</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>RT Conductivity (W/mK)</td>
<td>600</td>
<td>~1</td>
<td>300</td>
</tr>
<tr>
<td>Strength (GPa)</td>
<td>2</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>590</td>
<td>-</td>
<td>400</td>
</tr>
</tbody>
</table>

Resin Glass Transition Temperatures

- Toughened Epoxy
- Cyanate Ester
- BMI
- Polyimide

<table>
<thead>
<tr>
<th>Resin</th>
<th>Glass Transition Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toughened Epoxy</td>
<td>300</td>
</tr>
<tr>
<td>Cyanate Ester</td>
<td>350</td>
</tr>
<tr>
<td>BMI</td>
<td>400</td>
</tr>
<tr>
<td>Polyimide</td>
<td>450</td>
</tr>
</tbody>
</table>

Resin Glass Transition Temperatures

- Toughened Epoxy
- Cyanate Ester
- BMI
- Polyimide

<table>
<thead>
<tr>
<th>Resin</th>
<th>Glass Transition Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toughened Epoxy</td>
<td>300</td>
</tr>
<tr>
<td>Cyanate Ester</td>
<td>350</td>
</tr>
<tr>
<td>BMI</td>
<td>400</td>
</tr>
<tr>
<td>Polyimide</td>
<td>450</td>
</tr>
</tbody>
</table>

Resin Glass Transition Temperatures

- Toughened Epoxy
- Cyanate Ester
- BMI
- Polyimide

<table>
<thead>
<tr>
<th>Resin</th>
<th>Glass Transition Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toughened Epoxy</td>
<td>300</td>
</tr>
<tr>
<td>Cyanate Ester</td>
<td>350</td>
</tr>
<tr>
<td>BMI</td>
<td>400</td>
</tr>
<tr>
<td>Polyimide</td>
<td>450</td>
</tr>
</tbody>
</table>
Background

Technology Development Required for PMC

- Low thru-thickness thermal conductivity
- Effect of cracking defects on thermal conductivity
- Temperature limits for long-term application
- Component specific fiber architecture optimization
- Component specific design data and fabrication experience
PMC Radiator Panel Designs

Variables

- PMC material
- Saddle matrl & design
- Adhesive material
- Core material & type

Balance of thermal performance and structural integrity
PMC Material Selection

Matrix materials:
- RS9 (Cyanate ester), YLA
- EX1551 (Cyanate ester), Bryte
- Cycom 5250-4 (Bismaleimide), Cytec
- HFPE-II-52 (6-F polyimide), Maverick

Pitch-based carbon fibers: K13D2U (Mitsubishi) and K1100 (Amoco/Cytec) in 2K tow
- 800~1000 W/mK in-plane vs. ~20 W/mK out-plane TC
- Axial CTE ~ - 1.5 ppm/°C; elongation to failure < 0.4%
PMC Facesheet Design – CTE matching

PMC f/s lay-up configurations to match CTE of metal HP/HT via various analytical solutions based on lamination theory: $[0/15/-15]_n$ for aluminum vs. $[0/25/-25]_n$ for stainless steel vs. $[0/30/-30]_n$ for Titanium
PMC Facesheet Fabrication

- Hot-melt prepregging (YLA); 12” wide, 37w% resin, 67 gsm FAW → 0.0025 inch thick after cure, 60 v% FVF targeted
- Panel fab (GRC or Canyon); Hand lay-up (12”x12” or 24”x36” or 36”x44”; 6-ply) → optimized vacuum bagging → autoclave cure w/

 RS-9D cure
 - Apply 28 in/Hg vac & 80 psi P
 - Heat to 390 °F @ 3 – 5 °F/min
 - Hold at 390 °F for 127 min
 - Cool to RT @ ~ 3°F/min
 - Postcure at 600 °F for 4 hrs free standing in air

 HFPE-II-52 cure
 - B-staging @ 400ºF for 1 hr
 - Postcure @ 700ºF for 16 hrs in air
Thermal conductivity and Nano-composites - Material Selections

- **High thermal conductivity nano fillers studied;**
 - **Vapor grown carbon nano fibers (VGCNF)** --- high temperature grade: PR24HHT, ASI
 - density = \(\sim 1.8 \text{ g/cc} \), a tube structure of graphite w/ variable morphology and densities
 - Average diameter = \(\sim 100 \text{ nm} \) (10 nm - 500 nm in distribution), aspect ratio = \(\sim 500 \)
 - **Exfoliated graphite flakes (ExGf)** --- exfoliated by UDRI patented process

- **RS-9D Cyanate ester resin (YLA) + K13D2U C-fiber (Mitsubishi) composite system**
Thermal conductivity and Nano-composites - Processes

- Nano filler-resin mixing, compounding (20wt% filler) by UDRI/NanoSperse/MRI for optimum dispersion → Uni-tape PMC prepreg by Hot-melt process at YLA (10wt% filler) → composite panel fabrication w the optimized cure cycles at GRC (12”x12”) and Canyon (24”x36”)

YLA Prepregging Set-up

E. Eugene Shin, 27th High Temple Workshop Feb 12-15, 07
Thermal conductivity and Nano-composites - Preliminary Results

- 12-ply, $[0/+30/-30/-30/+30/0]_{1S}$ to match CTE of Ti heat pipe (HP); 12”x12”x0.028”
- Cured @ 380 °F, 80psi, 28 in/Hg vacuum for 2 hrs w/ optimized bagging → Postcured at 600 °F for 4 hours
- C-scan NDE

![C-scan images](image)

- Straight resin
- Resin + VGCNF (10wt%)
- Resin + VGCNF (5wt%) + ExGf (5wt%)

E. Eugene Shin, 27th High Temple Workshop Feb 12-15, 07
Thermal conductivity and Nano-composites - Preliminary Results

<table>
<thead>
<tr>
<th>Material Configuration</th>
<th>SEM Micrographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-9D/K13D2U</td>
<td></td>
</tr>
<tr>
<td>RS-9D+VGCNF/K13D2U</td>
<td></td>
</tr>
<tr>
<td>RS-9D+VGCNF+ExGf/K13D2U</td>
<td></td>
</tr>
</tbody>
</table>

Typical SEM micrographs of RS-9D/K13D2U PMC in terms of nano-modification showing fiber/filler distribution-connectivity and defects.

E. Eugene Shin, 27th High Temple Workshop Feb 12-15, 07
Thermal conductivity and Nano-composites
- Preliminary Results

<table>
<thead>
<tr>
<th>PMC Laminate type</th>
<th>F.V.F*, %</th>
<th>Tg, °C (by DMA)</th>
<th>Td, °C (TGA in N₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G' onset</td>
<td>Tan δ</td>
</tr>
<tr>
<td>Straight resin</td>
<td>57.3</td>
<td>368</td>
<td>423</td>
</tr>
<tr>
<td>Resin+VGCNF</td>
<td>54.2</td>
<td>309</td>
<td>411</td>
</tr>
<tr>
<td>Resin+VGCNF+ExGf</td>
<td>46.0</td>
<td>330</td>
<td>413</td>
</tr>
</tbody>
</table>

* F.V.F was determined by optical image analysis in Keyence high power (500x) digital microscope system (Note: nano filler volume counted in resin volume)
Thermal conductivity and Nano-composites

- Preliminary Results

<table>
<thead>
<tr>
<th>Density & Specific heat capacity, J/g °C</th>
<th>Diffusivity, mm²/sec</th>
<th>Conductivity, W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cc 20 °C 150 °C 300 °C</td>
<td>20 °C 150 °C 300 °C</td>
<td>20 °C 150 °C 300 °C</td>
</tr>
<tr>
<td>RS-9D Straight/K13D2U laminate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.75</td>
<td>0.81</td>
</tr>
<tr>
<td>90°</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.00</td>
<td>0.78</td>
</tr>
<tr>
<td>RS-9D+VGCNF/K13D2U laminate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.72</td>
<td>0.79</td>
</tr>
<tr>
<td>90°</td>
<td>42</td>
<td>27</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.01</td>
<td>0.79</td>
</tr>
<tr>
<td>RS-9D+VGCNF+ExGf/K13D2U laminate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.70</td>
<td>0.70</td>
</tr>
<tr>
<td>90°</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.09</td>
<td>0.86</td>
</tr>
</tbody>
</table>

* Thermal diffusivity by Laser Flash Analysis (LFA 447), ΔCp by mDSC, density by dim.
Thermal conductivity and Nano-composites
- Preliminary Results

<table>
<thead>
<tr>
<th></th>
<th>Density (g/cc)</th>
<th>Specific heat capacity, J/g °C</th>
<th>Diffusivity, mm²/sec</th>
<th>Conductivity, W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-9D+VGCNF+ExGf/K13D2U laminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.47</td>
<td>1.43</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>1.38</td>
<td>1.29</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>1.26</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>RS-9D+VGCNF/K13D2U laminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.39</td>
<td>1.35</td>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>1.31</td>
<td>1.28</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>1.23</td>
<td>1.20</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>RS-9D Straight/K13D2U laminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.44</td>
<td>1.40</td>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>1.32</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>1.28</td>
<td>1.25</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>HFPE-II-52 Polyimide/K13D2U laminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.40</td>
<td>1.36</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>1.32</td>
<td>1.28</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.22</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Note: The highlighted values indicate the highest conductivity for each laminate in the Z-direction.
Effects of Microcracks
- Preliminary Results

Objective: Determine effects of microcracks on thermal conductivity

- Thermal spiking preconditioning experiments (Prairie View A&M facility)
 - RS-9D/K13D2U: [0/30/-30]1s vs [0/30/-30/-30/30/0]1s vs [0/60/-60/-60/60/0]2s
 - LN$_2$ ↔ 177 °C (350°F)
 - Density of microcrack measured, #/mm

<table>
<thead>
<tr>
<th></th>
<th>450 cycles</th>
<th>750 cycles</th>
<th>950 cycles</th>
<th>1250 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-ply</td>
<td>3.0±1.8</td>
<td>5.0±1.4</td>
<td>6.1±1.4</td>
<td></td>
</tr>
<tr>
<td>24-ply</td>
<td>4.4±1.7</td>
<td>6.9±1.2</td>
<td>7.6±1.9</td>
<td>7.0±0.5</td>
</tr>
</tbody>
</table>

- TC measurements in thru-thickness direction, W/mK

<table>
<thead>
<tr>
<th></th>
<th>0 cycle</th>
<th>1250 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-ply</td>
<td>1.975±0.13</td>
<td>1.937±0.07</td>
</tr>
<tr>
<td>24-ply</td>
<td>1.739±0.19</td>
<td>1.404±0.02</td>
</tr>
</tbody>
</table>
Effects of Microcracks
- Current Work Plan

- RS-9D/K13D2U vs. RS-9X1 (VGCNF-PR24HHT)/K13D2U vs. RS-9X2 (VGCNF+ExGf)/K13D2U
 - Also, effects of nano-modification on microcracking

- All 12-ply [0/30/-30/-30/30/0]1s

- Thermal spiking preconditioning experiments (Prairie View A&M facility)
 - LN2 ⇔ up to 232 °C (450°F), automated cycle @ 4 cycles/hr up to 2,000 cycles

- TC measurements: 0° and 90° in-plane directions vs. thru-thickness direction
To assess PMC space durability by the accelerated thermal aging under high vacuum in simulating space environments
To down-select most durable PMC candidate system
To identify PMC degradation modes and mechanisms

Vacuum Thermal Aging

<table>
<thead>
<tr>
<th>PMC Candidates</th>
<th>Dry Tg, °C</th>
<th>Max. use T, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: HFPE/K13D2U</td>
<td>390</td>
<td>~ 316</td>
</tr>
<tr>
<td>B: HFPE/K1100</td>
<td>404</td>
<td>~ 316</td>
</tr>
<tr>
<td>C: RS-9D/K13D2U</td>
<td>~ 349</td>
<td>232 - 288</td>
</tr>
<tr>
<td>D: RS-9D/K1100</td>
<td>361</td>
<td>232 - 288</td>
</tr>
<tr>
<td>E: RS-9X1 (VGCNF)/K13D2U</td>
<td>~ 366</td>
<td>>288</td>
</tr>
<tr>
<td>F: RS-9X2 (VGCNF+ExGf)/K13D2U</td>
<td>~ 371</td>
<td>>288</td>
</tr>
</tbody>
</table>

✓ All test panels: 6-ply [0, +30, -30]_{1S}
Vacuum Thermal Aging
- Experimental set-up

- 227 vs 277 vs 316 °C
 (440 vs 531 vs 600 °F)
- 10^{-6} torr
- Up to 10,000 hrs --- 0; 50; 150; 250; 417 days
 - Total 48 3"x3"; 18 6"x4"; 18 4"x6" arranged for radiation heat
 - ΔWt, T_g, T_d, C_p, CTE, TC, FVF, void cont, FT-IR, damage evolution, and axial & transverse tensile properties to be monitored
Vacuum Thermal Aging
- Initial Results

 PMC Coupon Temperatures (4)-Vacuum Log

- Significant outgassing from Cyanate ester systems
Vacuum Thermal Aging - Initial Results

RS-9##/K13D2U composites, 6-ply [0, +30, -30]_{1S} panels

Transverse (90°) Tensile Properties (Not normalized by F.V.F)
Baseline control at RT @ t=0

- Positive effects of nano-modifications on mechanical property
Vacuum Thermal Aging - Initial Results

RS-9##/K13D2U composites, 6-ply [0, +30, -30]₁ˢ panels

Baseline control properties at RT @ t=0
(Tested by Material Innovations Inc (MII); Not normalized by F.V.F)

<table>
<thead>
<tr>
<th>PMC Laminate type and test direction</th>
<th>Conductivity*, W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 °C</td>
</tr>
<tr>
<td>RS-9D Straight/ K13D2U laminate</td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>345</td>
</tr>
<tr>
<td>90°</td>
<td>91</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.3</td>
</tr>
<tr>
<td>RS-9D+VGCNF/ K13D2U laminate</td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>346</td>
</tr>
<tr>
<td>90°</td>
<td>93</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>1.7</td>
</tr>
<tr>
<td>RS-9D+VGCNF+ExGf/ K13D2U laminate</td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>322</td>
</tr>
<tr>
<td>90°</td>
<td>83</td>
</tr>
<tr>
<td>Z-dir.</td>
<td>2.2</td>
</tr>
</tbody>
</table>

* MII internal Steady State Thermal Conductivity Method
 PMC Radiation Hardness

- High energy radiation can lead to chain scission (softening) or cross-linking (hardening) in polymers
- Electron Beam (β particle) is a cost effective & safe way to survey the radiation sensitivity of materials & components
- PMCs exposed to 20, 200, & 400 Mrad from 4.5 MeV e-beam
 - A:HFPE/K13D2U, C:RS-9D/K13D2U, F:RS-9X (VGCNF+ExGf)/K13D2U
 - Exposure led to no measurable weight loss, a good indication that there was no significant changes in chemistry

<table>
<thead>
<tr>
<th>PMC</th>
<th>20 Mrad</th>
<th>200 Mrad</th>
<th>400 Mrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.046 ± 0.053</td>
<td>-0.106 ± 0.190</td>
<td>-0.013 ± 0.086</td>
</tr>
<tr>
<td>C</td>
<td>0.131 ± 0.102</td>
<td>0.019 ± 0.310</td>
<td>0.194 ± 0.218</td>
</tr>
<tr>
<td>F</td>
<td>0.053 ± 0.112</td>
<td>-0.089 ± 0.386</td>
<td>0.134 ± 0.208</td>
</tr>
</tbody>
</table>

- Other evaluations (e.g., Tg, Td, Cp, CTE, TC, axial & transverse tensile properties, FVF, and void content etc) are underway
PMC Radiator Sub-Panel Fabrication
- Overwrap Concept: Co-cured

- Benefits:
 - Larger contact area to HT/HP, thus more efficient heat transfer
 - More robust structure, better protected HT/HP

- Challenges:
 - Brittleness of pitch-based C-fibers, limited bend radius of 2.0 inch?
 - Potentially heavier weight penalty
 - Greater CTE mismatch between HT/HP and f/s in transverse direction
 - Vacuum bagging and cure conditions optimized to minimize resin squeeze-out and to reduce CTE mismatch

- Cure @ 177°C for 3 hrs, then postcured @ 204°C for 6 hrs

- RS-9D/K13D2U PMC f/s
- Aluminum HT
- HT radius?
- PMC f/s Thickness?
- RS-4A film Adhesive
PMC Radiator Sub-Panel Fabrication
- Overwrap Concept: Co-cured

[0/15/-15/0]–HT(R1.75”)–[0/15/-15/0]

- IR Thermo-graphs;
 - Darker area → slower cooling → cracks, delam, or debonding etc.

- Cracks due to CTE mismatch, not by HT curvature since both side cracked
- Poor bonding due to lack of resin + CTE mismatch

[0/15/-15/0]_{1S}–HT(R1.5”)–[0/15/-15/0]_{2S}

- Cracks on front 8-ply f/s, also delaminated and/or debonded
- 16-ply → Crack-free and good bonding!
- Role of HT curvature?
PMC Radiator Sub-Panel Fabrication
- Overwrap Concept: Co-cured

\[[0/15/-15/0]_{2S} - \text{HT(R1.5")} - [0/15/-15/0]_{1S} \]

\[[0/15/-15/0]_{2S} - [RS4A]_{2} - \text{HT(R1.0")} - [RS4A]_{2} - [0/15/-15/0]_{2S} \]

- No cracks on 16-ply despite of curvature, but debonded after PC due to curvature
- Cracks on 8-ply due to CTE mismatch, and localized delam and/or debonding
- Thin single crack on both 16-ply f/s
- Additional crack & localized delam/debond after PC on front f/s due to curvature
- Strong/rigid adhesive bond caused greater CTE mismatch?
PMC Radiator Sub-Panel Fabrication - Adhesive-Bonding Concept

- Benefits:
 - Easier fabrication, Lighter, and good manufacturability

- Challenges:
 - Thru-thickness thermal conductivity
 - Strong and robust bonding
 - Vacuum bagging and cure conditions (autoclave) optimized to minimize resin squeeze-out and to reduce CTE mismatch

- PMC f/s cured @ 193°C for 2 hrs → stand. Surface prep → HT bonded & cured @ 177°C for 3 hrs → all postcured @ 204°C for 6 hrs
PMC Radiator Sub-Panel Fabrication
- Adhesive-Bonding Concept

- Cured-postcured panels → No visual damage on PMC f/s and reasonable bonding regardless of HT type or bondline thickness
- 3-layer adhesive → more resin fillet formed at HT edges
PMC Radiator Sub-Panel Fabrication
- Thermal Performance: 43°C ↔ -153°C, 10-20 cycles

- SS HT-[RS4A]₁-[0/25/-25/0]₁₁
- SS HT-[RS4A]₃-[0/25/-25/0]₁₁
- AL HT-[RS4A]₃-[0/25/-25/0]₁₁

Heating/cooling rate not controlled

- 10°C/min
- 10 Cycles
- 20 Cycles

- SS HT panels under severer thermal cycling → 1-layer adhesive failed, but 3-layer survived with only edge debonding
- 100% adhesive failure on PMC f/s
- Under controlled rate, AL HT with 3-layer adhesive survived 20+ cycles
PMC Radiator Sub-Panel Fabrication
- HT-PMC bonding evaluation

- Sub-panel to be sectioned into ~0.6” wide test coupons
 - Both overwrap and adhesive-bonded panels
 - Optimized sectioning w/ a low speed diamond saw not to damage bondline

- Tested in lap-shear mode; Test fixtures designed and fabricated

- Tested at RT and 177°C (350°F)
Summary

- Design and candidate material selection were made for PMC radiator development; and design and fabrication of PMC f/s panels were completed.
- Nano-composites with two conductive nano fillers were evaluated for TC enhancement, but the improvement was very limited yet.
- Performance and durability evaluations of PMC f/s including vacuum thermal aging, radiation hardness, and microcrack-TC relation were initiated.
- For overwrap concept, the radius of HT curvature should be greater than 4.45 cm (1.75 in). PMC facesheet should be 16 plies or higher on both front and back side of the HT overwrap section. Then, weight saving concern? Micro slots or holes to reduce weight of HT.
- Combination of overwrap and adhesive bonding is still pursuable option, but more ductile/soft adhesive systems with reasonable bond strength, good thermal conductivity, and high temperature capability, e.g., conductive nano-modified silicon based adhesive would be more suitable for the application?
- For the adhesive-bonding concept, the RS-4A Cyanate ester film adhesive performed well for both SS and Al HT with RS-9D/K13D2U PMC f/s.
- Thicker adhesive layer, ~0.04 cm (0.016 in), was recommended for the adhesive-bonding option based on thermal performance, and sizable resin fillet formed at the edges of HT would improve bonding integrity.
- HT-PMC f/s bonding integrity will be quantitatively evaluated.
Future Work Plan

- Complete vacuum thermal aging at all three Ts
- Complete microcrack-TC relations
- Complete bond strength evaluation
- Down-select and optimize material, design and process
- Develop fabrication-manufacturing specifications for a full-size component scale PMC radiator panels
- Continue nano-modification for thru-thickness TC improvement based on “cocktail Design” approach
Future Work
- "Cocktail Design" Approach

Maximize/optimize the thru-thickness thermal conductivity of continuous fiber reinforced PMC, specifically focusing on

- **Synergistic chemical, physical, and structural modifications from molecular level to nano, micro, and macro scales including,**
 - Selection of high TC constituent Materials,
 - Molecular modifications of matrix resin system
 - High TC filler reinforcement but via cocktail design from nano to macro scale to maximize connectivity/architectural interactions
 - Filler loading ratio optimized in terms of connectivity, processability, and weight/density control

- Material-process selection based on performance prediction/theoretical modeling
- Optimizing material processing (mixing/dispersing) and structure (design and fabrication)
- Optimizing filler surface treatment for improved wetting and bonding with matrix resin
- Multi-functionalization; in addition to high TC, improve electrical conductivity and EMI shielding as well as good mechanics
Cocktail Modification Concept for Z-Thermal Conductivity Improvement

Dimensions

Fibers:
- K13D2U or K1100: ~10 μm dia
- M40J & M60J: 5 μm dia

Matrix:
- Molecular modifications for high TC; Epoxies, Cyanate esters, Polyimides

Fillers:
- Metal Flakes/Fibers/Spheres (MF) etc:
 - ~1 mm L x ~0.5 mm W x ~25 μm Th
- Chopped Fibers (CF): 3 – 5 μm Ø x ~ 50 μm L
- Carbon Blacks (CB): ~ 3 – 8 μm Ø
- Exfoliated Graphite Flakes (EGf):
 - ~ 30 μm L x ~ 10 μm W x sub-μm Th
- Carbon Nano Fiber (CNF):
 - ~ 0.02 μm Ø x ~ 5 - 10 μm L
- Nano-particulates (NP; metallic/ceramic):
 - ~ 10 – 100 nm Ø

Optimize filler loading ratios, shape factors, and total amount in terms of thermal conductivity, processability, and composite performance and properties

e.g., Composite w/ 60 % FVF + total up to 20 wt% Filler loading