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ABSTRACT 

Robust Constrained Optimization Approach to Control Design for International Space 

Station Centrifuge Rotor Auto Balancing Control System 

by 

Barry Dirk Postma 

This thesis discusses application of a robust constrained optimization approach to 

control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to 

be implemented on the International Space Station. The design goal is to minimize a 

performance objective of the system, while guaranteeing stability and proper 

performance for a range of uncertain plants. The performance objective is to minimize 

the translational response of the centrifuge rotor due to a fixed worst-case rotor 

imbalance. The robustness constraints are posed with respect to parametric uncertainty in 

the plant. The proposed approach to control design allows for both of these objectives to 

be handled within the framework of constrained optimization. The reSUlting controller 

achieves acceptable performance and robustness characteristics. 
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1 Introduction 

The Japanese Aerospace Exploration Agency (JAXA) plans to participate III the 

development of the International Space Station (ISS) by providing a centrifuge to be used 

for scientific experiments. The centrifuge will be housed in the Centrifuge 

Accommodation Module to be assembled with the ISS in the configuration shown in 

Figure 1-1 [1]. 

Centrifuge 
Accommodation Module 

Figure 1-1. Location of the Centrifuge Accommodation Module 

The centrifuge would serve as a home for a number of rodents (or other test 

specimen). The rodents are allowed to move within habitats that are housed in the 

centrifuge rotor as shown in Figure 1-2. 
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Side View of Centrifuge Rotor Top View of Centrifuge Rotor 

Figure 1-2. Sideffop View of Rodents in Habitats 

Rodent movement within the habitats introduces an imbalance in the rotor that 

causes rotor vibration while the rotor is spinning. This imbalance must be cancelled to 

avoid the transfer of disturbances from the centrifuge rotor to the ISS. An active control 

system must be introduced to cancel imbalances in the rotor. 

Methodologies for limiting the vibration of spinning rotors have been presented in 

the literature. These methods can be divided into two techniques: direct active vibration 

control and active balancing techniques using mass redistribution. Direct active vibration 

control uses magnetic bearings that generate an external lateral force on the rotor, while 

active balancing uses a mass redistribution device to eliminate the rotor imbalance. 

Meirovitch presented an overview of active vibration control in [2]. These methods can 

be applied to the direct active vibration control for a spinning rotor. Knop e presented 
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extensive work in [3]-[6] using adaptive open-loop control to suppress the rotor vibration 

using magnetic bearings as actuators. Herzog presented a method in [7] that also 

employed magnetic bearings and used notch filters in the control system. Fan introduced 

a vibration control method in [8] for an asymmetrical rotor using magnetic bearings. 

The Auto Balancing Controller (ABC) for the centrifuge rotor is classified as a 

mass redistribution type of controller. Using mass redistribution techniques, Van De 

Vegte first proposed a modal balancing method for the balancing of spinning rotors 

during operation [9]. Gosiewski proposed a control method ba ed on modal analysis of 

the rotor vibrations using a computer as the controller in [10] and [11]. Dyer and Ni 

introduced a balancing method ba ed on influence coefficients to achieve on-line 

estimation and active control [12]. Many of these methods were developed for the case 

of a constant rotational rotor speed. More recently, Zhou and Shi developed several 

balancing methods for speed-varying rotors presented in [13]-[15]. A thorough summary 

of work in the area of active balancing and vibration control of rotor systems is presented 

in [16]. In those methods, it is assumed that a rotor speed is either known or estimated 

exactly; the issue of control system robustness is never addressed. It is important to 

account for the linear-time varying dynamics of the rotor when using these approaches. 

In this thesis, a con trained optimization approach is proposed to design an ABC that can 

robustly cancel rotor imbalances by redistributing mass in the presence of system 

uncertainty. With the proposed methodology, both time domain and frequency domain 

stability and performance requirements can be easily included in the design process. 



4 

The remainder of this thesis is divided into five chapters. 

Chapter 2 provides relevant problem background. A description of the centrifuge 

rotor system and the ABC system is presented. 

Chapter 3 presents technical background for the solution of the problem. System 

robustness for multivariable systems is discussed, and the solution method is introduced. 

Chapter 4 explains the method used to solve the control problem. This section 

describe the implementation of the robust constrained optimization approach to control 

design and how it was applied to design an ABC system. 

Chapter 5 presents the results of the control design. The system is analyzed in 

both the time domain and the frequency domain. Also, the results of Monte Carlo 

simulations are presented. 

Chapter 6 summarizes the topics III this thesis and presents suggestions for 

possible future work related to this problem. 

-----------~-~ -------
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2 Problem Background 

In order to delineate the methodology used to solve the ABC design problem, it is 

important to properly describe the centrifuge rotor system. In this section the centrifuge 

rotor system and the ABC system are described in detail. Following the system 

description is a general statement of the problem to be solved in the design of an ABC. 

2.1 Centrifuge Rotor System 

The purpose of the centrifuge is to simulate varying levels of gravity so that the 

effects on the rodents can be studied. The centrifuge achieves the effect of varying levels 

of gravity by spinning at different steady-state rates . In order to reach a desired level of 

simulated gravity the rotor must go through a "spin-up" when the spin rate is slowly 

increased to the desired level. 

The spinning centrifuge imparts a centrifugal force on the rodents that serves to 

simulate gravity. The centrifugal force increases with increasing spin rate. An 

illustration of how the centrifugal force acts on the rodents is shown in Figure 2-1. 
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r 

I 

~ Force 

co 

Top view Force 
of rotor 

Figure 2-1. Illustration of Centrifugal Force Acting on Rodents 

The centrifugal force acting on an individual rodent is specified by the equation 

Force =M rodenrro} , ( 1 ) 

where the ymbol Force refers to the centrifugal force on the rodent (N), Mrodent is the 

mass of rodent (kg), r is the distance from spin axis to rodent (m), and CO represents the 

spin rate of centrifuge rotor (rad/sec). 

J 
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The purpose of the ABC system is to balance the rotor when the rodents have 

imposed an imbalance. An illustration of the rotor and balancer masses is given in Figure 

2-2. 

Figure 2-2. Rotor and Balancer Masses 

If all of the rodents move to the same corner of their habitat, the center of mass of 

the rotor shifts in that direction. The ABC utilizes sliding balancer masses as pictured in 

Figure 2-2 within the rotor to cancel such imbalances. The static balancer masses are 

utilized to correct imbalances that cause the rotor to translate in the (S,l1) plane. The 

dynamic balancer masses are utilized to correct imbalances that cause the rotor to tilt 

about the (S,l1 ) axes. An illustration of the static balancer masses canceling an imbalance 

is given in Figure 2-3 . The dynamic balancers work in a similar manner to cancel 

imbalances. 



Top view 
of rotor 

1 . Balanced Rotor 

D 

Rotor 
t ranslation 

:~ 

3. Rotor translation is sensed in the 
direction of the imbalance 

Rotor CM 
shifted 

Top view 
of rotor 

2. Imbalance due to 
rodent position 

Rotor CM 
sh ifted back 
to spin axis 

~ t 

Top view 
of rotor 

4 . Balancer masses move 
to correct imbalance 

Figure 2-3. Illustration of Balancer Masses Canceling an Imbalance 
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The naming convention for the balancer masses and positions is described in 

Figure 2-4. There are two types of balancer masses: static balancer masses (rectangles in 

Figure 2-4) and dynamic balancer masses (circles in Figure 2-4). The set of static 

balancer masses moving in the same direction along the S-axis is denoted by the subscript 

bland the set of static balancer masses moving in the same direction along the T\-axis is 

denoted by the subscript b2. The symbols Sbl and T\b2 are used to describe the position of 
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the set of balancer masses along the respective axes. The dynamic balancer masses also 

work in pairs. Each mass is paired with the dynamic balancer mass diagonal to it. The 

masses in a pair of dynamic balancer masses move in opposite directions parallel to the 

~-axis (which is pointing out of the page in Figure 2-4). For instance, if the dynamic 

balancer mass in the upper right quadrant of Figure 2-4 moves up, the balancer mass in 

the lower left quadrant moves the same dis tance in a downward direction. These mass 

positions are denoted by ~b3 and ~b4 corresponding to balancer mass names in Figure 2-4. 

b40 b2 

. - - - - - - - - - - +-----1f----- - -----\-7 

Top View of Rotor 

Ob3 o b4 

Figure 2-4. Balancer Mass Names and Positions 

There exists a maximum imbalance that the rodents can impose on the system. 

The maximum imbalance occurs when all of the rodents are positioned in the same comer 
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of their habitats. This moves the center of mass of the rotor the furthest distance from the 

spin axi of the rotor. Such an imbalance is illustrated in Figure 2-5. 

Rotor eM 

'-----r----'~ 

./ 
Spin Axis 

Habitats --+-. 

,------=-"'"' 

Top view 
of rotor 

Figure 2-5. Maximum Rodent Imbalance Imposed on the Rotor 

In this case all of the rodents are positioned in the upper-right comer of their 

respective habitats. Equally large imbalances occur if all of the rodents move to any 

other comer of their habi tats at the same time. This maximum imbalance is used to 

evaluate controller performance in Chapter 4 and Chapter 5. 

Note that there are two separate coordinate frames used with respect to the 

centrifuge rotor. They are shown in Figure 2-6. The (x,y) coordinate frame is fixed with 

re pect to the centrifuge base, and the (S,l1) coordinate frame rotates with the centrifuge 
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rotor. Both coordinate frames are used since the rotor displacement sensors work in the 

fixed coordinate frame and the input to the ABC is a measurement in the rotating 

coordinate frame. 

x 

t,:,1l coordinate frame 
rotates with the rotor 

Figure 2-6. Rotor Coordinate Frames 

A coordinate transformation as shown III Equation ( 2 ) IS used to change 

coordinate frames. Specifically, 

[sl [COS(UX) sin(ux) l[xl 
7J~ = - sin(ax) COS(UX)~ y~. (2 ) 

The ABC system is used to limit the translational response of the rotor due to 

imbalances imposed by the position of the rodents within the habitats. The input to the 

controller is an absolute measurement of the rotor displacement (translation and tilt) as 

shown in Figure 2-7. The centrifuge rotor sensors measure relative displacement 

between the rotor and the International Space Station. With this relative measurement, 
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the absolute rotor displacement can be estimated using a Kalman filtering technique [17]. 

In this thesis it is assumed that these absolute rotor measurements are already available. 

D D 

ISS 

'+'" 

Rotor Transl uon RotO(TtI 

Figure 2-7. Rotor Translation and Tilt 

The equations of motion for the centrifuge rotor in the fixed frame coordinate 

system (x,y coordinate system) are derived below. First, the equations of motion in the 

translational direction are derived for the system in Figure 2-8. Then, the equations of 

motion in the tilting direction are derived for the system in Figure 2-9. 
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D 

z 

L 

x 

Figure 2-8. Model for Derivation of Equations of Motion in Translational Direction 

The equations of motion in the translational direction [17] can be written in each 

aXIS as 

F =Mx x ( 3 ) 

and 

F =M" , y Y ( 4 ) 

The symbol F denotes the external force on the rotor due to springs, dampers, 

control inputs, and external disturbances, The equations of motion can thus be written 

( 5 ) 

and 

( 6 ) 
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where the symbols x and y denote the translation of the rotor in the fixed coordinate 

frame, <Px and <Py are the tilt of the rotor in the fixed coordinate frame, u is the input force 

due to balancer mass position, d is the disturbance force due to rodent position, M is the 

mass of the rotor, C and K denote damping and stiffness coefficients between the rotor 

and the outer wall of centrifuge, and L is the distance from the rotor center of mass to the 

base of the rotor where the springs and dampers act. 

Using the small angle approximation and making the substitutions 

CII=CX=Cy' (7 ) 

KII=Kx =Ky, ( 8 ) 

CII =-CxL=-CyL , ( 9 ) 

and 

KII = -KxL = -KyL, e 10) 

the equations of motion in the translational direction can be written in the form 

( 11 ) 

and 

( 12 ) 

To derive the equations of motion in the tilting direction, the model in Figure 2-9 

IS considered. The symbols Kry and Cry denote rotational stiffness and rotational 

damping, respectively, about the y-axis. The translational springs/dampers in the y-axis 

and the rotational springs/dampers about the x-axis are not shown in the figure. 

----------- ------
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Figure 2-9. Model for Derivation of Equations of Motion in Tilting Direction 

With the small angle approximation, the equations of motion in the tilting 

direction can be written in the form [19] 

( 13 ) 

where CD is the spin rate of the rotor, LJ is the transverse moment of inertia of the rotor, Iz 

is the polar moment of inertia of the rotor, and T is the external torque applied to the 

rotOL 

- - -- .. _- .. -----.- ----- ---._. - ._-_ ... - ---------- . - -
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Specifically, the symbol T denotes the external torque on the rotor due to springs, 

dampers, control inputs, and external disturbances. The torque can be written as 

and 

where uq, is the input torque in the indicated direction due to balancer mass position and 

dq, is the disturbance torque in the indicated direction due to rodent position. 

Using the small angle approximation the torque can be written as 

and 

Make the substitutions 

( 18 ) 

( 19 ) 

(20 ) 

and 

(21 ) 

-------~ 
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Then, the equations of motion in the tilting direction can be written in the form 

.. . . 
//lr -C'2Y +C22 ¢X + (1)/ Z¢Y -K'2y+K22 ¢x =Urpr +drpr (22 ) 

and 

.. .. 
/ d¢y + C' 2X + C22¢y - (1)/ z¢x + K' 2X + K22 ¢y = u¢'J' + d tPY • ( 23 ) 

Now, the full equations of motion can be written 

(24 ) 

(25 ) 

.. .. 
/ d¢x -C'2Y +C22¢x + (1)/ z¢y -K'2y +K22¢x =urpr +drpr, (26 ) 

and 

.. .. 

/ d¢y + C' 2X + C22¢y - (1)/ z¢x + K' 2X + K 22 ¢y = u¢'J' + d ¢'J" (27 ) 

The equations of motion in the rotating coordinate frame (see Figure 2-6) can be 

derived from the equations of motion in the fixed frame given in Equations ( 24 ), ( 25 ), 

( 26 ), and ( 27). The importance of deriving the equations of motion in the rotating 

coordinate frame is emphasized in Section 2.2. 

Begin with the equations of motion in the fixed frame (Equations ( 24 ), ( 25 ), 

(26 ), and ( 27 )) and apply the coordinate transformations 

(28 ) 

and 

(29 ) 



where 

[

CO (ux) - sin(ux)l 

R = sin(ax) cos(ux) ~ . 

Also, introduce R in the transformation 

and 

where 

- - [sin(ax) cos(ax)l 
R = R/ = I 

- cos(ax) sin(ux)J 

and 

- [0 11 /- I 
-1 OJ. 

Differentiation in time of Equation ( 28 ) and Equation ( 29 ) yields 

and 

-----_ ... -- ----~ ---- --- -_. ---
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( 30 ) 

( 31 ) 

( 32 ) 

( 33 ) 

(34 ) 

( 35 ) 

( 36 ) 

-- --.-----~ 



19 

Differentiation in time of Equation ( 35 ) and Equation ( 36 ) yields 

( 37 ) 

and 

( 38 ) 

Differentiation in time of R from Equation ( 30 ) yields 

. [ - msin(ca) - mcos(ca)l -
R = mcos(ca) _ mSin(ca)~ = -mRI . 

( 39) 

Differentiating in time of Equation ( 39 ) yields 

(40 ) 

Also, R is defined in the same manner as R where 

-:- . _ - - [mcos(ca) - msin(ca)l 
R = RI = - (cd?l) I = cd? = . I 

msm(ca) mcos(ca) J. 
( 41 ) 



Then, Equations ( 24 )- ( 27 ) can be reca t in the form 

and 

With a imilarity transformation [20] 

and the identitie 

R-
' 

=[COS(ax) sin(ax)l 
- sin(ax) COS(ax)~ 

[
0 - cul 

R-' R = R-' (- cuRl) = -cuR-I RI = -cuI = cu 0 ~ 

L ___ ~ __ _ -----------

20 

(42 ) 

(44 ) 

(45 ) 

(46 ) 

(47 ) 

(48 ) 
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and 

(49 ) 

Equations ( 42 ) and ( 43 ) can be written in the form 

( 50 ) 

and 

Collecting terms, the final coupled equations in the rotating frame become 

( 52 ) 



and 

If the coupling terms are neglected, the equations become 

and 

+ [0/ (l z - I d ) + K 22 

C22 (j) 

22 

( 53 ) 

( 55 ) 

where Sand Tl represent translation of the rotor in the rotating coordinate frame, 

<1>1; and <1>!l represent tilt of the rotor in the rotating coordinate frame, u is the input 

force/torque due to balancer mass positions (Sbl ,Tlb2,~b3, ~b4)' and d is the disturbance 

force/torque due to rodent position . 

Note that the dynamic behavior depends on the spin rate of the rotor, (j). Since (j) 

can vary in time, the equations of motion represent a linear time-varying system. This 

requires that any ABC must stabilize the system for the range 0 < (j) < COmax . 
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It can be verified that the system with uncoupled dynamics (Equations ( 54 ) and 

( 55 )) closely approximates the ystem with coupled dynamics (Equations ( 52 ) and 

( 53 )) by comparing the frequency response of each system. A comparison of the 

frequency response of each system in one of the translational directions (s) and one of the 

tilting directions (<1>1;) is presented in Figure 2-10 and Figure 2-11. 
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Figure 2-10. Bode Comparison - Coupled vs. Uncoupled Translational Direction 
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Figure 2-11. Bode Comparison - Coupled vs. Uncoupled Tilt Direction 
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It is clear that the frequency response of the uncoupled system closely matches 

the frequency response of the coupled system. This verifies that the uncoupled system 

can be used to approximate the coupled system. This approximation is utilized in the 

controller design presented in Chapter 4. 

2.2 Auto Balancing Controller 

As previously mentioned, the objective of the ABC system is to limit the 

translation of the rotor due to imbalances imposed by the position of the rodents within 

the habitats. This includes limiting both the peak translation of the rotor and the steady-

state translation of the rotor due to a fixed imbalance. Additionally, the control system 

should be robust to uncertainty in the rotor spin rate, (0, over the range 0 < (0 < ~nax, and 

be robust to other forms of uncertainty in the plant. Finally, the controller should avoid 



I 

I 
I 
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commanding the balancer masses to change position quickly, causing saturation in the 

balancer mass speed. By avoiding actuator saturation, the linearity of the control system 

is preserved. 

Based on the rotor displacement, the ABC commands the position of the balancer 

masses in order to cancel a rodent imbalance and limit the translation of the rotor. A 

simplified block diagram of the linear system is shown in Figure 2-12. 

R odent Disturbance 

alancer B 
M ass Position 

... ,. 

~ ,. 

Rotor Translation 

Plant 
... ,. 

Rotor Displa 

Controller -" 
Figure 2-12. Control System Block Diagram 

cement 

As discussed in Section 2.1, the ABC system operates in the rotational coordinate 

system. Since the absolute displacement is estimated in the fixed coordinate system [17], 

a coordinate transformation as shown in Equation ( 2 ) is required convert the sensor 

displacement to the rotating coordinate frame before it is used by the ABC. For the 

design of the ABC system, the plant dynamics can be formulated in the rotating 

coordinate frame yielding Equation ( 52 ) and Equation ( 53). While the ABC can be 

designed using the dynamics in the rotating coordinate frame, the implementation of the 
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controller is performed on the fixed frame dynamic model with the coordinate 

transformation. 

It is necessary to design the controller using the rotating coordinate frame to 

effectively cancel imbalances and limit the steady-state translation of the rotor. To 

illustrate this, it is necessary to see a plot of the rotor translation in each coordinate frame. 

Plots of the rotor translation in each coordinate system are shown in Figure 2-13 for a 

stationary rodent imbalance (as described in Figure 2-14) in the open-loop (uncontrolled) 

system. The rotor is rotating at a constant spin rate. 
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Figure 2-13. Comparison of Rotor Translation in Fixed and Rotating Coordinate 
Frames 

It is worth noting that in the fixed frame coordinate system (x-direction), the 

response is oscillatory, while in the rotating frame coordinate system (s-direction) the 

response is nearly constant after the transient effects subside. This is a result of the fact 

that the rotating coordinate system is rotating with the rotor imbalance. The rotor 

translates in the direction of the imbalance which remains the same in the rotating frame, 

l_ 
------------_. -------- -----------

I 

o~ 
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but changes in the fixed frame. This effect is illustrated in Figure 2-14 where the 

imbalance is initially (at time = tl) in both the x-direction and the ~-direction, but as the 

rotor rotates through angle ro(t2-tl) the imbalance is no longer in the x-direction but it 

remains in the ~-direction. 

Top view of 
rotor 

Y,l1 

Time = t1 

Y 

x 

Time = t2 

Figure 2-14. Comparison of Imbalance in Fixed and Rotating Coordinate Frames 

The importance of this result is that for steady-state error to be limited by the 

control system, the integral of the rotor displacement must increase as long as the error 

remains present. Since the response in the fixed frame coordinate system oscillates about 

0, the integral is not increasing and the steady-state error cannot be eliminated. The 

integral of each signal is shown in Figure 2-15. Clearly, the rotating coordinate system 

must be used to limit steady-state error since the integral of the displacement is not 

increasing in the fixed frame coordinate system. 
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Figure 2-15. Comparison of the Integral of Rotor Translation in Fixed and Rotating 
Coordinate Frames 

Figure 2-16 is a block diagram of the controller. The symbols Kp, Kd, and Ki 

represent constant gain matrices of size 4x4. 

Displacement 
Measurement 

Derivative 

1 

5+0.0003 
Modified Integrator 

Kp4x4 

Kd4x4 

Ki4x4 

Figure 2-16. Block Diagram of Controller 

A modified integrator is used, as opposed to a true integrator (l/s), in order to 

avoid adding poles on the jm-axis of the complex plane. By adding the poles slightly in 
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the left-half-plane, the robust stab,ility of the control system is improved. An example of 
i' 

this improvement is presented below. 

To illustrate the improvement in robust stability, a single-input, single-output 

(SISO) system is considered with pure integral control (K/s) and modified integral 

control (K/(s+p)). Block diagrams of the system in each configuration are shown in 

Figure 2-17 and Figure 2-18. 

r 
~ 

K P y 
- ~ 

J~- S 

Figure 2-17. System with Pure Integral Control 

r 
~ 

K P y 
~ , 

I~- S+ P 

Figure 2-18. System with Modified Integral Control 



The symbol P denotes the plant and is specified by the equation 

1 . 
p=-----

2 C k 
s +-s+-

m m 
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(56 ) 

The system parameters are assumed to be K= 1, p= 1, m= 1, c=2, and k= 1. A plot 

of the poles of the transfer function from r to y for each system is given in Figure 2-19. 
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Figure 2·19. Poles for Systems with a Pure Integrator and a Modified Integrator 

It is observed from Figure 2-19 that the system with the modified integrator has 

closed-loop poles farther from the jro-axis than the system with the pure integrator. In 

general, this corresponds to a system with better robust stability since it will take a larger 

perturbation for the closed-loop poles to move to the unstable region on the right side of 

the jro-axis. This is demonstrated by allowing the damping coefficient to decrease until 

instability is reached. For the system with the pure integrator the pole plot of the closed-
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loop system is presented in Figure 2-20. The plot shows the poles for decreasing values 

of the damping coefficient, c. 

1.5 
Poles for Pure Integrator with Perturbation in c 

X c=2.0 

Ul 0.5 

X c=1.5 : X X 
X c=1.0 V X c=O.5 X: 
X c=O.O 

, 

~ 
C 
ID 
c 

o -----X--· ·---·-)(------X--·X-X---·--- --------- .-----------
'61 
ID 

.s -0.5 

-1 ~ ~X : X 
_ 1.5 L..-__ ---.l ___ -L ___ ....l...... ___ ...l...-__ ---' 

-2 -1.5 -1 -0.5 0 0.5 
Real Axis 

Figure 2-20. Poles for Pure Integrator with Perturbation in c 

From Figure 2-20 it is seen that the system poles cross into the unstable region for 

c = 1.0. Therefore, the pure integral control is able to tolerate a 50% variation in the 

damping coefficient. 

For the system with the modified integrator the pole plot is presented in Figure 

2-21 for decreasing values of the damping coefficient, c. 
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From Figure 2-21 it is observed that the system poles cross into the unstable 

region for c = 0.4. Therefore, the modified integral control is able to tolerate an 80% 

variation in the damping coefficient. This is significantly larger than the system with 

pure integral control, indicating that the system with modified integral control is more 

robust to variations in the damping coefficient (as well as other plant parameters). This 

increase in robust stability comes at the cost of increased steady-state error as discussed 

in Section 3.5. 

Block diagrams of the centrifuge rotor control system are shown in Figure 2-22 

and Figure 2-23. Figure 2-22 is the system used to design the controller. The dynamic 

equations of motion are in the rotating coordinate frame and time delays are neglected. 
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Since the time delays are small, they are neglected in the linear stability analysis, but they 

are accounted for in the time domain simulation portion of the design in Chapter 4. 

translation 

spin rate 
translation 

spin rate 
disturbance 

disturbance 
masspos measurement 

Plant (Rotat ing Frame Dynamics) 

comm mass pos measurement 

Controller 

Figure 2-22. Block Diagram of System used for Design 

Figure 2-23 shows the system used to implement and test the controller. The 

system is simulated using a solver based on the Runge-Kutta (4,5) numerical integration 

scheme [21]. The dynamic equations of motion are in the fixed coordinate frame and 

time delays are present. A coordinate transform is used to transit from the fixed 

coordinate frame to the rotating coordinate frame. The symbols (Sbl ,T]b2,~b3,~b4) denote 

the commanded positions of the balancer masses. 
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disturbance 
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Input 
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Figure 2-23. Block Diagram of System used for Implementation 

2.3 General Problem Statement 

It is assumed that the following constraints apply to the ABC: 

1. limit the peak translation (.J ( 2 + 7J 2 ) of the rotor < "(I for all rodent 

disturbances, 

ll. ensure stability over the range 0 < c.o < COmax, 

Ill. be robust in the presence of spin rate(c.o), rotor mass (M), and rotor 

inertiaCId,Iz) uncertainty, 

IV. limit commanded balancer mass speed < "{2, and 

V. limit teady-state rotor translation < "{3 for a fixed disturbance (rodents are 

stationary), 

34 

where the symbols "{I ,"{2, and "{3 represent specific problem constraints to be defined in 

Section 4.1. Note that the tilt of the rotor is not directly constrained ince it contributes to 

the tran lation of the rotor (which is con trained). 

- -------- ---------- ---~---- -.--~ 
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3 Technical Background 

Before introducing the design process of Chapter 4, some background in the 

technical tools used to analyze the control system is necessary. In this section, 

background in robust control for multi-input, multi-output (MIMO) systems is presented. 

Also, steady-state error in control systems is examined. Finally, a robust constrained 

optimization approach to control design is presented. 

3.1 Multi-Input, Multi-Output (MIMO) Control 

It is well known from classical control, single-input, single-output (SISO) 

systems, that the gain of a system can be defined in terms of the frequency response or 

Bode plot [22]. Defining the gain of a system for the MIMO case is less clear since a 

Bode plot only represents the frequency response from a single input to a single output. 

To describe system gain for the MIMO case, singular values are introduced [23]. 

Consider the transfer function matrix G with m inputs and n outputs. If G is evaluated at 

a fixed frequency, 0), G(jO)) is a constant n x m complex matrix. Any matrix G can be 

decomposed into its singular value decomposition (SVD) [23] 

H 

G=ULV (57 ) 

where the symbol L is an n x m matrix with non-negative singular values, ai, in 

descending order along the main diagonal, U is an n x n unitary matrix of output singular 

vectors, and V is an m x m unitary matrix of input singular vectors. 

The column vectors of U, Ui, represent the output directions of the plant, while the 

column vectors of V, Vi, represent the input directions of the plant. That is, if an input in 
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the direction of Vi is considered, the output will be in the direction Ui and the signals are 

related by the corresponding singular value. Specifically, 

(58 ) 

It can be shown that the largest gain in any input direction is equal to the largest 

singular value [24]. The largest singular value of a matrix is denoted by the symbol 

O'(G) = 0'1 (G). (59 ) 

To obtain the MIMO frequency response for G(s), G is evaluated at s=j(O for the 

interval (0 for which the frequency response is desired. The maximum singular values are 

then plotted as functions of (0 to provide the maximum system gain at any frequency, (0. 

The peak of this frequency response plot is known as the H-infinity norm of the 

system[24], defined by the equation 

IIG(s)lloo = m:xO'(G(jm)). (60 ) 



To illustrate, the system [25] in Figure 3~ 1 is examined. 

r e H ... ... ,. . 
,~-

K ~ 

"' 

Figure 3·1. Control System Example 

In this example, Hand K are specified by the equations 

and 

[ 

9 -101 
H(s)= s+1 s+1 

-8 9 
s+2 s+2J 

[
2 11 

K = 1 2~. 

The transfer function from r to y can be written in the form 

y=Tr, 

where 
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y ... 
r 

(61 ) 

(62 ) 

(63 ) 

(64 ) 
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This matrix is evaluated at s=j(O=O to find the singular values of the system at 

(0=0 rad/sec. This yields 

[ 
0.6452 

TUm= 0) = 
-0.2903 

-0.6774l 

0.3548 ~. 

Using SVD, this matrix can be written in the form 

(65 ) 

[ 
0.6452 -0.6774l =[-0.8983 0.4395l[1.0413 l[-0.6790 0.7341l 

- 0.2903 0.3548 ~ 0.4395 0.8983~ 0.0310~ 0.7341 0.6790~. (66 ) 

It is seen that the singular values at (0=0 are crl=1.0413 and cr2=0.031O. Using 

SVD for each frequency in a set of desired frequencies and plotting the maximum 

singular value produces the frequency response plot in Figure 3-2. 

1.2 

gj 0.8 
:::J 
(0 

> m 0.6 . 
:::J 
Ol 
C 

(i) 0.4 

0.2 

Singular Values of T 

o __ ,J...~.~ ... ~L .. ~...J..¥....I.......l-1...W~ __ ._l~.......l'-'--'--->-l...W 

10-1 10° 101 

Frequency (rad/sec) 

Figure 3-2. Maximum Singular Values 
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It is verified that the maxImum singtilar value at ro=O is 0'1=1.0413. Singular 

. values have two distinct advantages over eigenvalues for MIMO systems; they provide 

information about the gains of the plant and they can be obtained for non-square plants. 

3.2 Uncertain Systems 

One of the problem constraints presented in Section 2.3 was that the system with 

the ABC must be robust to uncertainty in plant parameters. Uncertainty in a control 

system is the discrepancy between the actual system and the model of the system. 

Uncertainty can arise from many sources. Some sources of uncertainty are [25]: 

I. approximate or erroneously valued parameters in the plant, 

II. ignored complexities (nonlinearities, time delays, etc.), 

III. imperfections in sensors/actuators, 

IV. unmodeled dynamics, and 

v. model order reduction of the plant. 

In general, uncertainty appears in two basic forms: parametric uncertainty and 

unmodeled dynamics [28]. Parametric uncertainty will be the form of uncertainty 

primarily examined in the design process for this thesis. 

Uncertainty can be easily modeled in a feedback manner known as a linear 

fractional transformation (LFT) [24][28][29]. Using LFTs it is possible to separate what 

is known (model of the system (M» from what is unknown (the bounded uncertainty (~» 

in a feedback interconnection [28] as shown in Figure 3-3. 
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~ " , 

, M 

Figure 3-3. Linear Fractional Transformation 

In the case of unmodeled dynamics, Ll is any fully populated transfer function 

matrix where 

(67 ) 

This is known as unstructured uncertainty. 

In the case of parametric uncertainty, Ll generally has a diagonal structure of the 

form 

1 
(68 ) 

Equation ( 67 ) still applies to the case of parametric uncertainty, but the structure of the 

uncertainty is constrained to the form in Equation ( 68). This is known as structured 

uncertainty. Generally, weighting functions are added to the plant so that Equation ( 67 ) 

is satisfied. 
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To illustrate how system uncertainty cart be formulated in an LFT framework, the 

system in Figure 3-4 is considered. This is the same system considered in Section 3.1 

with an uncertainty added in the input to the plant (or the actuator signal). 

.. 1+L1 ~ H , 

11\-

y 

K .I 

~ 

Figure 3-4. Uncertain System Example 

The symbols Hand K are as defined in Section 3.1 and Ll has a diagonal structure. 

Specifically, 

(69 ) 

and (h and ~ are allowed to vary on the interval [-0.8,0.8], allowing for 80% uncertainty 

in each actuator signal. The uncertainties can be "pulled out" and the system and can be 

re-arranged as in Figure 3-5. 
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UL1 r-----------------, 
I 

j----

+ H 
y 

K M 

Figure 3-5. Pulling out the Uncertainty 

The symbol M represents the transfer function from U.6, to y.6,. U sing block 

diagram algebra, an expression for M is derived. Specifically, 

YLl =-Ky , (70 ) 

(71 ) 

(72 ) 

(73 ) 

(74 ) 

and 

M =-(/ +KH)-I KH. (75 ) 
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Now, the system can be written as an LFf as in Figure 3-3. However, ~ must still be 

normalized so that the norm bound on ~ is 1. Weighting functions, WI and W 2, as shown 

in Figure 3-6, are used to accomplish this scaling. 

r-- W2 
~ 

~ 
; W1 "' "' 

... M ,. 

Figure 3-6. Normalizing the Uncertainty 

and 

In this case, the weighting functions 

[
o.s ° l 

WI = ° o.s~ 

~ 

(76 ) 

[
1 ol 

W2 = ° 1~ (77) 

normalize the uncertainty while allowing the actuator gain SO% uncertainty. The 

weighting functions are appended to M to recast the system in the form of Figure 3-3 

with ~ normalized to 1. 
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3.3 Small Gain Theorem 

The small gain theorem ties together the concepts of singular values and system 

uncertainty to form the basis of the robust stability problem for MIMO systems. Robust 

stability is achieved when all plants in a given uncertainty set are stable for all possible 

perturbations [24]. Consider the system shown in Figure 3-7 where M(s) and Ll(s) are 

strictly stable transfer function matrices. 

+ 
+ 

M 

Figure 3-7. Small Gain Theorem 

The small gain theorem [29] states that for 'Y >0 the interconnected system in 

Figure 3-7 is well-posed and internally stable for all Ll(s) with 

IILlt :::; 1/ r if and only if IIMt < r. (78 ) 

This condition can be re-written as 

a(M(jm))a(Ll(jm)) < 1 V m. (79 ) 
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Commonly, the problem is posed such that ~ is norm-bounded by 1. In this case, 

the robust stability (RS) condition based on the small gain theorem can be written as 

RS ¢::} a(M(jw)) < 1 'if w. (80 ) 

Alternatively, the condition can be written as 

( 81 ) 

3.4 The Structured Singular Value 

The small gain theorem provides the foundation for answering the problem of 

robust stability. However, the small gain theorem is conservative for the case of 

structured uncertainty, or parametric uncertainty, since it assumes an unstructured 

perturbation. The structured singular value is an expansion of the small gain theorem 

used to provide a less conservative answer to the question of robust stability (or robust 

performance) subject to structured uncertainty. The structured singular value was first 

introduced by Doyle in 1982 [26][27]. 

3.4.1 Robust Stability with the Structured Singular Value 

The small gain theorem gives a condition for robust stability in Equation ( 80 ). 

While this condition provides a method for evaluating robust stability, it is known to be 

conservative for the case of structured uncertainty [25]. The structured singular value (Jl) 

is introduced to provide a less conservative answer for the case of structured uncertainty. 
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The structured singular value, /-t, is defined as 

(M)- 1 
Jill - min{o-(,1) s.t. det(I -M,1)=O} , 

(82 ) 

where the denominator is the maximum singular value of the smallest ,1 that is able to 

destabilize the system. While it is quite difficult to compute /-t directly, advanced 

algorithms exist [28] to compute upper and lower bounds on /-t. This thesis will be 

primarily concerned with the upper bound since it provides a slightly conservative 

answer, while the lower bound often provides an answer that is not conservative enough. 

From the small gain theorem, an initial upper bound on /-t can be formulated. 

Specifically, 

Jill (M) S; o-(M (jm)) . (83 ) 

As previously stated, the bound in Equation ( 83 ) is known to be conservative for 

the case of structured uncertainty. To reduce conservatism, scaling matrices, D and D- I
, 

are introduced as shown in Figure 3-8. Figure 3-7 is replaced with Figure 3-8 for 

evaluating robust stability with /-t. 
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Figure 3-8. Robust Stability with Scaling Matrices 
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Since ~ has a diagonal structure for the case of structured uncertainty and D is a block 

diagonal scaling matrix, 

The block diagram can now be drawn as in Figure 3-9. 

r-----------------------------------------------------------
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I 

M D 
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M' 

Figure 3-9. Simplified Robu"st Stability with Scaling 

(84 ) 
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The small gain theorem now provides the upper bound on !-! 

f.L(M) $ u(PMD-1 
) , (85 ) 

where D is a free parameter that can be used to get a less conservative upper bound on !-!. 

It follows that an optimal D can be found to find the least conservative upper bound on !-!, 

which provides a new, less conservative condition for robust stability. That is, 

(86 ) 

To illustrate the advantage of using the structured singular value to determine 

robust stability, the example from Section 3.2 is again considered. The system with 

weighting functions as specified in Section 3.2 is presented in Figure 3-10. The system, 

M, is taken to be the closed-loop transfer function, T, as defined in Section 3.1. 

r-----------, r-----------, 
I I 
I I 

r-- W2 ~ ~ ~ W1 ~ 
I I 
I I 
I I 
I I l __________ J 

M 
, M 

~ ___________________________________ J 

Figure 3·10. System with Weighting Functions 
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For evaluating robust stability, there are two conditions. Both provide an upper 

bound on Jl. Specifically, 

RS ¢::> a(M (jm)) < 1 "if m Small Gain Theorem (87 ) 

and 

Structured Singular Value . (88 ) 

The upper bounds on Jl for each case are plotted in Figure 3-11. In this case the 

small gain theorem does not guarantee robust stability for the system since the peak value 

is greater than 1. However, the structured singular value does guarantee robust stability 

since the peak is below 1. Clearly, the small gain theorem is conservative in this case. 

The structured singular value allows for a less conservative answer to the question of 

robust stability through the use of the scaling matrices, D and D- I
. 

Small Gain Theorem vs. J.L 
1.4 

--Small Gain Theorem 

1.2 --Structured Singular Value 

1 
:i 
c: 
0 
-0 0.8 
c: 
~ 
0 
m 
"- 0.6 (]) 
0.. 
0.. 

:=J 
0.4 

0.2 

o~~~~~~~~~~~~~~~~~~ 

10-1 1 0° 1 01 1 02 1 03 

Frequency (rad/sec) 

Figure 3-11. Small Gain Theorem vs. J.1 
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3.4.2 Robust Performance with the Structured Singular Value 

Robust performance is achieved when a given performance objective is achieved 

for all plants in a given uncertainty set. More specifically, for the system in Figure 3-12, 

robust performance is defined as 

(89 ) 

r-------------------

F 
~ 

M 

Using LFT 

r::::=~> I ______ ~)~ ___ f= ____ ~-----+) 

L __________________ _ 

Figure 3·12. Definition of Robust Performance 

Generally, weighting functions are added to F so that the problem can be written 

(90 ) 

The problem of robust performance can be treated in the framework of the 

structured singular value by using the small gain theorem to convert the problem to a 

robust stability problem. Since the requirement for robust performance in Equation ( 90 ) 

is the same as the small gain requirement for robust stability in Equation ( 81 ) where M 

is replaced by F, the robust performance problem can be posed as a robust stability 
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problem. Figure 3-13 is a pictorial representation of a robust performance problem being 

converted to a robust stability problem through the use of a fictitious uncertainty block Ap 

[24]. 

RP ¢::> 11Ft < 1 RS ¢::> 11Ft < 1 
r--------, 

L. ____ . ____ ..J 

M is nominal closed 
loop system 

Algebra 

RS ¢::> f.1 b. (M ) < 1 V OJ ¢=::=l 

Same Requirement as 
Small Gain Theorem 

Figure 3-13. Converting a RP Problem to a RS Problem 

Now, if the robust stability requirement 

(91 ) 

is satisfied, robust performance is guaranteed. To illustrate how robust performance is 

evaluated with the structured singular value, the example from Section 3.2 is again 

examined. The system in Figure 3-14 is considered. 
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y u~ 

H + 
y 

K 
n 

+ 

Figure 3-14. System for Robust Performance Problem 

The symbol n represents the system input, sensor noise, and the symbol y 

represents the variable to be regulated. It is assumed that for the system with 80% 

actuator uncertainty, the performance objectiye is to limit the output, y, to 10% of the 

sensor noise, n, at high frequencies (where sensor noise is most likely). This 

performance objective requires that the system is robust to the sensor noise. To 

normalize the performance objective to 1, weighting functions are added to the system as 

shown in Figure 3-15. 
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Y/j. 

H y 

K 
n 

Figure 3-15. System with Weighting Functions 

The symbols WI and Wz are as described in Section 3.2. The matrix 

[
10 l 

Wy = 10~ 

serves to impose the 10% limit on the output of the system. Further, W n serves to impose 

the robust performance requirement at high frequencies only. In this case the output is 

required to be less than 10% of the sensor noise at frequencies above 100 rad/sec 

(roughly where the plot ofWn ' (shown in Figure 3-16) nears 1). Specifically, 

and 

W = n 
n [

WI 

W '= s+1.73 
n s+ 173 . 

(93 ) 

(94 ) 



'U) 
..0 
(U 

1 

O.S 

-; O.S 
"'0 

.-E1 
c: 
0) 
(U 

:2 0.4 

0.2 

54 

Weighting Function Wn' 
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Figure 3-16. Weighting Function Wn' 

This performance objective is evaluated using J.l. The upper bound of J.l is plotted 

for the 10% requirement in Figure 3-17. 
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Figure 3-17. Robust Performance Plot for 10% Requirement 

Since the peak of the robust performance plot is greater than 1, the conditions for 

robust performance are not satisfied. However, if the performance requirement is relaxed 

to limit the output to 20% of the input signal over the same frequency range, robust 

performance is achieved. The results are shown in Figure 3-18. 
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Figure 3·18. Comparison of 10% and 20% Requirements for Robust Performance 

3.4.3 Real Parametric Uncertainty to Complex Uncertainty 

For a complex uncertainty (unmodeled dynamics or complex parameter 

uncertainty) Jl is a continuous function. However, Jl is not necessarily a continuous 

function when all perturbation blocks are real, as is often the case for parametric 

uncertainty [30]. This discontinuity can cause problems in the convergence of the bounds 

on Jl [28]. 

In fact, in order to derive a more reliable bound for the design of the ABC, the 

parametric uncertainty in the spin rate was treated as an uncertain complex parameter. 

The interval for spin rate was then divided into several smaller complex intervals and 

each interval was tested for robust stability and performance [31]. An illustration of how 

the uncertainty in the spin rate was treated is shown in Figure 3-19. 
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Figure 3·19. Real to Complex Uncertainty 

The complex uncertainty representation is somewhat conservative since it allows 

for a small complex contribution in the spin rate, which is not possible. However, the 

complex representation contains the entire interval in the real uncertainty representation 

and it allows for a more reliable computation of the bound on the structured singular 

value. 

3.4.4 Centrifuge Rotor System in f.1-ana1ysis Framework 

Figure 3-20 presents a pictorial representation of an uncertain centrifuge rotor 

system formulated into a robust stability problem using the structured singular value. 

The diagram describes the steps necessary to put the uncertain centrifuge rotor system in 

the Il-analysis framework. 
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Figure 3-20. Evaluating System Robustness with the Structured Singular Value 

3.5 Steady-State Error in Control Systems 
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One of the problem constraints as presented in Section 2.3 is to limit the steady-

state error in the centrifuge rotor system. It is common practice in control design to 

introduce an integral term into the controller to eliminate steady-state error. This integral 

term increases the system type. The system type is defined as the number of poles the 

open-loop system (the transfer function from e to y in Figure 3-21) has at s = 0 [22]. 

Adding an integral term in the controller introduces a single pole at s = O. The steady-

state error of a system can be expressed with respect to the system type and the input to 

the system. For example, the steady-state error due to a step input for a type 0 system 

and type 1 systems and higher is shown in Table 3-1. 
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System Type Steady-State Error 

Type 0 System ess = constant 

Type 1 (or higher) System ess = 0 

Table 3-1. Steady-State Error due to Step Input 

A controller utilizing only an integral term has the structure shown in Figure 3-21 .. 

P is a type 0 system. Since an integral term has been added via the controller to a type 0 

system, the system is now a type 1 system. It should have steady-state error of 0 for a 

step input. 

r K 

s 
p 

Figure 3-21. System with Pure Integral Control 

y 

If K is chosen so that the system is stable, the integral controller in Figure 3-21 

will eliminate steady-state error. However, adding an integral term to the controller adds 

a pole of the open-loop system on the jro-axis. Although this pole can be moved off the 

axis for the closed-loop system, K is often constrained to be small to satisfy other 

problem constraints. In this case, the pole is not moved far off of the jro-axis and this 

close proximity to the unstable region can lead to poor system robustness. For this 
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reason, it is often advantageous to use a modified integrator, such as in Figure 3-22, to 

move the pole away from the jro-axis when p is a positive real number. The system is a 

type 0 system and steady-state error is expected for a step input. 

r 
~ 

K P y 
~ , 

~I\- S+ P 

Figure 3-22. System with Modified Integral Control 

The increase in system robustness for modified integral control comes at the cost 

of allowing some steady-state error for a step input. This relationship is derived through 

use of the final value theorem [22] which provides the relationship 

limf(t) = limsF(s) (95 ) 
t~~ s~o 

The final value theorem relates the final value, or steady-state value in the time 

domain, to the Laplace transform of a system evaluated at s=O. As an example, consider 

the system presented in Figure 3-22 where the plant is defined by the equation 

1 
p=-----

2 C k 
s +-s+-

m m· 

(96 ) 

Since the steady-state error is of interest, the transfer function from r to e will be 

evaluated. The closed-loop transfer function from r to e can be written in the form 
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J! 1" :-" = ---;--:----"-+ 

l+P(~J s+ p 

(97 ) 
r 

Evaluating this transfer function with the final value theorem yields a measure of 

steady-state error as the ratio of the magnitude of the steady-state error to the magnitude 

of the reference input signal. 

First, make the substitutions 

and 

c 
a2 =-+ p, 

m 

c k 
at =-p+-, 

m m 

k 
ao =-p . 

m 

The transfer function from r to e can be written in the form 

(98 ) 

(99 ) 

( 100) 

( 101 ) 

( 102) 
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To evaluate the steady-state error for a unit step input from r, the term (l/s) must be 

added to account for the step input. Thus, 

Now the term on the right side of Equation ( 95 ) is evaluated. That is, 

e = sF(s)r(s)1 = ao 
ss s=o a + K 

o 

k 
-p 
m 

k 
-p+K 
m 

( 103 ) 

( 104) 

where ess is the steady-state error with a reference input of a unit step. It is seen that for 

p=O, there is no steady-state error. Also, the steady-state error increases as p increases for 

a given value of K. This is verified through time domain simulation for the case where 

c=lO, k=l, m=l, K=I, and p=O.l. Based on Equation ( 104 ), a steady-state error of 

0.091 is expected for a unit step input in r. The step response is shown in Figure 3-23 for 

the system with a pure integrator and the system with a modified integrator. 
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Figure 3-23. Step Response Comparison for Pure and Modified Integrator 
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It is seen from Figure 3-23 that the system with the pure integrator does not have 

steady-state error, while the system with the modified integrator has steady-state error of 

0.091 as expected, However the system with the pure integrator sacrifices system 

robustness when compared to this system with the pure integrator. It is demonstrated in 

this section that the system with the modified integrator is significantly more robust to 

error in the sensor measurement. Sensor error is introduced as shown in the block 

diagram in Figure 3-24. 
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~ 

K P y .. 
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Figure 3-24. System with Sensor Error 

Applying a sensor gain of 15, the systems are compared. The response of the 

variable y is shown in Figure 3-25 for each system when r is a unit step input. 
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Figure 3-25. Comparison of PurelModified Integral Control 
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While neither system follo'Xs the step input very well, it is clear that the system 

with pure integral control is unstable, while the system with modified integral control is 

stable. ill fact, the gain margin for the system with pure integral control is 10 (20 dB), 

while the gain margin for the system with modified integral control is 20.1 (26 dB). It is 

notable that the system with the modified integrator has a gain margin twice as large as 

the system with pure integral control while sacrificing steady-state error of 9.1 %. 

ill the case of the centrifuge rotor, the steady-state error analysis is modified to 

treat the MIMO case. If the step input r = ramp * (lis), then e = F * (lis) * ramp. Using the 

induced 2-norm (denoted as i2) to define performance, the steady-state error can be 

expressed as 

lie ss 112 ~ IIF (s = o)IIi2llramp 112 , ( 105) 

where the symbol F denotes the closed-loop transfer function from r (or the disturbance 

in the case of the centrifuge rotor) to e (the translation in the case of the centrifuge rotor). 

This equation is valid for the case where r is a signal with finite area under the curve. In 

the case where r is a step input, the relationship is written using the induced I-norm 

(denoted as il) [32] as 

( 106) 

The steady-state error of the centrifuge rotor with a controller is analyzed in Section 

4.3.1.2. 
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3.6 A Constrained Optimization Approach to Control Design 

To design the ABC a procedure is proposed to combine both time domain and 

frequency domain constraints [33][34]. The ABC design problem is first converted into a 

constrained optimization problem where the translation of the rotor due to a fixed worst

case imbalance during "spin-up" is minimized subject to problem constraints. A 

constrained optimization approach is then applied to solve the problem. 

A flow chart of the process used in a robust constrained optimization approach to 

control design is shown in Figure 3-26. This process is applied to the mathematical 

formulation of the control problem presented in Section 4.2 to generate an ABC. The 

optimization problem is solved using a gradient-descent method [38][39][40]. 

Initial Guess for K (controller) 

Is Objective Function Minimized? 

No 
Yes 

I Controller Design Complete I 

Figure 3-26. Flow of Robust Constrained Optimization Approach to Control Design 
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This approach has also been used to design control systems for the International 

Space Station Momentum Manager, an active vibration isolation system, and the Control 

Momentum Gyroscope Flex Filter for the International Space Station [35][36][37]. A 

major advantage of this approach is the capacity to deal with both time domain 

constraints (such as rotor translation constraints) and frequency domain constraints (such 

as robust stability specifications) simultaneously. 
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4 Solution Method 

To solve the ABC design problem, a robust constrained optimization approach to 

control design is implemented. The problem to be solved is re-stated more specifically in 

Section 4.1 and Section 4.2. A three stage design procedure is implemented and the 

intermediate design results are presented in Section 4.3. 

4.1 Problem Setup 

It is assumed that the following specific constraints apply to the ABC: 

I. limit the peak translation (.J, 2 + 1] 2 ) of the rotor < 3.5mm for all rodent 

disturbances, 

II. stability is required over the range 0 < 0) < COmax, 

III. be robust to uncertainty in: 

a. spin rate (0) of 100%, 

b. rotor mass (M) of 60%, and 

c. rotor inertia (~,Iz) of 45%, 

IV. limit commanded balancer mass speed < ImmJsec, and 

V. limit steady-state rotor translation < O.lmm for a fixed disturbance 

(rodents are stationary). 

Note that the tilt of the rotor is not directly constrained since it contributes to the 

translation of the rotor (which is constrained). The above formulation is a specific 

statement of the problem to be solved from the more general problem statement presented 

in Section 2.3. 
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4.2 Mathematical Problem Formulation 

The mathematical formulation of the optimization problem can then be posed as: 

Minimize IIII max r 2 

subject to 

and 

/!,(A-BK) <0 

maxllrl12 < 3.5mm 

ir(t final )i<O.lmm 

f.lrs (G(jm») < 1 

,urp (G(jm») < 1 

db <lmm 
dt sec 

(Objective Function) ( 107) 

(Nominal Stability) , ( 108) 

(Nominal Performance), ( 109) 

(Nominal Performance), ( 110) 

(Robust Stability) , ( 111 ) 

(Robust Performance) , ( 112) 

(Actuator Limits) , ( 113) 

where ret) = [set) 1](t)f and b = [(bl 1]b2 qb3 Qb4Y. The symbols A and B denote 

the state-space matrices of the coupled plant dynamics of Equations ( 52 ) and ( 53). The 

symbol G is defined as the closed-loop centrifuge rotor system as shown in Figure 3-20 

where the uncertainty is in the spin rate, rotor mass, and rotor inertia as defined in Section 

4.1. In this formulation, the peak of the translational response of the rotor is minimized. 
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4.3 Three Stage Solution Procedure 

The controller design task is broken into three separate stages. This is done to 

reduce the number of degrees-of-freedom and constraints in the optimization problem. 

This approach is called "constraint relaxation" in the literature [41]. Since the equations 

of motion of the' plant can be easily decoupled (see Section 2.1), it is possible to design a 

controller for the translational equations of motion (Equation ( 54 » and a controller for 

the tilting equations of motion (Equation ( 55 » separately, making up the first two stages 

of the design. The third stage then involves designing a controller for the coupled 

dynamics (Equations ( 52 ) and ( 53 », using the controllers resulting from stage 1 and 

stage 2 as a starting point. Stage 3 is used to fill in the cross terms of the controller as 

shown in Equation ( 117 ). 

where 

and 

The final controller has the structure 

b=Kx 

b = [(bi 17b2 ~b3 ~b4Y' 

K _ [ K _tran2x6 
K _ cross22x6 

K _cross12x6~ 
K _ tilt2x6 J. 

( 114) 

( 115 ) 

( 116) 

( 117) 
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K_tran is designed in stage 1, K..,..tilt is designed in stage 2, and K_crossl and K_cross2 

are designed in stage 3. Overall, the controller design has 48 degrees of freedom (the 

control gains of the K matrix), however, breaking the design task into three stages, it is 

re-formulated as three separate optimization problems having 12, 12, and 24 degrees of 

freedom, respectively. This reduction of the problem size allows the optimization routine 

to converge more quickly and reliably. 

4.3.1 Stage 1 

As mentioned in Section 4.3, stage 1 involves the design of K_tran. After stage 1 

is complete, the controller has the structure 

K = [K - tran2x6 

°2x6 

( 118) 

The objective of stage 1 is to find K_tran such that the peak translation of the 

rotor is minimized, while ensuring that the problem constraints are met. The peak 

translation is defined by the maximum translation of the rotor during time domain 

simulation. The scenario simulated includes a spin-up from 0 to the maximum spin rate. 

The maximum spin rate is reached in 1800 seconds and the rotor continues to spin at this 

rate until the simulation ends at 2500 seconds. The disturbance acting on the plant is the 

disturbance resulting from the rodents being stationary in positions causing the largest 

imbalance in the rotor (see Section 2.1). In addition to minimizing the translation, the 

constraints in Equations ( 108 ) - ( 113 ) must be met as well. The mathematical 

formulation is presented in Section 4.3.1.1. 



4.3.1.1 Stage 1 Problem Formulation 

Minimize maxllrl12 

subject to 

and 

A,(A-BK) <0 

maxl1rll2 < 3.5mm 

Ir(t final )1<O.lmm 

f.irs (G(j OJ) ) < 1 

f.i rp (G(jOJ») < 1 

db <lmm 
dt sec 

(Objective Function) 

(Nominal Stability) , 

(Nominal Performance) , 

(Nominal Performance) , 

(Robust Stability) , 

(Robust Performance) , 

(Actuator Limits) , 
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( 119) 

( 120) 

( 121 ) 

( 122) 

( 123 ) 

( 124) 

( 125 ) 

where ret) = [set) 1J(t)Yand b = [(hI lh2Y' The symbols A and B denote the state-

space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53). The coupled 

dynamic equations are used to check nominal stability to ensure that the controller will 

not be unstable for the coupled system when stage 3 of the design process is reached. 

The robust stability and robust performance measures must be met for the range 0 < 0) < 

ffimax and 60% rotor mass uncertainty from the nominal value. G is defined as the c1osed-

loop centrifuge rotor system as shown in Figure 3-20 where the uncertainty is in the spin 

rate and rotor mass as defined above. 
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4.3.1.2 Stage 1 Design Loop Results 

The constrained optimization problem was solved using the Matlab function 

fmincon [38]. The initial guess to start the optimization process is K_tran = 02x6. The 

optimization took over 1000 iterations to yield the final solution which is presented in 

this section. 

From Figure 4-1, it is apparent that the closed-loop system achieves nominal 

stability since all of the poles lie to the left of the jro-axis. The poles that appear to lie 

near the jro-axis are the result of the modified integrators that were appended to the 

system. Since the modified integrators add poles at s = -0.0003 to the open-loop system, 

these poles appear to be quite near the imaginary-axis, but are in the left half plane 

(LHP). 
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Figure 4·1. Stage 1 . Nominal Stability 
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Figure 4-2 shows the translation of the rotor when simulated under the conditions 

described in Section 4.3.1. The peak translation of the rotor is well under the maximum 

allowable translation 3.Smm. In fact, the peak translation is 2.S2mm. Further, the 

steady-state translation of the rotor is less than O.lOmm satisfying the requirement for 

steady-state error (the constraint imposed on the final value of rotor translation). 

Rotor Translation 

3.5~--------~----------------~------~ I Max Allowable Translation I 
3 

...... ~ ....... 2.52 mm 

.8 1.5 
o 
0:: 

0.10 mm .................. 
500 1000 1500 2000 2500 

Time(s) 

Figure 4-2. Stage 1 - Rotor Translation 



75 

The steady-state error that is present in the response is due to the modified 

integrators being used in the controller (see Section 3.5). Recall that in the MIMO case 

steady-state error for a step input can be expressed as 

( 126) 

In the case of the centrifuge rotor, the symbol F denotes the closed-loop transfer 

function from the rodent disturbance to rotor translation. The closed-loop centrifuge 

rotor system for stage 1 yields 

- 0.00002 - 0.00023 0.3 lie II < = 0.000078 m , 
ss 00 - 0.00021 - 0.00003 il 0.3 00 

( 127) 

where the maximum size of the elements in the vector r is 0.3. Since the maximum size 

of the steady-state error is 0.000078 m in each direction (~ and 11), the upper bound on 

the translation is (0.0000782 + 0.0000782
)112 = 0.0001103m. From Figure 4-2, it is seen 

that this relationship provides a good upper bound. The actual steady-state error is 

slightly less than O.OOOlm. 
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Figure 4-3 indicates that the closed-loop system maintains stability for 60% mass 

uncertainty over the range 0 < (0 < Olmax since the upper bound of J1 < 1 at all frequencies. 

The interval for (0 was divided into several intervals to evaluate robust stability as shown 

in Section 3.4.3. The plot of robust stability presented is the interval with the highest 

peak for the upper bound of J.t. 

Upper Bound on 11 - Robust Stability 
60% Mass Uncertainty 
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OL-------~~------~--------~--------~ 
1 0-8 1 0-4 1 0-2 1 0° 1 02 
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Figure 4-3. Stage 1 - Robust Stability 
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The transfer function evaluated to analyze robust stability is the transfer function 

from Ud to y d shown in Figure 4-4. The uncertainty ~ is normalized to 1, and it 

represents the uncertainty present in the rotor mass and rotor spin rate. The symbols D 

and D-1 are as specified in Section 3.4 and represent scaling matrices used by the 

structured singular value. 

L1 

---+ 0-1 -. P r---+ 0 I--

r--+ r--

0...- K ~ 

Figure 4-4. Block Diagram for Evaluating Robust Stability 
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Figure 4-5 indicates that the closed-loop system achieves the performance 

objective for 60% mass uncertainty over the range 0 < 0) < COmax since the upper bound of 

~ < 1 at all frequencies. The interval for 0) was again divided into several intervals. The 

plot of robust performance presented is for the 0) interval with the highest peak for ~. 

Upper Bound on IL -Robust Performance 
60% Mass Uncertainty 

1r---------~--------,_--------~--------_, 

0.9 

O.B 

0.7 

0.6 

Robust Performance 
is achieved (f.l<1) 

o~--------~--------~--------~--------~ 
1 0-6 1 0-4 10-2 1 0° 1 02 

Frequency (rad/sec) 

Figure 4-5. Stage 1 - Robust Performance 

The robust performance objective was to limit rotor translation < 3.5mm for a 

disturbance of maximum amplitude (as in the time domain simulation) and frequency 

content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective is 

formulated by appending weighting functions to the unweighted plant as in Section 3.4.2. 
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The weighting functions. are appended to the plant as shown in Figure 4-6 to 

normalize the performance objective as stated above from d to e to a performance 

objective from d' to e' as shown in Figure 4-6. The transfer function evaluated for robust 

~ 

U~ Y 
~ D-1 D I--

d' d P e e' 
Wi~ 

---+ - \!\but 

- K .--

Figure 4-6. Weighting Functions for Robust Performance 
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The weighting functions used to normalize the performance objective are 

presented in Figure 4-7 and Figure 4-8 where 

and 

W'. = In 
In [

W. 

W' = [Wout 
out 

( 128 ) 

( 129) 

The weighting function rolls off near 0.000628 rad/sec since the performance 

objective is to reject disturbances with frequency content less than 0.0001 Hz (0.000628 

rad/sec). The magnitude of the weighting function is 0.3 is since the largest expected 

disturbance has a magnitude of 0.3. 
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Figure 4·7. Stage 1 Weighting Functions· Input Weight 
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Figure 4-8 shows the ~eighting function used to normalize the output to 1. Since 

the largest allowable rotor translation is 3.5mm or O.0035m at all frequencies, the 

weighting function has the magnitude 285.7. 
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Figure 4-9 shows that in the time domain simulation the actuator saturation 

constraints of Immls (O.OOlmJs) are not exceeded. By avoiding actuator saturation, the 

linearity of the system is preserved. This is important because linear analysis results 

(such as robust stability and robust performance) are not valid if the actuator constraints 

are saturated since a system with saturation is not linear. 
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Figure 4·9. Stage 1 • Actuator Constraints 

It is seen that all of the constraints are met in stage 1 and the peak rotor translation 

is minimized. 
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4.3.2 Stage 2 

As stated in Section 4.3, stage 2 involves the design of K_tilt. After stage 2 is 

complete, the controller has the form 

K = [K - tran2x6 

°2x6 

°2x6 11 
K _tilt2x6J 

( 130) 

The objective of stage 2 is to find K_tilt such that the peak tilt of the rotor is 

minimized, while ensuring that the problem constraints are met. The peak tilt is defined 

by the maximum tilt of the rotor during time domain simulation. The scenario simulated 

is the same as that in stage 1. In addition to minimizing the tilt, the stability, robustness, 

steady-state error, and actuator constraints must be met as well. The mathematical 

formulation is presented in Section 4.3.2.1. 
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4.3.2.1 Stage 2 Problem Formulation 

Minimize 
max//¢//2 (Objective Function) ( 131 ) 

subject to 
(Nominal Stability) , ( 132) 

A,(A-BK) < 0 

maxll¢112 < 0.6mrad (Nominal Performance), ( 133) 

I¢(t final )1<O.lmrad (Nominal Performance) , ( 134) 

J.LJ G(j m) ) < 1 (Robust Stability) , ( 135) 

J.Lrp (G(j m») < 1 (Robust Performance) , ( 136) 

and 

db <lmm (Actuator Limits) , ( 137) 
dt sec 

where¢(f) = [¢(f) ¢'1(t)fand b = [qb3 qb4 y. The symbols A and B denote the state-

space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53). The robust 

stability and robust performance measures must be met for the range of 0 < CO < COmax and 

30% independent inertia uncertainty in ld and Iz• This inertia uncertainty will be 

increased to 45% in stage 3. G is defined as the closed-loop centrifuge rotor system as 

shown in Figure 3-20 where the uncertainty is in the spin rate and rotor inertia as defined 

above. The tilt of the rotor is not constrained in Equations ( 108 ) - ( 113 ) since in the 

coupled system it contributes a small amount to the translation. However, that is not the 

case in the uncoupled system used for stage 2 of the controller design, so the tilt is 
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constrained to be < 0.6 mrad (which would contribute 0.35mm of translation in the 

coupled system or 10% of the maximum allowable translation). 

4.3.2.2 Stage 2 Design Loop Results 

The constrained optimization problem was solved using the Matlab function 

fmincon [38]. The initial guess to start the optimization process is K_tilt = 02x6. The 

optimization took over 1000 iterations to yield the final solution which will be presented 

in this section. 

From Figure 4-10, it is apparent that the closed-loop system achieves nominal 

stability since all of the poles lie to the left of the jro-axis. As in Figure 4-1 the poles that 

appear to lie near the j ro-axis are in the LHP and are the result of the modified integrators 

that were appended to the system. 
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Figure 4·10. Stage 2· Nominal Stability 
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Figure 4-11 shows the tilt of the rotor when simulated under the conditions 

described in Section 4.3.1. The peak tilt of the rotor is less than the maximum allowable 

tilt of O.6mrad. In fact, the peak tilt is O.54mrad. Further, the steady-state tilt of the rotor 

is less than O.lOmrad, satisfying the requirement for steady-state error (the constraint 

imposed on the final value of rotor tilt). 
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Figure 4-11. Stage 2 - Rotor Tilt 
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Figure 4-12 indicates that the closed-loop system maintains stability for 30% 

inertia uncertainty over the range 0 < ro < ffimax since the upper bound of Jl < 1 at all 

frequencies. Again, the interval for ro was divided into several intervals to evaluate 

robust stability as shown in Section 3.4.3. The plot of robust stability presented is the 

interval with the highest peak for the upper bound of Jl. The transfer function evaluated 

to analyze robust stability is the same as that in Figure 4-4, but the uncertainty block 

Ll represents uncertainty in the rotor inertia and rotor spin rate. The plant is the tilting 

dynamics in Equation ( 55 ) and the controller is K_tilt. 
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Figure 4-13 shows that the closed-loop system achieves the performance objective 

for 30% inertia uncertainty over the range 0 < 0) < IDmax since the upper bound of J..l < 1 at 

all frequencies. The interval for 0) was again divided into several intervals. The plot of 

robust performance presented is for the 0) interval with the highest peak for the upper 

bound ofJ..l. 
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Figure 4-13. Stage 2 - Robust Performance 

The robust performance objective in stage 2 was to limit the tilt of the rotor < 

0.6mrad for a disturbance of maximum amplitude (as in the time domain simulation) and 

frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective 

is formulated by appending weighting functions to the unweighted plant. 
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The weighting functions are appended to the plant as shown in Figure 4-6. Again 

the transfer function evaluated is [u~ d,]T ~ [y~ e,]T from Figure 4-6. The weighting 

functions used to normalize the performance objective for stage 2 are presented in Figure 

4-14 and Figure 4-15 where 

[W ~ W'. = In 
In 

WinJ 
( 138) 

and 

W' =[W"" out ~ 
WoutJ . 

( 139) 

The weighting function for the input to the system rolls off near 0.000628 rad/sec 

since the performance objective is to reject disturbances with frequency content less than 

that. The magnitude of the weighting functions at low frequencies is 0.00033 since that 

is the magnitude of the largest expected disturbance in the frequency range. 
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Figure 4-14. Stage 2 Weighting Functions - Input Weight 
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Figure 4-15 shows the weighting function used to normalize the output to 1. 

Since the largest allowable rotor tilt is O.6mrad or O.0006rad at all frequencies, the 

weighting function has the magnitude 1666.7. 
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Figure 4-16 shows that in the time domain simulation, the actuator saturation 

constraints of Imrn/sec or O.OOIrn/sec are not exceeded. In fact, the mass rates are far 

from the saturation limits. The lower plot is a closer view of the mass rates. By avoiding 

actuator saturation, the linearity of the system is preserved. 
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Figure 4·16. Stage 2· Actuator Constraints 

It is seen that all of the constraints are met in stage 2 and the peak rotor tilt is 

minimized. 



92 

4.3.3 Stage 3 

As mentioned in Section 4.3, stage 3 involves the design of K_cross1 and 

K_cross2. These sub-matrices are designed simultaneously allowing for 24 degrees of 

freedom (12 for each K_cross matrix) in the stage 3 problem formulation After stage 3 

is complete, the controller has the form 

K _ [ K _tran2x6 
K _cross2 2x6 

K _cross12X6~ 
K _tilt2x6 J 

( 140) 

The objective of stage 3 is to find K_cross1 and K_cross2 such that the peak 

translation of the rotor is minimized, while ensuring that the problem constraints are met. 

Further, it is desirable to increase the amount of inertia uncertainty that the system can 

tolerate. The requirement for inertia uncertainty is increased to 45% uncertainty in both 

~ and Iz• In addition to minimizing the translation, the constraints in Equations ( 108 ) -

( 113 ) must be met as well. The mathematical formulation is presented in Section 

4.3.3.1. This formulation is the same as formulation in Section 4.2 since stage 3 is the 

last stage in the design process and all problem constraints must be met for the system 

with coupled dynamics. 



4.3.3.1 Stage 3 ProbienfF6rmiIlatiori 

Minimize IIII max r 2 

subject to 

and 

A,(A-BK) <0 

maxllrl12 < 3.5mm 

Ir(t final )1<O.lmm 

Prs(G(jm») < 1 

Prp (G(jm») < 1 

db <1 mm 
dt sec 

(Objective Function) 

(Nominal Stability) , 

(Nominal Performance) , 

(Nominal Performance), 

(Robust Stability) , 

(Robust Performance) , 

(Actuator Limits) , 
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( 141 ) 

( 142) 

( 143 ) 

( 144) 

( 145) 

( 146) 

( 147) 

where ret) = [(t) ll(t)Yand b = [(bl 1/b2 ;b3 ;b4Y. The symbols A and B denote 

the state-space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53). The 

robust stability and robust performance measures must be met for the range of 0 < co < 

ffimax, 45% of rotor inertia uncertainty in both Iz and LI, and 60% rotor mass uncertainty 

from the nominal value. G is defined as the closed-loop centrifuge rotor system as shown 

in Figure 3-20 where the uncertainty is in the spin rate, rotor mass, and rotor inertia as 

defined above. 



94 

4.3.3.2 Stage 3 Design Loop Results 

The constrained optimization problem was solved using the Matlab function 

fmincon [38]. The initial guess to start the optimization process is K_crossl = ~cross2 

= 02x6. The optimization took over 1000 iterations to yield the final solution which will 

be presented in this section. 

From Figure 4-17, it is apparent that the closed-loop system achieves nominal 

stability since all of the poles lie to the left of the jro-axis. As in Figure 4-1 and Figure 

4-10 the poles that appear to lie near the jro-axis are in the LHP and are the result of the 

modified integrators that were appended to the system. 
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Figure 4-18 shows the translation of. the rotor when simulated under the 

conditions described in Section 4.3.1. The peak translation of the rotor is well under the 

maximum allowable translation of 3.5mm. In fact, the peak translation is 2.54mm. It is 

seen that the peak translation is slightly higher than the final result of stage 1. This is due 

to the fact that the coupled dynamic equations of motion include the contribution from 

the tilt in the rotor translation. Further, the steady-state translation of the rotor is less than 

O.lOmm satisfying the requirement for steady-state error (the constraint imposed on the 

final value of rotor translation). 

I 
c 
0 

'.j::i 
(\J 

til 
c 
(\J 
"--
I-
"--
0 ...... 
0 

0=: 

10-3 Rotor Translation 4,x ______ -. ______ -. ______ -. ________ .-____ --. 

3.51------~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~---""'1 I Max Allowable Translation I 
3 

2.5 -nM 

-

2.S4mm 

2 

1.5 

o.:~ O.10mm 
.......... -

0 
1500 2000 2500 0 500 1000 

Time(s) 

Figure 4·18. Stage 3· Rotor Translation 



96 

Figure 4-19 indicates that the closed-loop system maintains stability for 60% rotor 

mass uncertainty and 45% rotor inertia uncertainty over the range 0 < (0 < IDmax since the 

upper bound of J...l < 1 at all frequencies. The interval for (0 was again divided into several 

intervals to evaluate robust. The plot of robust stability presented is the interval with the 

highest peak for the upper bound of J...l. The transfer function evaluated is the same as that 

evaluated in stage 1 and stage 2 of the design process, but the plant includes the full 

coupled dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin 

rate. 
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Figure 4-19. Stage 3 - Robust Stability 
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Figure 4-20 shows that the closed-loop system achieves the performance objective 

for 60% rotor mass uncertainty and 45% rotor inertia over the range 0 < (0 < COrnax since 

the upper bound of Jl < I at all frequencies. Again, the interval for (0 was again divided 

into several intervals. The plot of robust performance presented is for the (0 interval with 

the highest peak for the upper bound on Jl. The transfer function evaluated is the same as 

that in stage 1 and stage 2 of the design process, but the plant includes the full coupled 

dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin rate. 
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The robust perfonnance objective was to limit the translation of the rotor < 

3.5mm for a disturbance of maximum amplitude (as in the time domain simulation) and 

frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective 

is formulated by appending weighting functions to the unweighted plant. 

The weighting functions are appended to the plant as shown in Figure 4-6 in order 

to nonnalize the performance objective as stated above from d to e to a perfonnance 

objective from d' to e'. 

The weighting functions used to nonnalize the perfonnance objective for stage 3 

are a combination of the weighting functions for stage 1 and stage 2. Specifically, 

Win stage I l 

W;nstage3 = 
W;nstagel 

Win stage 2 ( 148 ) 

Winstage2U 

and 

Woutstagel l 

Wout stage 3 = 
Woutstagel 

( 149) 
W out stage 2 

Wout stage 2 U . 
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Figure 4-21 shows that in the time domain simulation the actuator saturation 

constraints of Immlsec or O.OOIm1sec are not exceeded. By avoiding actuator saturation 

the linearity of the system is preserved. 
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Figure 4-21. Stage 3 - Actuator Constraints 

It is seen that all of the problem constraints specified in Equations ( 108 ) - ( 113 ) 

are met in stage 3 and the peak translational response of the rotor is minimized resulting 

in the final design of the ABC. 
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5 Results 

In order to further examine of the effectiveness of the ABC design presented in 

Chapter 4, analysis was performed using frequency domain techniques to further analyze 

stability and time domain simulation (including Monte Carlo simulation) to further 

analyze performance. Much of the needed analysis was done during the design phase in 

Chapter 4 where nominal stability, nominal performance, robust stability, robust 

performance, and actuator saturation are analyzed for the linear system in the design 

phase. In this chapter, both stability margin analysis and nonlinear time domain analysis 

are performed to further verify the ABC design. 

5.1 Stability Margin 

Frequency domain stability and performance results are seen in Figure 4-19 and 

Figure 4-20 in Chapter 4 for the final ABC. These results guarantee the stability and 

performance of the closed-loop system for the range of possible spin rates and for 

parametric variations of 60% in the mass of the rotor (M) and 45% in the transverse 

moment of inertia (LI) and polar moment of inertia (Iz) values. These requirements were 

the primary stability constraints of the control design. This section provides further 

verification of the stability of the system. 

As an additional measure of the stability of the closed-loop system,gain margin 

and phase margin are calculated. Gain margin refers to the amount of gain that could be 

multiplied by the signal at the point where the loop break is shown while maintaining 

closed-loop stability. Phase margin refers to the amount phase that could be added to the 

signal at the point where the loop break is shown while maintaining closed-loop stability. 
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The control system is analyzed one loop at a time. The loops are shown in Figure 

5-1 and Figure 5-2. First, the stability margins are evaluated at the input to the plant (in 

the actuator signal). Next, the stability margins are evaluated at the output of the plant (in 

the sensor signal). 

The stability margins at the input of the plant as shown in Figure 5-1 are 

presented in Table 5-1 . All stability margins are computed for the plant with a nominal 

spin rate, Wmaxl2. 

Loop Break 
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Figure 5-1. Loop Break for SISO Stability Margins at Plant Input 

Traditional guidelines for good stability are gain/phase margins of 6dB/30deg or 

better. From the results in Table 5-1, it is apparent that the gain margins far exceed 6dB, 

with the smallest gain margin in the ~b3 -+ ~b3 loop being 18.5dB. The smallest phase 

margin, 28.9 deg occurs in the llb2 -+ llb2 loop. While this is slightly less than 30 deg 

phase margin, it is acceptable. 
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Gain Margin(dB) Phase Margin(deg) 

S b l ~ Sbl 
34.7 37.5 

ll b2 ~ llb2 
31.0 28.9 

~b3 ~ ~b3 18.5 102.7 

~b4 ~ ~b4 Inf 107.8 

Table 5-1. SISO Stability Margins at Plant Input for Nominal Spin Rate 

The stability margins at the output of the pl ant as shown in Figure 5-2 are 

presented in Table 5-2. All stability margins are computed for the plant with a nominal 

spin rate, wmaxl2. 
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- - -~ - ----.--------- - ------ --- ------------' 



103 

The results in Table 5-2 indicate that the gain margins at the output of the plant 

far exceed the traditional guideline of at least 6dB. Similar to the phase margin in the 

l1b2"'l1b2 loop at the input of the plant, the l1_int "'l1_int loop at the output of the plant has 

a phase margin of approximately 28 deg. Again, while this is slightly less than 30 deg 

phase margin, it is acceptable. The notations _dot and _int denote the derivative and 

integral of the associated variable. 

Gain Margin(dB) Phase Margin(deg) 

s~ S 55 .2 Inf 

11~ 11 
44.9 Inf 

<\>~ ~ <\>~ 
30.5 lnf 

<\>Tl ~ <\>Tl 
45.3 Inf 

s_dot ~ s_dot 43.4 Inf 

l1_dot ~ l1_dot 37.9 Inf 

<\>~_dot ~ <\>1;-dot Inf Inf 

%_dot -+ % _dot 21.1 Inf 

s_int -+ s_int 36.0 37.5 

TLint -+ TL int 35.3 27.9 

<\>~_int -+ <\>1;-int 37.2 83 .1 

%_int -+ %_int 43.6 100.2 

Table 5-2. SISO Stability Margins at Plant Output for Nominal Spin Rate 

Although gain/phase margins were not constrained during the design process, the 

resulting system has good gain/phase margins. This is primarily a result of two 

constraints that were in the design process. First, the design process required that the 

system be robustly stable to large parametric uncertainty in the rotor mass and the rotor 
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inertia. Since changing these parameters changes the gain of the plant, the controller had 

to be robust to gain uncertainty, yielding acceptable gain margin. Second, the constraints 

on the speed of the balancer masses necessitated that the controller gains stayed relatively 

small. The gains in the controller gain matrix could not be large values since such values 

would cause the controller to command the masses to move at a speed greater that the 

saturation speed. Having a low-gain controller corresponds to good stability margins 

much like a ystem with a zero gain controller (no control) would have infinite stability 

margins. However, not having a controller is not a reasonable solution since the 

controller is needed to meet time domain performance requirements (see Figure 5-4). 

5.2 Time Domain Nonlinear Simulation 

Time domain performance is analyzed using a simulation as shown in Figure 5-3. 

The simulation includes nonlinearities in the coordinate transformation, actuator 

constraints (mass rate saturation), and time delays. Also, the plant dynamic equations of 

motion are in the fixed (x,y) frame and the sensor measurements are rotated into the 

rotating frame via the coordinate transformation following the plant model. 

- -.- - .. -.------- .--------- ~ 
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Figure 5-3. Time Domain Simulation 
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The scenario simulated in this section includes a spin-up of the rotor from a spin 

rate of 0 to the maximum spin rate. The maximum spin rate is reached in 1800 seconds 

and the rotor continues to spin at this rate until the simulation ends at 2500 seconds. The 

disturbance acting on the plant is the disturbance resulting from the rodents being 

stationary in positions causing the largest imbalance in the rotor as described in Section 

2.1. 

First, the performance of the ABC is analyzed by comparing the rotor translation 

for the case with no controller and the case where the controller designed in Chapter 4 is 

implemented. The results of these simulations are shown in Figure 5-4. 
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Figure 5·4. Time Domain Comparison to No Control 
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It is clear that control is needed to satisfy the requirement of limiting peak rotor 

translation to be less than 3.5mrn. In fact, with the ABC the peak rotor translation is 

reduced from approximately 7.0mrn to approximately 2.5mrn. 

Further, the effect of the specified variations in the rotor mass and inertia was 

analyzed through time domain simulation. The scenario simulated was the same as that 

described above that was used to compare the rotor translation with the ABC to a case 

with no control. In order to analyze the effect of parametric variation on the performance 

of the system, the corner cases of the allowed parametric variations were tested. For 

instance, the mass of the rotor was set at the nominal value, the nominal value + 60%, 

and the nominal value - 60%. Similarly, the inertias of the rotor (~,Iz) are allowed to 

vary independently between the nominal value, the nominal value + 45%, and the 

nominal value - 45 %. Using these corner cases, 27 different parameter combinations 

were tested in simulation. The combinations are listed in Table 5-3. Figure 5-5 shows 

the response of all 27 cases tested. The peak rotor translation of the 27 cases varied 

I I L ___ _ __ _ ~. ____________________ . ____ ~ _________ _ 
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between 2.07mm and 2.87mm, all below the 3.5mm requirement. Also, the translation of 

the rotor at steady-state varied between 0.06mm and O.lOmm. This meets the 

requirement for steady-state error of 0.1 Omm or less. 
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Figure 5-5. Rotor Translation with Parametric Variations 

From Table 5-3 it is seen that the combination of parameter values corresponding 

the largest peak rotor translation and the largest steady-state error are when the mass of 

the rotor is +60% from nominal, the transverse moment of inertia of the rotor is +45 % 

from nominal , and the polar moment of inertia of the rotor is -45% from nominal. This 

case is highlighted in Table 5-3. 
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M (kg) 
Id (kg- Iz (kg- Peak Translation Steady-State 
mA2) m A2) (mm) Translation (mm) 

nom nom nom 2.53 0.093 
-60% nom nom 2.20 0.093 
+60% nom nom 2.70 0.076 
nom -45% nom 2.47 0.081 
-60% -45% nom 2.15 0.087 
+60% -45% nom 2.64 0.062 
nom +45% nom 2.59 0.098 
-60% +45 % nom 2.25 0.098 
+60% +45 % nom 2.76 0.084 
nom nom -45% 2.63 0.098 
-60% nom -45% 2.28 0.098 

+60% nom -45% 2.80 0.087 
nom -45% -45% 2.57 0.098 
-60% -45% -45% 2.22 0.096 
+60% -45% -45% 2.73 0.081 
nom +45 % -45% 2.69 0.099 
-60% +45 % -45% 2.33 0.099 
+60% +45% -45% 2.87 0.100 
nom nom +45% 2.44 0.081 
-60% nom +45% 2.12 0.084 
+60% nom +45% 2.65 0.060 
nom -45% +45% 2.39 0.090 
-60% -45% +45% 2.07 0.086 
+60% -45% +45% 2.54 0.085 
nom +45 % +45% 2.50 0.087 
-60% +45% +45% 2.17 0.091 
+60% +45 % +45 % 2.66 0.066 

Table 5-3. Results of Parametric Variations 

The preceding time domain analysis verifies two things. First, it is apparent that 

without control the system will not meet the performance requirements of limiting rotor 

translation to a·peak. of less than 3.5mm or a steady-state value of 0.10mm. This verifies 

the need for an ABC to improve performance. Second, parametric variations in time 
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domain simulation verify that the performance of the system is acceptable subject to the 

allowable parametric uncertainty. The system performance is robust to uncertainty in the 

plant. The robustness is further verified through Monte Carlo Simulation. 

5.3 Monte Carlo Simulation 

The performance of the ABC system IS further analyzed through Monte Carlo 

simulation. The Monte Carlo method, a numerical method of solving problems through 

the simulation of random variables and processes [42],[43] , has been used to gain insight 

into many complex problems in engineering and other fields. The method allows for the 

repeated simulation of a given system with an unknown or uncertain input variable. 

Repeated random selection of this unknown variable allows one to study how a particular 

system's outputs are distributed given a random input. 

Five separate Monte Carlo studies were performed to analyze the performance 

and robustness of the ABC system subject to uncertainty in the following variables: 

rodent motion within the habitats, mass and inertia of the rotor, actuator uncertainty, and 

sensor uncertainty. 

The Monte Carlo studies were performed under the conditions shown in Table 

5-4. 0.1 rnIs is assumed to be the maximum velocity of a single rodent. 

J 
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Test 
Random 

Output Input Distr ibution Disturbance Case 
Variables Variable 

Rodent Normal, mean = 0 mis, 
Random 

Test velocity 3cr = 0.1 mls variable due to 
Peak rotor 

Case 1 Rodent rodent motion 
translation 

direction 
Uniform, random unit vector 

Rotor Normal, mean = nominal , Rodents in 
Test mass 3cr = 60% variation fixed positions Peak rotor 
Case 2 Rotor Normal, mean = nominal, for max translation 

inertia 3cr = 45% variation imbalance 
Rodents in 

Test Actuator Normal, mean = 1, fixed positions Peak rotor 
Case 3 gain 3cr = 75% error for max translation 

imbalance 
Rodents in 

Test Sensor Normal, mean = 1, fixed positions Peak rotor 
Case 4 gain 3cr = 75% error for max translation 

imbalance 
Rodent Normal, mean = 0 mis, 
velocity 3cr = 0.1 mls 
Rodent 

Uniform, random unit vector 
direction 
Rotor Normal, mean = nominal, 

Random 
Test mass 3cr = 60% variation Peak rotor 
Case 5 Rotor Normal, mean = nominal, 

variable due to 
translation 

rodent motion 
inertia 3cr = 45% variation 
Actuator Normal , mean = 1, 
gam 3cr = 75% error 
Sensor Normal, mean = 1, 
gain 3cr = 75% error 

Table 5-4. Monte Carlo Test Cases 

The results of the Monte Carlo study are shown in Figure 5-6 - Figure 5-10. 
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Figure 5-6. Test Case 1 Results - Random Rodent Motion 
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It is seen in test case 1, that the system meets the performance requirement for all 

1000 runs. This result indicates that the ABC is effectively canceling the imbalance 

introduced by rodent motion . 
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Similarly, III test case 2, the system meets the performance requirement for all 

1000 runs. This result indicates that the system with the ABC controller is robust to 

variations in the mass and inertia of the rotor. 
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In test case 3, it is seen that the system meets the performance requirement for 

99.4% of the simulations. It is not surprising that it does not meet the performance 

requirement in every case since a 75 % uncertainty in the actuator gain is quite large. 

This allows the balancer mass to be up to 75 % away from the position commanded by the 

ABC. A success rate of 99.4% is considered acceptable. 
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In test case 4 it is seen that the system meets the performance requirement for 

99.0% of the simulations. Similar to test case 3, it is not surprising that it does not meet 

the performance requirement in every case since a 75 % uncertainty in the sensor gain is 

quite large. This allow the en or to read a di placement with up to 75% error from the 

actual displacement. A success rate of 99.0% is considered acceptable. 
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Figure 5-10. Test Case 5 Results - All Random Distributions 

It is seen in test case 5 that the system meets the performance requirement for all 

1000 runs. This result indicates that the ABC is effectively canceling the imbalance 

introduced by rodent motion and is robust to simultaneous perturbations in parameter 

values, actuator gains, and sensor gains. It is not surprising that the mean translation in 

test case 5 is significantly less than that in test cases 2-4. This is due to the fact that the 

disturbance in test cases 2-4 was a fixed disturbance where the rodents are stationary in 

the worst-case positions. The disturbance in test case 5 is a random disturbance 

generated from the random direction and velocity of the rodents. In general, this random 

disturbance will be less severe than the fixed disturbance with maximum imbalance. 
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6 Concluding Remarks 

An ABC meeting desired specifications has been developed for the centrifuge 

rotor using a robust constrained optimization approach. This approach is selected 

because constraints in the time domain and frequency domain can easily be handled 

simultaneously with this method. Other ABC design methods do not allow this freedom. 

The effectiveness of the controller has been demonstrated by verifying that the 

constraints are met at the final iteration of the design, checking the stability margins of 

the resulting system, performing selected time domain tests, and testing the robustness of 

the design through Monte Carlo methods. In each case, the performance of the ABC was 

acceptable. 

In Chapter 2 the problem background was introduced. A description of the 

centrifuge rotor system and the ABC system was presented. The equations of motion for 

the centrifuge rotor were derived in both the fixed frame coordinate system and the 

rotating frame coordinate system. The system block diagram and controller structure for 

the ABC were presented. 

In Chapter 3 the technical background for the solution of the problem is 

discussed. The basics of MIMO control and uncertain systems were presented. These 

concepts were used together to analyze system robustness with the structured singular 

value. Steady-state error in control systems was also discussed. Finally the robust 

constrained optimization approach to control design is presented. 

Chapter 4 presented the method used to solve the control problem. This chapter 

described the implementation of the robust constrained optimization approach to control 

design and how it was applied to design an ABC system. The method was applied in a 
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three stage design procedure in order to convert the relatively large optimization problem 

into three smaller sub-problems. The results of the controller design are presented at the 

end of each individual stage and also at the end of the final design. The application of the 

solution method produced a controller meeting the constraints of the problem while 

minimizing the translation of the rotor. 

Chapter 5 presented further analysis of the control design. The system was 

analyzed in both the time domain and frequency domain. Stability margins were 

analyzed in the frequency domain and performance was analyzed in the time domain. 

Frequency domain analysis verified that the stability margins of the system were 

satisfactory. The time domain simulations verified that the controller performance was 

robust to parametric uncertainty. The results provided further indication that the control 

design was acceptable. Also, the results of the Monte Carlo simulations were presented. 

The Monte Carlo results also verified that the control design provided satisfactory 

performance. 

Future work in the design of an ABC for the centrifuge rotor system could include 

the minimization of a different performance measure, such as robust performance or 

robust stability. Such a controller would be able to tolerate more uncertainty, but the 

performance at the nominal point would suffer as a result. Also, a method could be used 

to treat robust performance in the time domain. This would make it possible to consider 

transient effects in the robust performance analysis. 
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