Substitutional and Interstitial Diffusion in α_2-Ti$_3$Al(O)

E. Copland 1, D. J. Young 2, B. Gleeson 3, N. Jacobson 4

1 Case Western Reserve University, Cleveland, Ohio, USA
2 University of New South Wales, Sydney, NSW, Australia
3 Iowa State University, Ames, Iowa, USA
4 NASA Glenn Research Center, Cleveland, Ohio, USA

The reaction between Al$_2$O$_3$ and α_2-Ti$_3$Al was studied with a series of Al$_2$O$_3$/(α_2-Ti$_3$Al) multiphase diffusion couples annealed at 900, 1000 and 1100°C. The diffusion-paths were found to strongly depend on α_2-Ti$_3$Al(O) composition. For alloys with low oxygen concentrations the reaction involved the reduction of Al$_2$O$_3$, the formation of a γ-TiAl reaction-layer and diffusion of Al and O into the α_2-Ti$_3$Al substrate. Measured concentration profiles across the interaction-zone showed “up-hill” diffusion of O in α_2-Ti$_3$Al(O) indicating a significant thermodynamic interaction between O and Al, Ti or both. Diffusion coefficients for the interstitial O in α_2-Ti$_3$Al(O) were determined independently from the interdiffusion of Ti and Al on the substitutional lattice. Diffusion coefficients are reported for α_2-Ti$_3$Al(O) as well a γ-TiAl. Interpretation of the results were aided with the subsequent measurement of the activities of Al, Ti and O in α_2-Ti$_3$Al(O) by Knudsen effusion-cell mass spectrometry.
Substitutional and Interstitial Diffusion in α_2-Ti$_3$Al(O)

E. Copland1,4, D. J. Young2, B. Gleeson3, N. Jacobson4

1 Case Western Reserve University, Cleveland Ohio
2 University of New South Wales, Sydney Australia
3 Iowa State University, Ames Iowa
4 NASA Glenn Research Center, Cleveland Ohio

TMS Annual Meeting: 2/25 - 3/1/2007 – Orlando, FL, USA
Ti-Al-O system

$T = 1000^\circ C$

Al_2O_3 only oxide in equilibrium with α_2-Ti_3Al + γ-TiAl, but...

both phases must be saturated with O
outline

- rationale... possible MMC and oxidation of α_2-Ti$_3$Al + γ-TiAl
- multi-phase couples: α_2 / Al$_2$O$_3$
 - results & calculations
- single-phase couples: α_2(O) / α_2(O)
 - results & calculations
- partial thermodynamic properties in α_2-Ti$_3$Al(O)
- summary
multi-phase Ti-Al / Al$_2$O$_3$ couples

- arc-melted: Al, Ti & TiO$_2$; annealed at $T = 900, 1000, 1100^\circ$C
 - closed system: Ta-foil (barrier for SiO) - in SiO$_2$ capsule
- HIP bonding (170 MPa, 1100$^\circ$C for 2 h), poly-crystalline Al$_2$O$_3$
 - re-encapsulated, reacted 900, 1000, 1100$^\circ$C for $t = 20 \sim 500$ h
- analysis: metallography, optical, EPMA and micro-hardness

<table>
<thead>
<tr>
<th>alloy</th>
<th>comp. (at.%)</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 3</td>
<td>Ti-(49, 52, 55)Al</td>
<td>γ-TiAl</td>
</tr>
<tr>
<td>4</td>
<td>Ti-25Al</td>
<td>α_2-Ti$_3$Al</td>
</tr>
<tr>
<td>5</td>
<td>Ti-32Al</td>
<td>α_2-Ti$_3$Al</td>
</tr>
<tr>
<td>6</td>
<td>Ti-35Al</td>
<td>α_2-Ti$_3$Al</td>
</tr>
<tr>
<td>7</td>
<td>Ti-33.35Al-5O</td>
<td>α_2-Ti$_3$Al(O)</td>
</tr>
<tr>
<td>8</td>
<td>Ti-27Al-10O</td>
<td>α_2-Ti$_3$Al(O)</td>
</tr>
<tr>
<td>9 ~ 10</td>
<td>Ti-(40, 48)Al</td>
<td>$\alpha_2 + \gamma$</td>
</tr>
</tbody>
</table>
α_2-Ti$_3$Al / Al$_2$O$_3$ couples

![Micrographs showing the growth of oxide scale on Ti-32Al / Al$_2$O$_3$ couples at 1100°C, 1000°C, and 900°C after 500 hours.](image)

Graph:
- Thickness vs. square root of time for each temperature.
- Data points and error bars for each temperature.

Equations:
- $k_p = 4.0 \pm 0.2$ at 1100°C
- $k_p = 0.72 \pm 0.04$ at 1000°C
- $k_p = 0.12 \pm 0.02$ at 900°C
\[\alpha_2-\text{Ti}_3\text{Al} \ / \ \text{Al}_2\text{O}_3 \text{ couples} \]

\[\text{Al}_2\text{O}_3 = 2\text{Al}_{\gamma, \alpha_2} + 3\text{O}_{\gamma, \alpha_2} \ldots \text{“gas / solid”} \]

Al, O supplied at activity of \(\gamma / \text{Al}_2\text{O}_3 \)

\(\bar{J}_O \gg \bar{J}_{AI} \) (from diffusion path)

\(\bar{J}_O \rightarrow \gamma\text{-layer into } \alpha_2(O) \)

\(\bar{J}_{AI} \rightarrow \gamma\text{-layer growth and enriches } \alpha_2(O) \)

“up-hill” diffusion of O in \(\alpha_2(O) \)

\[\bar{J}_O \text{ from low to high } X_O: \quad \bar{J}_O = -\bar{D}^{\text{Ti}}_{OO} \frac{\partial C_O}{\partial x} - \bar{D}^{\text{Ti}}_{OAI} \frac{\partial C_{\text{Al}}}{\partial x} \]

\(\bar{D}_{OAI} \) must be +ve and significant...

+ve thermodynamic interaction between O and Ti + Al

\[T = 1100^\circ\text{C} \]
treatment diffusion in Ti-Al-O

- Ti and Al substitutional; O interstitial, but [OTi₆] only stable sites
- limited kinetic interaction between lattices plus $\dot{J}_O \gg \dot{J}_Al$, treat:
 - Ti-Al “pseudo binary” and O “transient equilibrium”

- correct profiles: $r(Ti, Al) = 1.45, 1.43\text{Å}$; $V_m(\alpha_2, \gamma) \approx 10.0 \text{ cm}^3\text{mol}^{-1}$

 - Ti, Al: $C_i = (N_i/(N_{Ti} + N_{Al}))/V_m$
 - O: $C_O = N_O/V_m$

Al₂O₃ / Ti-25Al
T = 1100°C, 250 h

concentration profiles

raw EPMA data

EPMA error, TiO₂-layer

“up-hill” diffusion of O

Ti and Al aren’t diffusing!

corrected profile

\[C_i = \left(\frac{N_i}{N_{Ti} + N_{Al}} \right) / V_m \]

\[C_O = \frac{N_O}{V_m} \]
$\tilde{D}(N_i)$ in α_2-Ti$_3$Al and γ-TiAl

![Graph showing interdiffusivity values for different alloys at various temperatures.]

Table: Interdiffusivity Values

<table>
<thead>
<tr>
<th>Alloy</th>
<th>\tilde{D}_γ (cm2sec$^{-1}$)</th>
<th>\tilde{D}_α (cm2sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>$9.9 \pm 0.5 \times 10^{-11}$</td>
<td>$2.7 \pm 0.3 \times 10^{-12}$</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>$6.3 \pm 0.6 \times 10^{-11}$</td>
<td>$3.0 \pm 1.5 \times 10^{-12}$</td>
</tr>
<tr>
<td>Ti-35Al</td>
<td>$5.4 \pm 0.3 \times 10^{-11}$</td>
<td>$5.2 \pm 1.3 \times 10^{-12}$</td>
</tr>
<tr>
<td>Ti-33.3Al-5O</td>
<td>$6.1 \pm 0.7 \times 10^{-11}$</td>
<td>$1.2 \pm 0.2 \times 10^{-12}$</td>
</tr>
<tr>
<td>1000°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>$2.8 \pm 0.4 \times 10^{-11}$</td>
<td>$2.6 \pm 0.5 \times 10^{-13}$</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>$5.9 \pm 0.9 \times 10^{-11}$</td>
<td>$3.3 \pm 0.7 \times 10^{-13}$</td>
</tr>
<tr>
<td>900°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>$5.1 \pm 2.0 \times 10^{-12}$</td>
<td>$3.4 \pm 0.9 \times 10^{-14}$</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>$1.4 \pm 0.5 \times 10^{-11}$</td>
<td>$3.9 \pm 1.0 \times 10^{-14}$</td>
</tr>
</tbody>
</table>

average values
Arrhenius behavior / comparison

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>α_2</th>
<th>γ</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_0 (cm2s$^{-1}$)</td>
<td>E_a (kJmol$^{-1}$)</td>
<td>D_0 (cm2s$^{-1}$)</td>
<td>E_a (kJmol$^{-1}$)</td>
</tr>
<tr>
<td>1169-1366</td>
<td>-</td>
<td>-</td>
<td>3.0x10$^{-3}$</td>
<td>210</td>
</tr>
<tr>
<td>845-1310</td>
<td>10</td>
<td>312±6</td>
<td>2.8</td>
<td>295±10</td>
</tr>
<tr>
<td>881-1400</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>291±10</td>
</tr>
<tr>
<td>897-995</td>
<td>0.3</td>
<td>290±15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>897-995</td>
<td>n/a</td>
<td>≈350</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>750-1250</td>
<td>1.5x10$^{-6}$</td>
<td>117±5</td>
<td>2x10$^{-5}$</td>
<td>152±2</td>
</tr>
<tr>
<td>900-1100</td>
<td>0.3</td>
<td>290±25</td>
<td>1.1x10$^{-5}$</td>
<td>140±40</td>
</tr>
</tbody>
</table>
interstitial diffusion of O in \(\alpha_2\)-Ti₃Al

- \(\tilde{\mathcal{J}}_o \gg \tilde{\mathcal{J}}_{(Al,Ti)} \)… “transient equilibrium” (Kirkaldy et al. 1958-64)
 O, local equilibrium; redistributes with Ti-Al substitutional lattice

\[
\tilde{\mathcal{J}}_o = -\tilde{D}_{oo} \frac{\partial C_O}{\partial x} - \tilde{D}_{oal} \frac{\partial C_{Al}}{\partial x} \cong 0
\]

- predict interdiffusion coefficient ratio:

\[
\frac{\tilde{D}_{oal}}{\tilde{D}_{oo}} = -\frac{\Delta C_O}{\Delta C_{Al}}
\]

\[T = 1100^\circ C\]

\[\tilde{D}_{oal} \big/ \tilde{D}_{oo} = 0.44 \pm 0.08\]
calculated \tilde{D}_{oo}

- $\tilde{J}_0^i = -\tilde{D}_{oo} \frac{\partial C_o}{\partial x} - \tilde{D}_{oo} \frac{\partial C_{al}}{\partial x}$, no intersecting diffusion paths…
- region of pure O enrichment, $\frac{\partial C_{al}}{\partial x} = 0 \rightarrow \tilde{J}_0^i = -\tilde{D}_{oo} \frac{\partial C_o}{\partial x}$
- EPMA and micro-hardness; assume \tilde{D}_{oo} const.

$$\frac{C(x, t) - C_s}{C_o - C_s} = \text{erf} \left(\frac{x}{2\sqrt{Dt}} \right)$$

<table>
<thead>
<tr>
<th>Alloy</th>
<th>\tilde{D}_{oo}</th>
<th>(10^{-10} cm^2 s^{-1})</th>
<th>Arrenheinus Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1100°C</td>
<td>1000°C</td>
<td>900°C</td>
</tr>
<tr>
<td>I(Ti-25Al)</td>
<td>4.0±1.0</td>
<td>0.75±0.15</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>II(Ti-32Al)</td>
<td>5.5±1.5</td>
<td>0.6±0.15</td>
<td>0.15±0.1</td>
</tr>
<tr>
<td>III(Ti-35Al)</td>
<td>6.5±1.5</td>
<td>1.0±1.5</td>
<td>0.15±0.1</td>
</tr>
</tbody>
</table>

$$\tilde{D}_{oo} / \tilde{D}_{al} = 100 \sim 1000$$
single-phase $\alpha_2(O) / \alpha_2(O)$ couples

- arc-melted pure-Al, Ti & TiO$_2$, annealed in closed system:
 - Ta-foil in SiO$_2$ capsule
- uni-axial hot press (1100ºC for 2 ~ 4 h); $T = 1100ºC$ for 100 h
- analysis: metallography, optical & EPMA
 - used multi-alloy EPMA standard... TiO$_2$ surface-layer
constant Ti / Al ratio

$T = 1100^\circ C, 100\ h$

$\text{Ti / Al} \approx 2.9, 2.3, 2.0$

$x_{m} - x_{o} = 186\mu m$

$x_{m} - x_{o} = 109\mu m$

$x_{m} - x_{o} = 173\mu m$
calculated J_O and \tilde{D}_{OO}

<table>
<thead>
<tr>
<th>alloy</th>
<th>\tilde{D}_{OO} (10^{-10} cm2/s) $T = 1100$°C</th>
<th>Ti / Al (couple)</th>
<th>\tilde{D}_{OO} (10^{-10} cm2/s) $T = 1100$°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-25Al</td>
<td>4.0±1.0</td>
<td>2.9 (7 / 1)</td>
<td>4.8 ±1.0</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>5.5±1.5</td>
<td>2.3 (8 / 2)</td>
<td>6.2 ±1.5</td>
</tr>
<tr>
<td>Ti-35Al</td>
<td>6.5±1.5</td>
<td>2.0 (9 / 3)</td>
<td>6.1 ±2.0</td>
</tr>
</tbody>
</table>

\tilde{D}_{OO} ~ independent of X_O but small Ti / Al dependence (?)
$T = 1100^\circ C, 100 \text{ h}$

- Profiles flipped relative to diffusion path
- Classic “up-hill” profile for O...
 \[\text{thermodynamic interaction: Ti-Al} \rightarrow \text{O} \]
- Ti-Al interaction zone decreases with X_O
 \[\text{O} \rightarrow \text{Ti-Al: kinetic / thermodynamic ?} \]
- Expect similar $\Delta \mu_{(Ti,Al)}$ for each X_O
calculated \tilde{J}_{Al} and \tilde{D}_{Al}

- Ti-Al and O diffusion isn’t independent
- X_0 not controlled in previous studies:
 - Sprengel: SiO$_2$ capsules, no Ta-foil
 - Rusing: flowing Ar-atmosphere
“intersecting” paths: 9-1, 7-3, 6-4

- 9-1 and 7-3 don’t intersect; 7-3 and 6-4 are parallel…
 - new couples needed to determine kinetic interaction O → Ti-Al

- 9-1 diffusion path shows “up-hill” Al diffusion:
 - O dissolution must: increase \(a(\text{Al})\), decrease \(a(\text{Ti})\) (or both)
thermodynamic measurements

multi-cell KEMS

pressure measurement

\[p(i) = \frac{I_{ik}^+ T}{S_{ik}} \]

activity measurement

\[a(i) = \frac{p(i)}{p^o(i)} = \frac{I_i}{I_i^o} \]

\[a(i) = \frac{p(i)}{p^o(Au)} \cdot \left[\frac{p^o(Au)}{p^o(i)} \right] = \frac{I_i}{I_{Au}^o} \cdot \frac{S_{Au}}{S_i} \cdot \frac{g(R)}{g(A)} \left[\frac{p^o(Au)}{p^o(i)} \right] \]

(\(i = Ti, Al, Al_2O \))
$a(\text{Al})$ vs. X_{O}

$T(\degree \text{C})$

$10^4/T \ (\text{K}^{-1})$

Increasing O

Reference state: $\{\text{Al(l) + Al}_2\text{O}_3(s)\}$
Reference state: \{ Ti(s) + Y_2O_3(s) \}

\[I_{10/7}(K_T) \]

\[\frac{1}{T(T)} \text{ vs. } X_0 \]

Materials:
- Ti-30Al
- Ti-28Al-4O
- Ti-28Al-7.9O
- Ti-35Al-20O

Temperature: 1400, 1300, 1200, 1100, 1000°C
summary

- $\alpha_2 / \text{Al}_2\text{O}_3$ and $\alpha_2(\text{O}) / \alpha_2(\text{O})$ couples... Ti-Al-O reaction behavior
- unsaturated $\alpha_2(\text{O})$ reduces Al_2O_3: γ-layer, “up-hill” \tilde{J}_o in $\alpha_2(\text{O})$
- $\tilde{J}_o >> \tilde{J}_\text{Al}$; treat subst. and interstitial lattices independently
 - Ti-Al “pseudo binary” $\tilde{D} = \tilde{D}(C_i)$, scatter in data (effect of X_o)
 - “transient equ.”: $\tilde{D}_\text{OAl} / \tilde{D}_\text{OO}$ and \tilde{D}_OO, slight Ti / Al dependence
- $\alpha_2(\text{O}) / \alpha_2(\text{O})$ couples: confirm $\tilde{D}_\text{OAl} / \tilde{D}_\text{OO}$ and \tilde{D}_OO behavior, but Ti-Al interdiffusion reduced > 10x with $X_o \ 0.005 \rightarrow 0.08$
 - thermodynamic interaction + change in mobility (?)
 - difficult to observe kinetic aspect; thermodynamics is clear
- more work is need...
 - significant insight to oxidation of Ti-Al alloys
acknowledgements:

Judy Auping (NASA Glenn), James Smith (NASA Glenn)
Christian Chatillon (Saint Martin d’Hères, France),
NASA Glenn Research Center – Directors Discretionary Fund
University of New South Wales, Sydney, Australia – ARC Grant