Substitutional and Interstitial Diffusion in α_2-Ti$_3$Al(O)

E. Copland1, D. J. Young2, B. Gleeson3, N. Jacobson4

1Case Western Reserve University, Cleveland, Ohio, USA
2University of New South Wales, Sydney, NSW, Australia
3Iowa State University, Ames, Iowa, USA
4NASA Glenn Research Center, Cleveland, Ohio, USA

The reaction between Al$_2$O$_3$ and α_2-Ti$_3$Al was studied with a series of Al$_2$O$_3$/α_2-Ti$_3$Al multiphase diffusion couples annealed at 900, 1000 and 1100°C. The diffusion-paths were found to strongly depend on α_2-Ti$_3$Al(O) composition. For alloys with low oxygen concentrations the reaction involved the reduction of Al$_2$O$_3$, the formation of a γ-TiAl reaction-layer and diffusion of Al and O into the α_2-Ti$_3$Al substrate. Measured concentration profiles across the interaction-zone showed “up-hill” diffusion of O in α_2-Ti$_3$Al(O) indicating a significant thermodynamic interaction between O and Al, Ti or both. Diffusion coefficients for the interstitial O in α_2-Ti$_3$Al(O) were determined independently from the interdiffusion of Ti and Al on the substitutional lattice. Diffusion coefficients are reported for α_2-Ti$_3$Al(O) as well a γ-TiAl. Interpretation of the results were aided with the subsequent measurement of the activities of Al, Ti and O in α_2-Ti$_3$Al(O) by Knudsen effusion-cell mass spectrometry.
Substitutional and Interstitial Diffusion in $\alpha_2\cdot Ti_3Al(O)$

E. Copland ¹, ⁴, D. J. Young ², B. Gleeson ³, N. Jacobson ⁴

¹ Case Western Reserve University, Cleveland Ohio
² University of New South Wales, Sydney Australia
³ Iowa State University, Ames Iowa
⁴ NASA Glenn Research Center, Cleveland Ohio

TMS Annual Meeting: 2/25 - 3/1/2007 – Orlando, FL, USA
Al$_2$O$_3$ only oxide in equilibrium with α_2-Ti$_3$Al + γ-TiAl, but…
both phases must be saturated with O
outline

• rationale… possible MMC and oxidation of α_2-Ti$_3$Al + γ-TiAl

• multi-phase couples: α_2 / Al$_2$O$_3$
 ▸ results & calculations

• single-phase couples: α_2(O) / α_2(O)
 ▸ results & calculations

• partial thermodynamic properties in α_2-Ti$_3$Al(O)

• summary
multi-phase Ti-Al / Al₂O₃ couples

- arc-melted: Al, Ti & TiO₂; annealed at $T = 900, 1000, 1100^\circ$C
 - closed system: Ta-foil (barrier for SiO)- in SiO₂ capsule
- HIP bonding (170 MPa, 1100°C for 2 h), poly-crystalline Al₂O₃
 - re-encapsulated, reacted 900, 1000, 1100°C for $t = 20 \sim 500$ h
- analysis: metallography, optical, EPMA and micro-hardness

<table>
<thead>
<tr>
<th>alloy</th>
<th>comp. (at.%)</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 3</td>
<td>Ti-(49, 52, 55)Al</td>
<td>γ-TiAl</td>
</tr>
<tr>
<td>4</td>
<td>Ti-25Al</td>
<td>α_2-Ti₃Al</td>
</tr>
<tr>
<td>5</td>
<td>Ti-32Al</td>
<td>α_2-Ti₃Al</td>
</tr>
<tr>
<td>6</td>
<td>Ti-35Al</td>
<td>α_2-Ti₃Al</td>
</tr>
<tr>
<td>7</td>
<td>Ti-33.35Al-5O</td>
<td>α_2-Ti₃Al(O)</td>
</tr>
<tr>
<td>8</td>
<td>Ti-27Al-10O</td>
<td>α_2-Ti₃Al(O)</td>
</tr>
<tr>
<td>9 ~ 10</td>
<td>Ti-(40, 48)Al</td>
<td>$\alpha_2 + \gamma$</td>
</tr>
</tbody>
</table>
α_2-Ti$_3$Al / Al$_2$O$_3$ couples

Ti-32Al / Al$_2$O$_3$, $t = 500$ h

α_2-Ti$_3$Al

γ-TiAl

Al_2O_3

marker

1100°C 1000°C 900°C

$\sqrt{\text{time (10^{-2}s^{1/2})}}$

thickness (\mu m)

$k_p(10^{11}\text{cm}^2\text{s}^{-1})$

$\text{sqrt. time (10^{-2}s^{1/2})}$

$kp = 4.0 \pm 0.2$

$kp = 0.72 \pm 0.04$

$kp = 0.12 \pm 0.02$
α₂-Ti₃Al / Al₂O₃ couples

\[\text{Al}_2\text{O}_3 = 2\text{Al}_{\gamma,\alpha_2} + 3\text{O}_{\gamma,\alpha_2} \ldots \text{“gas / solid”} \]

Al, O supplied at activity of γ / Al₂O₃

\[\tilde{J}_O \gg \tilde{J}_\text{Al} \text{ (from diffusion path)} \]

\[\tilde{J}_O \rightarrow \text{through } \gamma \text{-layer into } \alpha_2(O) \]

\[\tilde{J}_\text{Al} \rightarrow \gamma \text{-layer growth and enriches } \alpha_2(O) \]

“up-hill” diffusion of O in \(\alpha_2(O) \)

\[\tilde{J}_O \text{ from low to high } X_O: \]

\[\tilde{J}_O = -\tilde{D}_{O}\text{O} \frac{\partial C_O}{\partial x} - \tilde{D}_{O}\text{Al} \frac{\partial C_{\text{Al}}}{\partial x} \]

\(\tilde{D}_{O\text{Al}} \) must be +ve and significant...

+ve thermodynamic interaction between O and Ti + Al

\(T = 1100^\circ\text{C} \)
treated diffusion in Ti-Al-O

- Ti and Al substitutional; O interstitial, but [OTi₆] only stable sites
- limited kinetic interaction between lattices plus $\tilde{J}_O >> \tilde{J}_{Al}$, treat:
 - Ti-Al "pseudo binary" and O "transient equilibrium"

\[\alpha_2\text{-Ti}_3\text{Al (DO}_{19}\text{)} \quad \gamma\text{-TiAl (L1}_{10}\text{)} \]

- correct profiles: r(Ti, Al) = 1.45, 1.43Å; $V_m(\alpha_2, \gamma) \approx 10.0 \text{ cm}^3\text{mol}^{-1}$

- Ti, Al: $C_i = (N_i/(N_{Ti} + N_{Al}))/V_m$
- O: $C_0 = N_O/V_m$

Al₂O₃ / Ti-25Al

\[T = 1100°C, \text{ 250 h} \]

concentration profiles

raw EPMA data

“up-hill” diffusion of O

EPMA error, TiO₂-layer

corrected profile

\[C_i = \left(\frac{N_i}{N_{\text{Ti}} + N_{\text{Al}}} \right)/V_m \]

\[C_O = N_O/V_m \]
\(\tilde{D}(N_i) \) in \(\alpha_2\)-Ti\(_3\)Al and \(\gamma\)-TiAl

<table>
<thead>
<tr>
<th>Alloy</th>
<th>(\tilde{D}_\gamma) (cm(^2)sec(^{-1}))</th>
<th>(\tilde{D}_{\alpha_2}) (cm(^2)sec(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T = 1100^\circ)C</td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>9.9±0.5\times10^{-11}</td>
<td>2.7±0.3\times10^{-12}</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>6.3±0.6\times10^{-11}</td>
<td>3.0±1.5\times10^{-12}</td>
</tr>
<tr>
<td>Ti-35Al</td>
<td>5.4±0.3\times10^{-11}</td>
<td>5.2±1.3\times10^{-12}</td>
</tr>
<tr>
<td>Ti-33.3Al-5O</td>
<td>6.1±0.7\times10^{-11}</td>
<td>1.2±0.2\times10^{-12}</td>
</tr>
<tr>
<td></td>
<td>(T = 1000^\circ)C</td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>2.8±0.4\times10^{-11}</td>
<td>2.6±0.5\times10^{-13}</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>5.9±0.9\times10^{-11}</td>
<td>3.3±0.7\times10^{-13}</td>
</tr>
<tr>
<td></td>
<td>(T = 900^\circ)C</td>
<td></td>
</tr>
<tr>
<td>Ti-25Al</td>
<td>5.1±2.0\times10^{-12}</td>
<td>3.4±0.9\times10^{-14}</td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>1.4±0.5\times10^{-11}</td>
<td>3.9±1.0\times10^{-14}</td>
</tr>
</tbody>
</table>

Average values
Arrhenius behavior / comparison

α₂-Ti₃Al

<table>
<thead>
<tr>
<th>Temperature Range (°C)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1169-1366</td>
<td>concentration</td>
<td>Kainuma, Inden (1997)</td>
</tr>
<tr>
<td>845-1310</td>
<td>concentration</td>
<td>Sprengel (1996)</td>
</tr>
<tr>
<td>881-1400</td>
<td>tracer</td>
<td>Kroll (1992)</td>
</tr>
<tr>
<td>897-995</td>
<td>tracer</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>897-995</td>
<td>concentration</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>900-1100</td>
<td>concentration</td>
<td>Present results</td>
</tr>
</tbody>
</table>

γ-TiAl

<table>
<thead>
<tr>
<th>Temperature Range (°C)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>845-1310</td>
<td>concentration</td>
<td>Sprengel (1996)</td>
</tr>
<tr>
<td>881-1400</td>
<td>tracer</td>
<td>Kroll (1992)</td>
</tr>
<tr>
<td>897-995</td>
<td>tracer</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>897-995</td>
<td>concentration</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>900-1100</td>
<td>concentration</td>
<td>Present results</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Temperature Range (°C)</th>
<th>α₂</th>
<th>γ</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1169-1366</td>
<td>-</td>
<td></td>
<td>concentration</td>
<td>Kainuma, Inden (1997)</td>
</tr>
<tr>
<td>845-1310</td>
<td>10</td>
<td>312±6</td>
<td>concentration</td>
<td>Sprengel (1996)</td>
</tr>
<tr>
<td>881-1400</td>
<td>-</td>
<td>1.5</td>
<td>tracer</td>
<td>Kroll (1992)</td>
</tr>
<tr>
<td>897-995</td>
<td>0.3</td>
<td>290±15</td>
<td>tracer</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>897-995</td>
<td>n/a</td>
<td>≈350</td>
<td>concentration</td>
<td>Rüsing, Herzig (1995)</td>
</tr>
<tr>
<td>750-1250</td>
<td>1.5x10⁻⁶</td>
<td>117±5</td>
<td>concentration</td>
<td>Hirano, Iijima (1984)</td>
</tr>
<tr>
<td>900-1100</td>
<td>0.3</td>
<td>290±25</td>
<td>concentration</td>
<td>Present results</td>
</tr>
</tbody>
</table>

Diagrams

- **α₂-Ti₃Al**: The Arrhenius plots show the relationship between D_0 and $10^4/T$ for different temperatures. The data points are plotted and fitted with lines to show the trend.
- **γ-TiAl**: Similar to α₂-Ti₃Al, the Arrhenius plots illustrate the relationship between D_0 and $10^4/T$ for γ-TiAl, with data points and fitted lines.

Equations

- $D_0 = \alpha^2 D_\gamma$ for α₂-Ti₃Al
- $D_\gamma = \gamma D_\alpha$ for γ-TiAl

Parameters

- D_0: Pre-exponential factor (cm²s⁻¹)
- E_a: Activation energy (kJmol⁻¹)
- D_α: Diffusion coefficient for α₂-Ti₃Al
- D_γ: Diffusion coefficient for γ-TiAl
- α^2: Coefficient for α₂-Ti₃Al
- γ: Coefficient for γ-TiAl
interstitial diffusion of O in α_2-Ti$_3$Al

- $\tilde{J}_O >> \tilde{J}_{(Al,Ti)}$... “transient equilibrium” (Kirkaldy et al. 1958-64)
 O, local equilibrium; redistributes with Ti-Al substitutional lattice

\[\tilde{J}_O = -\frac{D^O_{oo}}{\partial x} + \frac{D^O_{OAl}}{\partial x} \leq 0 \]

- predict interdiffusion coefficient ratio:

\[\frac{D^O_{OAl}}{D^O_{oo}} = -\frac{\Delta C_O}{\Delta C_{Al}} \]

$T = 1100^\circ C$

$\frac{D^O_{OAl}}{D^O_{oo}} = 0.44 \pm 0.08$
calculated \tilde{D}_{oo}

- $\tilde{J}_o^i = -\tilde{D}_{oo} \frac{\partial C_O}{\partial x} - \tilde{D}_{oo} \frac{\partial C_{Al}}{\partial x}$, no intersecting diffusion paths...
- region of pure O enrichment, $\frac{\partial C_{Al}}{\partial x} = 0 \implies \tilde{J}_o^i = -\tilde{D}_{oo} \frac{\partial C_O}{\partial x}$
- EPMA and micro-hardness; assume \tilde{D}_{oo} const.

$$\frac{C(x, t) - C_s}{C_O - C_s} = erf\left(\frac{x}{2\sqrt{Dt}}\right)$$

<table>
<thead>
<tr>
<th>Alloy</th>
<th>\tilde{D}_{oo}^{10} $(10^{-10} \text{cm}^2\text{s}^{-1})$</th>
<th>Arreheinus Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1100^\circ C$</td>
<td>1000$^\circ C$</td>
</tr>
<tr>
<td>I(Ti-25Al)</td>
<td>4.0±1.0</td>
<td>0.75±0.15</td>
</tr>
<tr>
<td>II(Ti-32Al)</td>
<td>5.5±1.5</td>
<td>0.6±0.15</td>
</tr>
<tr>
<td>III(Ti-35Al)</td>
<td>6.5±1.5</td>
<td>1.0±1.5</td>
</tr>
</tbody>
</table>

$\tilde{D}_{oo} / \tilde{D}_{Al} = 100 \sim 1000$
single-phase $\alpha_2(O)/\alpha_2(O)$ couples

- arc-melted pure-Al, Ti & TiO$_2$, annealed in closed system:
 - Ta-foil in SiO$_2$ capsule
- uni-axial hot press (1100°C for 2 ~ 4 h); $T = 1100$°C for 100 h
- analysis: metallography, optical & EPMA
 - used multi-alloy EPMA standard… TiO$_2$ surface-layer
constant Ti / Al ratio

$T = 1100^\circ C, 100 \text{ h}$

$\frac{\text{Ti}}{\text{Al}} \approx 2.9, 2.3, 2.0$

$\bar{J}_0 = -D_{oo}^{\text{Ti}} \frac{\partial C_0}{\partial x} - D_{oo}^{\text{Al}} \frac{\partial C_{\text{Al}}}{\partial x}$

$\rightarrow \bar{J}_0 = -D_{oo}^{\text{Ti}} \frac{\partial C_0}{\partial x}$

$x_m - x_o = 186 \mu m$

$x_m - x_o = 109 \mu m$

$x_m - x_o = 173 \mu m$
calculated J_0 and \tilde{D}_{oo}

J_0 ($10^{-10}\text{mole/cm}^2\text{s}$) vs. x (μm)

D_0 ($10^{-10}\text{cm}^2/\text{s}$) vs. C_0 (mole/cm3)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>\tilde{D}_{oo} ($10^{-10}\text{cm}^2/\text{s}$) $T = 1100^\circ\text{C}$</th>
<th>Ti / Al (couple)</th>
<th>\tilde{D}_{oo} ($10^{-10}\text{cm}^2/\text{s}$) $T = 1100^\circ\text{C}$</th>
<th>α_2(O) / α_2(O) couples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-25Al</td>
<td>4.0 ± 1.0</td>
<td>2.9 (7 / 1)</td>
<td>4.8 ± 1.0</td>
<td></td>
</tr>
<tr>
<td>Ti-32Al</td>
<td>5.5 ± 1.5</td>
<td>2.3 (8 / 2)</td>
<td>6.2 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Ti-35Al</td>
<td>6.5 ± 1.5</td>
<td>2.0 (9 / 3)</td>
<td>6.1 ± 2.0</td>
<td></td>
</tr>
</tbody>
</table>

\tilde{D}_{oo} ~ independent of X_0 but small Ti / Al dependence (?)
constant C_O

$T = 1100^\circ C, 100 \ h$

- profiles flipped relative to diffusion path
- classic “up-hill” profile for O...
 - thermodynamic interaction: $\text{Ti-Al} \rightarrow O$
- Ti-Al interaction zone decreases with X_O
 - $O \rightarrow \text{Ti-Al}$: kinetic / thermodynamic?
 - expect similar $\Delta \mu_{(\text{Ti,Al})}$ for each X_O
calculated \tilde{J}_{Al} and \tilde{D}_{Al}

- Ti-Al and O diffusion isn’t independent
- X_O not controlled in previous studies:
 - Sprengel: SiO$_2$ capsules, no Ta-foil
 - Rusing: flowing Ar-atmosphere
“intersecting” paths: 9-1, 7-3, 6-4

“up-hill” Al diffusion

- 9-1 and 7-3 don’t intersect; 7-3 and 6-4 are parallel…
 - new couples needed to determine kinetic interaction O → Ti-Al
- 9-1 diffusion path shows “up-hill” Al diffusion:
 - O dissolution must: increase a(Al), decrease a(Ti) (or both)

\[
\tilde{J}_O^i = -\tilde{D}_{O\infty} \frac{\partial C_O}{\partial x} - \tilde{D}_{OAl} \frac{\partial C_{Al}}{\partial x}
\]

\[
\tilde{J}_{Al}^i = -\tilde{D}_{AlO} \frac{\partial C_O}{\partial x} - \tilde{D}_{AlAl} \frac{\partial C_{Al}}{\partial x}
\]
thermodynamic measurements

multi-cell KEMS

pressure measurement

\[p(i) = I_{ik}^+ T / S_{ik} \]

activity measurement

\[a(i) = \frac{p(i)}{p^*(i)} = \frac{I_i}{I_i^o} \]

\[a(i) = \frac{p(i)}{p^*(Au)} \cdot \left[\frac{p^*(Au)}{p^*(i)} \right] = \frac{I_i}{I_{Au}^o} \cdot \frac{S_{Au}}{S_i} \cdot \frac{g(R)}{g(A)} \left[\frac{p^*(Au)}{p^*(i)} \right] \]

(\(i = Ti, Al, Al_2O \))
\(a(\text{Al}) \) vs. \(X_O \)

![Graph showing the relationship between \(a(\text{Al}) \) and \(10^4/T (\text{K}^{-1}) \) for different Ti-Al-O alloys at various temperatures. The graph includes data points and trend lines for each alloy, with labels for the phases \(\alpha_2(O) \), \(\gamma + \text{Al}_2\text{O}_3 \), and \(\alpha\text{-Ti(Al,O)} \). The reference state is \(\{\text{Al(l)} + \text{Al}_2\text{O}_3(\text{s})\} \).]
$a(\text{Ti})$ vs. X_O

$T(\degree C)$

1500 1400 1300 1200 1100 1000 1000

Increasing O

$10^4/T \ (K^{-1})$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α-Ti(Al,O)

references state: $\{\text{Ti(s)} + Y_2O_3(s)\}$
• α_2 / Al_2O_3 and $\alpha_2(O) / \alpha_2(O)$ couples… Ti-Al-O reaction behavior
• unsaturated $\alpha_2(O)$ reduces Al_2O_3: γ-layer, “up-hill” \tilde{J}_O in $\alpha_2(O)$
• $\tilde{J}_O \gg \tilde{J}_{Al}$; treat subst. and interstitial lattices independently
 -> Ti-Al “pseudo binary” $\tilde{D} = \tilde{D}(C_i)$, scatter in data (effect of X_o)
 -> “transient equ.”: $\tilde{D}_{OAl} / \tilde{D}_{OO}$ and \tilde{D}_{OO}, slight Ti / Al dependence
• $\alpha_2(O) / \alpha_2(O)$ couples: confirm $\tilde{D}_{OAl} / \tilde{D}_{OO}$ and \tilde{D}_{OO} behavior,
 but Ti-Al interdiffusion reduced $> 10x$ with X_o 0.005 \rightarrow 0.08
 -> thermodynamic interaction + change in mobility (?)
 -> difficult to observe kinetic aspect; thermodynamics is clear
• more work is need…
 -> significant insight to oxidation of Ti-Al alloys
acknowledgements:

Judy Auping (NASA Glenn), James Smith (NASA Glenn)
Christian Chatillon (Saint Martin d’Hères, France),
NASA Glenn Research Center – Directors Discretionary Fund
University of New South Wales, Sydney, Australia – ARC Grant