Abstract:

This presentation describes how the NASA Glenn Research Center planned and implemented a process improvement effort in response to a radically changing environment. As a result of a presidential decision to redefine the Agency’s mission, many ongoing projects were canceled and future workload would be awarded based on relevance to the Exploration Initiative. NASA imposed a new Procedural Requirements standard on all future software development, and the Center needed to redesign its processes from CMM Level 2 objectives to meet the new standard and position itself for CMMI.

The intended audience for this presentation is systems/software developers and managers in a large, research-oriented organization that may need to respond to imposed standards while also pursuing CMMI Maturity Level goals. A set of internally developed tools will be presented, including an overall Process Improvement Action Item database, a formal inspection/peer review tool, metrics collection spreadsheet, and other related technologies.

The Center also found a need to charter Technical Working Groups (TWGs) to address particular Process Areas. In addition, a Marketing TWG was needed to communicate the process changes to the development community, including an innovative web site portal.
Process Improvement in a Radically Changing Organization

NASA Glenn Research Center
Software Engineering Process Group

SEPG 07 Conference
March 26–29, 2007
Topics of Discussion

NASA Glenn Research Center
Process Improvement Strategy
A Change in Focus
NASA Software Requirements
Implementation
Tools
Getting the Word Out
SEPG Products
Results and Moving Forward
About NASA Glenn Research Center

- Comprises over 150 buildings containing a unique collection of world-class test facilities
 - Lewis Field, 350-acre main campus is adjacent to Cleveland Hopkins International Airport
 - Plum Brook Station, 6400-acre site is near Sandusky, Ohio, 50 miles west of Cleveland
- Staffed by ~3300 people, including civil service employees and support service contractors
 - >50% are scientists and engineers
 - Other staff consists of technical specialists, skilled workers, and administrative staff
- Performs world-class research in aeronautics, space power and propulsion, and microgravity science
Introduction

• NASA Glenn Research Center (GRC) implemented a CMM-based process improvement effort in 2002

• A Presidential Directive redefined NASA’s mission in January 2004
 – Many ongoing projects were canceled
 – Future projects would be awarded based on relevance to the Vision for Space Exploration

• This presentation outlines how the NASA Glenn Research Center SEPG responded to better position the Center for new work
Background

• Agency-wide Software Engineering Initiative began in 2000
• NASA GRC formed local SEPG in 2002
• Flight Software Engineering Branch assessed at CMM Level 2 in December 2004
 – Branch consisted of 15 software developers
 – Projects were mostly flight and ground software for space shuttle science experiments
• Goals at that time were
 – Improve software development capability
 – Move towards CMM Level 3, and possibly into CMMI
 – Share processes and practices throughout the Center
 – Maintain and reinforce collaboration across NASA
A Change in Focus

- President Bush announces Vision for Space Exploration in January 2004
 - Develop new launch vehicles to return to the Moon and eventually go to Mars
 - Columbia Accident Investigation Board (CAIB) report
 - Renewed emphasis on quality and safety
- NASA funds redirected towards new Exploration projects
 - Emphasis on inter-Center collaboration
- New NASA requirements for software development
 - Address recent mission failures attributed to software
The Strategy

- Refocus software process improvement on new NASA Procedural Requirements for Software Engineering
 - Incorporate the requirements into GRC processes
 - Address CMMI practices where practical

- Update Center-Level Procedure for Software Development
 - Local procedure to encapsulate new requirements

- Build supporting elements
 - Organizational processes, templates, and training
 - Web Site/Process Asset Library (PAL)
 - Coaching from SEPG members

- Complete incorporation of CMMI practices
Our Motivation

- Desire to have a significant role in the development of software for the Exploration Initiative
- Improve our practices so we can develop mission critical software in a more predictable, reliable manner
- Improve our ability to add new people to the development team
- Reduce the stress on our developers if schedule and budget problems occur
- Respond to the newly mandated NASA Procedural Requirements for Software Engineering
New NASA Software Requirements

• NASA Procedural Requirements for Software Engineering (NPR 7150)
 – Agency-level document levying 129 requirements on projects containing software
 – Based on CMMI, IEEE 12207, and MIL–STD–498
 – Classifies software by its usage (manned space flight, robotic space flight, business applications, etc.)
 – Requirements apply to projects based on classification
 – Mandates compliance with other NASA requirements and standards for project formulation, systems engineering, software assurance, and software safety
Summary of 7150 Requirements

- 129 total requirements
- 114 apply at project level
 - Software Life Cycle Planning (14)
 - Project Formulation (7)
 - Acquisition & Supplier Monitoring (11)
 - Software Life Cycle Execution (34)
 - Documentation Requirements (18)
 - Peer Reviews, Configuration Management, Metrics, Training, and Other (30)

Projects required to maintain a compliance matrix
7150 Requirements Example

3.1.1.4 The project shall perform, document, and maintain bidirectional traceability between the software requirement and the higher level requirement. [SWE-052]

Note: The project should identify any orphaned or widowed requirements (no parent or no child) associated with reused software.
Implementation (1)

- Performed gap assessment of existing processes to NPR 7150
- Chartered Technical Working Groups (TWG) to tackle specific areas
 - Existing TWGs based on CMM L2 KPAs (e.g., CM, RM)
 - Created new TWGs to better match CMMI (e.g., PMC)
 - Created Compliance TWG to allocate NPR requirements to TWGs
 - TWGs updated software processes to be compliant with allocated requirements
- Updated the process for developing processes
- Involved process improvement consultant throughout implementation
Implementation (2)

- TWGs worked to achieve compliance with requirements
 - Reviewed and modified or created new processes
 - Created templates for software products
 - Developed training for each process
 - Peer-reviewed processes, templates, and training
- Technical writer provided consistency across TWGs
- SEPG and MSG provided final review before release
- Completed processes, templates, and training released to internal Web Site and NASA PAL
- Center-Level Procedure for Software Development updated and released for Center-wide review
The Results

Progress Towards Compliance

- Comply
- In Work
- Not Started
- Total Requirements

- Y-axis: 0 to 120
- X-axis: Sep-05 to Jan-07

Data points for each month from Sep-05 to Jan-07.
Tools (1)

- MS Access database to help track 7150 compliance
 - Contains one record for each 7150 requirement
 - For each requirement, allows for
 - Assignment to a TWG
 - Assignment and tracking of action items to individuals
 - Tracking compliance status
 - Entry of additional comments and issues
 - Relationship indication to CMMI ML2
 - Location of compliance
 - Allows for various reports to be generated
The project shall develop software plan(s). [SWE-013]

Note: The requirement for the content of each software plan (whether stand-alone or condensed into one or more project level or software documents) is defined in Chapter 5. These include, but are not limited to:

- Software development or management plan.
- Software configuration management plan.
- Software test plans.

Comment:

Maint Plan needs to be added to 2.5.4.

ISSUE: Phases are not addressed in 7150 but are in the Engineering of Systems NPR. Major disconnect between the two documents.

Action:

Map to classes of software

Add wording to 2.6.4 that any software that flies is at least Medium control.

Assumption: Medium control level and above covers classes A, B, C and F.

Last Updated: 7/19/2006

Level 3
Tools (2)

- **InSpec**
 - Web-based formal inspection tool based on Fagan process
 - Plan inspections
 - Notify participants by e-mail
 - Enter defects into online inspection logs
 - Collect and collate inspection logs
 - Track defects and open items to closure
 - Collect metrics
 - Developed in collaboration with the NASA IV&V Facility
Getting the Word Out

• Created a Marketing TWG
 – Published a tri-fold brochure to highlight NPR 7150, Center-Level Procedure, and supporting elements available from the SEPG
 – Released a newly designed “Software@Glenn” Web site as our PAL
 – Planned a “Software Fair” to spread the word about SEPG software products and services across GRC

• Conducted training on new processes as they were released

• Offered coaching to assist new projects in using our assets
Software@Glenn Screen Shot

Software Development at GRC
Processes – Templates – Tools

Purpose

The purpose of the Software@Glenn Web site is to provide tools/processes not only to improve the software development, but also to ensure compliance to NASA Standards. The goal of this Web site is to help software engineers use predictable, repeatable, consistent, and measurable processes leading to high quality software at reduced cost. Software@Glenn is maintained by the Software Engineering Process Group (SEPG).
Other SEPG Products

Processes
• Center-Level Procedure
• Project Planning
• Project Monitoring and Control
• Requirements Development
• Requirements Management
• Configuration Management
• Managing Software Process and Product Measurement
• Performing Software Process and Product Measurement
• Software Acquisition Statement of Work Guidelines
• Transition of Software to a Higher Classification

Templates
• Software Management Plan
• Software Maintenance Plan
• Software Users Manual
• Software Version Description Document
• Requirements Traceability Matrix
• Software Requirements Specification
• Software Test Plan
• Software Test Procedure
• Software Test Report
• Software Configuration Management Plan
• Software Metrics Report
• Software Data Dictionary
• Interface Design Document
• Software Change Request
• Software Design Document
What Went Right

• Use of 7150 database gave us an extremely versatile tool for tracking and reporting

• Use of process improvement consultant provided us with a broad background of experience in process improvement

• Use of configuration management tool for processes and products helped manage multiple simultaneous changes

• Use of local Subject Matter Experts (SME) and commitment from dedicated SEPG team sustained effort
Obstacles to Success

- Lack of evidence for SCAMPI appraisals
 - Existing mature pilot projects were canceled
 - New projects have not had sufficient time to fully use processes

- Transition from CMM to CMMI was confusing
 - Processes and TWGs had name changes
 - Difficult to relate between “legacy” and “new” processes

- Difficulty in getting broad participation from software developers across the Center

- Limited funding and turnover of personnel
Next Steps

- Identify new software projects and assist in the use of processes, templates, and tools
- Collect metrics and feedback on use of processes, templates, and tools
- Perform gap analysis of our processes and practices against CMMI ML2
- Update processes to meet CMMI ML2
- Perform pre-assessment of Flight Software Engineering Branch against CMMI ML2 in late 2007
- Assist GRC Engineering Process Group in becoming compliant with the new NPR 7123 Systems Engineering Requirements
Lessons Learned (1)

• Utilize the processes and tools you create and recommend
 – Much easier to get projects to follow your lead
 – An excellent opportunity for improving your own processes
 – Helps with organizing and streamlining activities

• Make extensive use of peer reviews and inspections
 – Great communication tool
 – Means of including expertise external to the SEPG
 – Common repository for document changes, status, and metrics
Lessons Learned (2)

• Share products and processes
 – Collaboration with other organizations leverages work

• Use process improvement consultant
 – Regularly scheduled week-long visits focus efforts
 – Provides SEPG with outside perspective
 – A source of “on-the-spot” training
 – Helps maintain alignment with CMMI
 – Provides another pair of hands and eyes
Contact Information

• Denise Varga, SEPG Lead
 Denise.M.Varga@nasa.gov
 216-433-5190 Mail Stop 142-1

• Barbara Wilson, Marketing and CM Lead
 Barbara.J.Wilson@nasa.gov
 216-433-8629 Mail Stop 142-1

• SEPG Email
 grc-sepg-lead@lists.nasa.gov

NASA Glenn Research Center
 21000 Brookpark Road
 Cleveland, Ohio 44135