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QUASI-LINEAR PARAMETER VARYING
REPRESENTATION OF GENERAL AIRCRAFT DYNAMICS

OVER A NON-TRIM REGION ∗

Jong-Yeob Shin †

ABSTRACT

To apply linear parameter varying (LPV) control synthesis and analysis to a nonlinear
system, it is required that a nonlinear system be represented in the form of an LPV
model. In this paper, a new representation method is developed for the construction
of an LPV model from a nonlinear mathematical model without the restriction that
an operating point must be in the neighborhood of equilibrium points. An LPV model
constructed by the new method preserves local stabilities of the original nonlinear
system at “frozen” scheduling parameters and also represents the original nonlinear
dynamics over a non-trim region. An LPV model of the motion of FASER (Free-flying
Aircraft for Subscale Experimental Research) is constructed by the new method.

NOMENCLATURE

physical parameters

u, v, w : X-, Y-, Z-components of aircraft velocity in body axes

p, q, r : X-, Y-, Z-components of aircraft angular velocity in body axes

φ, θ, ψ : Position angles

α, β : Angle of attack, side-slip angle

m, J , g : Total mass, moment of inertia matrix, gravity constant

V , T : Total speed, thrust force

L, M , N : X-, Y-, Z-component of moment

control surfaces

δe : elevator deflection angle

δr : rudder deflection angle

δra, δla : right and left side aileron deflection angle

δrf , δlf : right and left side flap deflection angle

∗This work was supported by the National Aeronautics and Space Administration under NASA Cooper-
ative Agreement NCC1-02043.

†National Institute of Aerospace (NIA), Hampton, VA 23666
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aerodynamic coefficients

CX , CY , CZ : X-, Y-, and Z-component force aerodynamic coefficients in body axis

Cl, Cm, Cn : Roll, pitch, and yaw moment aerodynamic coefficients

CXo , CZo , Cmo : Aerodynamic coefficients for X- and Z-forces and pitch moment

CXq , CXδe
, CXδra

: X-force aerodynamic derivatives due to q, δe, and δra

CXδla
, CXδrf

, CXδlf
: X-force aerodynamic derivatives due to δla, δrf , and δlf

CYβ
, CYp , CYr : Y-force aerodynamic derivatives due to β, p, and r

CYδr
, CYδra

, CYδla
: Y-force aerodynamic derivatives due to δr, δra, and δla

CYδrf
, CYδlf

: Y-force aerodynamic derivatives due to δrf and δlf

CZq , CZδe
, CZδra

: Z-force aerodynamic derivatives due to q, δe, and δra

CZδla
, CZδrf

, CZδlf
: Z-force aerodynamic derivatives due to δla, δrf , and δlf

Clβ , Clp , Clr : Roll moment aerodynamic derivatives due to β, p, and r

Clδr
, Clδra

, Clδla
: Roll moment aerodynamic derivatives due to δr, δra, and δla

Clδrf
, Clδlf

: Roll moment aerodynamic derivatives due to δrf and δlf

Cmq , Cmδe
, Cmδra

: Pitch moment aerodynamic derivatives due to q, δe, and δra

Cmδla
, Cmδrf

, Cmδlf
: Pitch moment aerodynamic derivatives due to δla, δrf , and δlf

Cnβ
, Cnp , Cnr : Yaw moment aerodynamic derivatives due to β, p, and r

Cnδr
, Cnδra

, Cndla
: Yaw moment aerodynamic derivatives due to δr, δra, and δla

Cnδrf
, Cnδlf

: Yaw moment aerodynamic derivatives due to δrf and δlf

1 INTRODUCTION

Gain-scheduled control techniques have been applied for control of a nonlinear system over
decades [22, 28, 12]. One of the gain-scheduled control techniques promising global stability
of a controlled system is an LPV control synthesis methodology [2, 6, 32, 25]. An LPV
control methodology is also particularly appealing in that robust linear control techniques
in an LPV system can be applied to a nonlinear system using well-developed linear robust
control concepts [34] without the loss of stability guarantees. To apply an LPV synthesis and
analysis methodology to a nonlinear system, it is required that its nonlinearity be represented
in the LPV form over the entire operating envelope.

A few studies [2, 30, 24, 13, 15] have been reported considering LPV representations of
nonlinear systems. In Refs. [2, 14, 21], an affine-LPV model has been introduced, whose
system matrices are affine functions of parameters. To represent nonlinear dynamics as an
affine-LPV model, the convex set of a constructed LPV model is generally larger than actual
nonlinear dynamics. This may lead to conservative results in control synthesis. An alterna-
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tive method of LPV representation is a grid-LPV model whose system matrices are functions
of the parameters at all grid points over the entire parameter space [6, 32, 25]. This LPV rep-
resentation has been used for a grid-LPV synthesis method in which linear matrix inequality
constraints are evaluated at all grid points. Generally, there is a trade-off between accuracy
in representing the original nonlinear dynamics and computational cost (memory and com-
putational time) for a grid LPV representation method. The grid-LPV representation and
control synthesis methods have been used for several control problems: pitch-axis missile
autopilots [33, 24], F-14 aircraft lateral-directional axis during powered approach [5, 3], and
turbofan engines [31, 4]. In this paper, we will focus on a grid-LPV representation of a non-
linear system since the representation can be applied to a large class of nonlinear systems
without the restriction of affine-function dependence of scheduling parameters.

There are a few methods [10, 24, 30] to generate a grid-LPV model from a nonlinear
mathematical model. The most common way to generate a grid-LPV model is the first
order approximation of a nonlinear system around equilibrium points. This is called the
“Jacobian linearization method” which has been used in many applications [10, 20, 25, 15].
As noted in Refs. [10, 20, 25, 15], an LPV model generated by the Jacobian linearization
method can capture nonlinear dynamics only around equilibrium points. Another method
is a “state transformation” method which has been introduced in Ref. [24]. In this method,
state coordinates are changed along with an equilibrium trajectory of scheduling parameters
to remove nonlinear dependence on states and inputs of a nonlinear system. The method
can generate an accurate LPV model (not using the first order approximation) of a nonlinear
system. The disadvantage of the method, however, is that it cannot generate an LPV model
outside the equilibrium manifold.

One approach to develop an LPV model over the entire operating envelope including
outside the equilibrium manifold has been introduced in Refs.[30, 26, 15]. It is called a
“function substitution” method in which a nonlinear mathematical model is replaced by a
linear combination of functions of scheduling parameters at all grid points over the entire
operating envelope. The linear-combination functions are then reformulated into LPV form.
To decompose nonlinear functions, a single reference point (one of the equilibrium points)
is used, as shown in Refs.[26, 15]. The LPV model generated by the method in Refs.[26, 15]
is strongly dependent on the single reference point. Also, the constructed LPV model may
not capture the local stability of the original nonlinear system at an equilibrium point. In
this paper, we develop a new function substitution method to remove single reference point
dependence on an LPV model and to preserve the local stability of the original nonlinear
dynamics, while representing the nonlinear dynamics over the entire operating envelope. To
preserve local stability, an LPV representation is formulated as a linear optimization problem
which is solved by using the linear matrix inequality (LMI) solver interface “YALMIP” [11].

The remainder of the paper is organized as follows: in Section 2, the class of nonlinear
systems and a quasi-LPV model are defined and the preliminary background is explained.
In Section 3, the current LPV representation methodologies are described in order to math-
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ematically define the problem of interest. In Section 4, a new method is described to resolve
the problem. In Section 5, the nonlinear dynamics of FASER is described and the suggested
method is applied for constructing an LPV model of the longitudinal/lateral-directional
motions of the aircraft. The paper concludes with a brief summary in Section 6.

2 PRELIMINARY

General Nonlinear Aircraft System

In this paper, general aircraft dynamics are represented by the following nonlinear mathe-
matical model.

ẋ = F (x1)x+G(x1)u+ h(x1) (1)

with a state vector x ∈ Rnx , and a control vector u ∈ Rnu . F (x1), G(x1), and h(x1)
are continuous mapping functions: Rnx1 7→ Rnx×nx , Rnx1 7→ Rnx×nx , and Rnx1 7→ Rnx ,
respectively. In Eq. (1), a state vector x is written as xT = [xT

1 xT
2 ]. Note that the

subvector x1 is part of the state vector and also a scheduling parameter vector. Assume that
the scheduling parameter variations are in the compact set P in Rnx1 , which is called the
operating envelope, hereafter. In the operating envelope, the equilibrium locus is defined as
the set of equilibrium points (x̂1, x̂2, û) such that

0 = F (x̂1)

[
x̂1

x̂2

]
+G(x̂1)û+ h(x̂1). (2)

Definition 1 (local stability): The linearized system of a nonlinear system in Eq.(1) is

ẋ = Ax+Bu, (3)

where matrices A and B are obtained by Jacobian linearization about an equilibrium point.
When the real parts of all eigenvalues of A are negative, the nonlinear system is locally stable
about the point.

Even though this is a very common definition, it is described here to emphasize the rela-
tion between time responses of a nonlinear system with small perturbations on states and
the stability results based on the sign of all eigenvalues. Suppose the linearized system at
an equilibrium point indicates stability by definition 1. It is obvious that nonlinear time
responses of the system with small perturbations on states with input u = û(equilibrium
value) should converge to the equilibrium point. In practice, it is possible to test local sta-
bility based on time responses unless the system dynamics are very slow. Note that the
local stability applies for the neighborhood of the equilibrium point only. To determine local
stability for arbitrary points over the entire envelope, time responses of a nonlinear system
are simulated with perturbations on the state. This is referred to in this paper as “extended
local stability”, and is defined as follows.
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Definition 2 (extended local stability):Suppose there exists the set E of pre-calculated
equilibrium points. Given any point x̄1 in the operating envelope P, there exists an equilib-
rium point x̂1r such that

x̂1r = argminx̂1∈E ||W [x̄1 − x̂1]||, x̄1 ∈ P . (4)

where W is a weighting matrix to compensate physical unit difference of each state. The
trajectory of the nonlinear system in Eq. (1) is calculated with the initial condition of x(0)T =
[x̄T

1 x̂T
2r

] and the control input u = ûr. Here, equilibrium values of x̂2r and ûr are associated
with x̂1r . Suppose there exists small number ε such that

||x(t)−

[
x̂1r

x̂2r

]
|| < ε, t > T > 0, (5)

then, the system is stable with respect to the point (x̂1r , x̂2r) around the neighborhood of the
point x̄1 in the operating envelope.

Note that the extended local stability about a grid point does not represent global stability
of the nonlinear system [9] and is also strongly dependent on both x̂1r and x̄1. When the
time history of x(t) converges to another point instead of (x̂1r, x̂2r), stability is not captured
by definition 2. From the extended local stability definition, we can only determine whether
the system is stable around the grid point. It is noticed that the minimum solution x̂1r may
not be unique with respect to x̄1. This implies that the result of the extended local stability
may not be unique.

2.1 Quasi-LPV System

In this subsection, a quasi-LPV system is briefly described to carry out the LPV repre-
sentation of the class of nonlinear systems in Eq. (1). A quasi-LPV system is defined as
follows:

Definition 3 (Quasi-LPV system): A quasi-LPV system is defined as[
ẋ

y

]
=

[
A(x1) B(x1)

C(x1) D(x1)

] [
x

u

]
(6)

with states xT = [xT
1 xT

2 ]. Note that the states x1 are scheduling parameters whose variations
are in the compact set P ∈ Rnx1 .
The detailed description of a quasi-LPV system is available in Refs. [24, 20]. When a quasi-
LPV model is used for analysis or control synthesis for a nonlinear system, it is assumed that
scheduling parameters can independently vary even though the schedule parameter vector is
the part of the state [24, 20].
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Stability analysis on a nonlinear system can be formulated into a linear matrix inequality
(LMI) optimization using a quasi-LPV representation of the nonlinear model. When a quasi-
LPV model in Eq. (6) represents the original nonlinear dynamics, the stability analysis
problem is described as follows:

Lemma 1 (global stability) [6] Suppose there exists a positive definite matrix P such
that

AT (x1)P + PA(x1) < 0, ∀x1 ∈ P . (7)

Then, the system is globally stable over the operating envelope P.
This is easily proved using Lyapunov function V = xTPx. In practice, the LMI constraints
in Eq. (7) are evaluated in all grid points over the envelope P . Thus, the frozen dynamics
at a fixed parameter plays an important role with determining local and global stability of
the original nonlinear dynamics.

3 PROBLEM STATEMENT

3.1 Set of Linearized Models

Recall that a set of linearized models of a nonlinear system is considered as a quasi-LPV
model for the control synthesis [25]. One approach to construct a linearized model set is to
linearize a nonlinear system about equilibrium points using a Jacobian linearization method.
The set MJL of linearized models of a nonlinear system Eq.(1) is

MJL ≡ { ˙̃x = (
∂(F (x1)x)

∂x
|x̂+

∂G(x1)u

∂x
|x̂,û+

∂h(x1)

∂x
|x̂)x̃+G(x̂1)ũ : x̃ = x−x̂, ũ = u−û} (8)

where (x̂, û) is an equilibrium point. When scheduling parameters x̂1 are chosen along the
locus of equilibrium points, x̂2 and û are associated with x̂1. Then the set of linearized
models can be written in a quasi-LPV form:

˙̃x = A(x̃1)x̃+B(x̃1)ũ (9)

where

A(x̃1) = ∂(F (x1)x)
∂x

|x̂ + ∂G(x1)u
∂x

|x̂,û + ∂h(x1)
∂x

|x̂,
B(x̃1) = G(x̂1).

Note that this quasi-LPV model is a collection of linearized dynamic systems around the
equilibrium points/trajectory [13] since the state and input definitions are changed according
to an equilibrium point associated with the current scheduling parameters (x̂1). Advantages
of this well-known method are: 1) applicable to a wide-class of nonlinear systems without
restriction of affine dependence of input u on a nonlinear system, and 2) able to represent
local stability of the nonlinear system preserving the stability of a quasi-LPV system at
“frozen” parameters described in Lemma 1.
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The quasi-LPV model constructed by this method can represent the true nonlinear dy-
namics at the neighborhood of equilibrium points only. Choosing the number of grid points
along the locus of equilibrium points also plays an important role in the representation of
the nonlinear dynamics. The optimal way to choose grid points is still unknown.

3.2 Function Substitution Quasi-LPV Model

The function substitution method has been introduced in Refs.[30, 25, 15] to construct a
quasi-LPV model over the entire operating region, including a non-trim region. To perform
the substitution method, choose an equilibrium point as a reference point (x1r, x2r, ur) and
transform the states into

x̌1 = x1 − x1r, x̌2 = x2 − x2r, ǔ = u− ur. (10)

Using Eq. (10), the nonlinear system of Eq. (1) can be rewritten as[
˙̌x1

˙̌x2

]
=

[
A11(x1) A12(x1)

A21(x1) A22(x1)

] [
x̌1

x̌2

]
+

[
B1(x1)

B2(x1)

]
ǔ+ f(x1) (11)

where

f(x1) =

[
A11(x1) A12(x1)

A21(x1) A22(x1)

] [
x1r

x2r

]
+

[
B1(x1)

B2(x1)

]
ur + h(x1). (12)

The main goal of this method is to reformulate the function f(x1) in Eq.(12) into quasi-LPV
functional form such that

f(x1) = E(x1)x̌1 =

e1·(x1)
...

en·(x1)

 x̌1 (13)

where the matrix E is an unknown matrix to be determined and ei· is the i-th row vector
of the matrix E. There are infinite numbers of possible solutions to Eq. (13) since this is
an under-determined problem. In Refs.[25, 15], the matrix E is calculated to minimize the
variations of each matrix element over the entire operating envelope.

The final quasi-LPV form of the nonlinear system is[
˙̌x1

˙̌x2

]
= Af

[
x̌1

x̌2

]
+

[
B1(x1)

B2(x1)

]
ǔ. (14)

where

Af =

[
A11(x1) A12(x1)

A21(x1) A22(x1)

]
+

[
E | 0n×nx2

]
. (15)
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The solution of the quasi-LPV system is close to the solution of the nonlinear system since
the equality constraint in Eq. (13) is satisfied at all grid points. This is a strong advantage
of this method.

This method, however, has disadvantages such as 1) a strong dependence of the quasi-
LPV model on the reference point and 2) possible misrepresentation of local stability of the
original nonlinear system over the locus of equilibrium points. The matrix Af of the quasi-
LPV model can change when a different equilibrium point is chosen as a reference point.
The stability analysis described in Lemma 1 may fail even though the original nonlinear
dynamics are exponentially stable. Since all LMI constraints in Lemma 1 are evaluated
at all grid points, the matrix Af at each grid point must be stable to represent the stable
nonlinear dynamics. The current limitations of the method in Refs.[26, 15] are choosing the
correct reference point and representing the local stability of the original nonlinear system
at a grid point. In the next section, the limitations will be relaxed by a new function
substitution method.

4 QUASI-LPV REPRESENTATION DEVELOPMENT

A new method is described in this paper to construct a quasi-LPV model of a nonlinear
system over the entire operating envelope including a non-trim region. The model can
also capture the local stability of the original nonlinear system. In the new method, many
reference points are chosen along the locus of equilibrium points to preserve the local stability
of the system. The details are described in the four step process below:

First, grid points are generated over the entire operating envelope P and each grid point
is assigned with its own reference point. This allows us to reformulate the nonlinear function
f(x1) in Eq.(12) into quasi-LPV form. A reference point for each grid point is determined
by Eq. (4).

Second, E in Eq. (13) is written in terms of the variables φi to satisfy the equality con-
straint. When a grid point x̄1 is not equal to a reference point x1r, Eq. (13) is rewritten
as: f1(x̄1)

...

fn(x̄1)

 =


[
x̄1 − x1r

]T

eT
1·

...[
x̄1 − x1r

]T

eT
n·

 . (16)

The possible solutions of eT
i· in Eq. (16) can be written as

eT
i· = eT

i·p +N ([x̄1 − x1r]
T )φi (17)

where the particular solution eT
i·p is

eT
i·p = [x̄1 − x1r]([x̄1 − x1r]

T [x̄1 − x1r])
−1fi, (18)
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N ([x̄1 − x1r]
T ) is the null space of [x̄1 − x1r]

T , and φi is a unknown vector associated with
the null space dimension. Using Eq. (17), the matrix Af is rewritten as:

Af = Ap + [ΦTN T ([x̄1 − x1r]
T ) | 0n×nx2

] (19)

where

Ap =

[
A11 A12

A21 A22

]
+ [Ep|0n×nx2

], (20)

the matrix Ep is the collection of eT
i·p and the matrix Φ is the collection of φi.

When a grid point is equal to a reference point x1r, notice that f(x̄1) and x̌1 are zero. The
particular solution of Eq. (18) cannot be defined since it is a singular point. For this case,
the matrix E defined in Eq. (13) is defined as

E = lim
x̄1→x1r

f(x̄1)

x̄1 − x1r

. (21)

Using Eqs. (15) and (21), the matrix Af is calculated for a quasi-LPV model at the grid
point. Noticed that the calculated Af is exactly the same as the matrix A obtained by
Jacobian linearization at the grid point. This is proved after algebraic manipulations with
Eqs. (11) and (12).

Third, a linear matrix inequality is constructed to represent stability of the original non-
linear dynamics with prior information of the extended local stability of the system at every
grid point. When the original nonlinear system is stable, the following LMI must be satisfied
for all grid points.

(Ap + [ΦTN T | 0n×nx2
])TP + P (Ap + [ΦTN T | 0n×nx2

]) < 0, P > 0, x1 ∈ P (22)

where P is a constant positive matrix. Note that Eq. (22) has unknowns P and Φ in
multiple form. This makes the LMI constraints not convex in P and Φ. It is a bilinear
matrix inequality (BMI) problem. Generally, it is hard to find a global solution to a BMI
problem. In this paper, the feasible solution of Φ is calculated using the Ruth-Hurwitz
condition. Then, the LMI optimization Eq. (22) is solvable with the calculated feasible
solution Φ. The detailed method is described in the next section.

Fourth, for smoothness of the matrix Af elements, a linear optimization problem is formu-
lated to penalize the derivatives of the matrix elements due to x1. The details of constructing
a linear optimization problem is described in the next section.

5 EXAMPLE

In this section, it is demonstrated how to construct a quasi-LPV model using the proposed
method. The nonlinear dynamics of FASER are represented by a quasi-LPV model. FASER
(see Fig. 1), developed at NASA Langley Research Center, has conventional high wing and
tail configuration with 7 ft wingspan [17]. The detailed shape and physical quantities are
available in Refs.[16, 17].
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5.1 Nonlinear Equations of Motion

In this subsection, general nonlinear equations of aircraft motion [7] are reformulated into
matrix form described in Eq. (1).

Force equations of an aircraft are

u̇ = rV sin β − qV sinα cos β − g sin θ +
qSCX + T

m
(23)

v̇ = pV sinα cos β − rV cosα cos β + g cos θ sinφ+
qSCY

m
(24)

ẇ = qV cosα cos β − pV sin β + g cos θ cosφ+
qSCZ

m
(25)

Kinematic equations of position angles are

φ̇ = p+ (q sinφ+ r cosφ) tan θ (26)

θ̇ = q cosφ− r sinφ (27)

ψ̇ = (q sinφ+ r cosφ)/ cos θ (28)

and moment equations areṗq̇
ṙ

 = J−1

LM
N

 + J−1

Jzxq − Jxyr Jyzq − Jzzr Jyyq − Jyzr

Jzzr − Jzxp Jxyr − Jyzp Jzxr − Jxxp

Jxyp− Jyyq Jxxp− Jxyq Jyzp− Jzxq


pq
r

 (29)

where the inverse of the inertial moment J is

J−1 =
1

JD

 JyyJzz − J2
yz JxzJyz + JzzJxy JxyJyz + JxzJyy

JxyJzz + JxzJyz JxxJzz − J2
xz JxxJyz + JxyJxz

JxyJyz + JxzJyy JxxJyz + JxyJxz JxxJyy − J2
xy

 (30)

and the scalar JD is

JD = JxxJyyJzz − JxxJ
2
yz − JzzJ

2
xy − 2JxyJxzJyz − JyyJ

2
xz. (31)

The roll, pitch and yaw moments (L, M , N) are functions of dynamic pressure q, reference
area S, wing span b, mean chord length c̄, and moment aerodynamic coefficients Cl, Cm and
Cn.

L = qSbCl, M = qSc̄Cm, N = qSbCn (32)

After simple algebraic manipulation of Eqs. (23)-(25), the force equations in Eqs. (23)-(25)
can be rewritten in terms of total velocity V , angle of attack α, and side-slip angle β. This
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leads to

V̇ =
1

m
{(qSCx + T ) cosα cos β + qSCY sin β + qSCZ sinα cos β}

+ g(cos θ sinφ sin β − sin θ cosα cos β + cos θ cosφ sinα cos β) (33)

α̇ = q − cosα sin β

cos β
p− sinα sin β

cos β
r +

qSCZ cosα

mV cos β
− qSCX + T

mVt cos β
sinα

+
g

V cos β
(cosα cos θ cosφ+ sin θ sinα) (34)

β̇ = p sinα− r cosα+
qSCY

mVt

cos β − qSCX + T

mVt

cosα sin β − qSCZ

mVt

sin β sinα

+
g

Vt

(cos θ sinφ cos β + sin β cos θ cosα− cos θ cosφ sinα sin β). (35)

From Eqs.(33)-(35), (26)-(29) notice that the states are V , α, β, body angular rates p, q, r,
and position angles φ, θ, and ψ for the nonlinear dynamics.

5.2 Aerodynamic Coefficients

Force and moment equations in Eqs. (23)-(25), (29) are dependent on aerodynamic coef-
ficients CX , CY , CZ , Cl, Cm, and Cn. In this example, the aerodynamic coefficients are
functions of angle of attack, and control surface deflections such as elevator deflection δe
(deg), right aileron deflection δra (deg), left aileron deflection δla (deg), right flap deflection
δrf (deg), left flap deflection δlf (deg), and rudder deflection δr (deg). The aerodynamic
coefficients are

CX =CXo(α) + CXq(α)
c̄

2V
q + CXδe

(α)δe + CXδra
(α)δra + CXδla

(α)δla

+ CXδrf
(α)δrf + CXδlf

(α)δlf (36)

CY =CYβ
(α)β +

b

2V
(CYp(α)p+ CYr(α)r) + CYδr

(α)δr + CYδra
(α)δra + CYδla

(α)δla

+ CYδrf
(α)δrf + CYδlf

(α)δlf (37)

CZ =CZo(α) + CZq(α)
c̄

2V
q + CZδe

(α)δe + CZδra
(α)δra + CZδla

(α)δla

+ CZδrf
(α)δrf + CZδlf

(α)δlf (38)
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Cl =Clβ(α)β +
b

2V
(Clp(α)p+ Clr(α)r) + Clδr

(α)δr + Clδra
(α)δra + Clδla

(α)δla

+ Clδrf
(α)δrf + Clδlf

(α)δlf (39)

Cm =Cmo(α) + Cmq(α)
c̄

2V
q + Cmδe

(α)δe + Cmδra
(α)δra + Cmδla

(α)δla

+ Cmδrf
(α)δrf + Cmδlf

(α)δlf (40)

Cn =Cnβ
(α)β +

b

2V
(Cnp(α)p+ Cnr(α)r) + Cnδr

(α)δr + Cnδra
(α)δra + Cnδla

(α)δla

+ Cnδrf
(α)δrf + Cnδlf

(α)δlf (41)

The aerodynamic coefficients CXo , CZo , and Cmo and aerodynamic derivatives are func-
tions of angle of attack and were calculated by Paul Chwalowski[19] using CMARC [1] and
VORVIEW [8, 27]. The CMARC is a commercial version of potential flow method developed
at NASA Ames. The calculated aerodynamic coefficients are compared with the results of
wind tunnel experiments[17] done at the NASA Langley 12-foot Low Speed Wind Tunnel. In
this paper, the calculated aerodynamic coefficients are used to develop a quasi-LPV model
of the aircraft since the comparison results [19] show that the CFD calculation accurately
predicts the aerodynamic coefficients of the FASER aircraft.

5.3 Reformulated Nonlinear Equations of Motion

In this subsection, the nonlinear equations described in the previous section are written in
matrix form of Eq. (1) to formulate quasi-LPV representation.

When states Xst = [V α β p q r θ φ]T and controls U = [T δe δra δla δrf δlf δr]
T ,

the nonlinear equations of motion can be rewritten as

Ẋst = A(V, α, β, p, q, r, θ, φ)Xst +B(V, α, β)U + h(V, α, β) (42)

where the detailed elements of the matrices A, B, and h are written in Appendix A.

Note that it is possible to generate a quasi-LPV model for the full 6 DOF motion but
scheduling parameters in a quasi-LPV model would be all states. When all states are schedul-
ing parameters, a quasi-LPV model can lead very conservative results in control synthesis
since scheduling parameters are considered independent on each other in LPV control syn-
thesis [29, 23].

To generate a practically useful quasi-LPV model for control synthesis, the nonlinear
dynamics are decoupled into the longitudinal motion and the lateral-directional motion.
For the longitudinal motion of the aircraft, state Xlon is set as Xlon = [V α q θ]T

and control Ulon is set as Ulon = [T δe δas δfs ]
T , where δas ≡ 0.5(δra + δla) and δfs ≡

0.5(δrf +δlf ). Positive deflection of all control surfaces except the rudder is defined as trailing
edge down. For control of the longitudinal motion, the right/left ailerons are assumed to
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move symmetrically and so do the right/left flaps. Since the other variables are set as zero
for the longitudinal motion, the nonlinear equation of longitudinal motion is

Ẋlon = Alon(V, α)Xlon +Blon(V, α)Ulon + hlon(V, α), (43)

where the elements of the matrices Alon, Blon, and hlon are given in Appendix B.

For lateral-directional motion, the states are Xlat = [β p r φ]T and the controls are
Ulat = [δaas δfas δr]

T , where δaas ≡ 0.5(δla− δra) and δfas ≡ 0.5(δlf − δrf ). The right and left
ailerons are assumed to move asymmetrically for control of lateral-directional motion. The
nonlinear equations of lateral-directional motion is

Ẋlat = Alat(V, α, β, φ)Xlat +Blat(V, α)Ulat (44)

where the elements of the matrices Alat and Blat are given in Appendix B. From Eq. (44),
notice that the matrix form of the lateral-directional motion is already in quasi-LPV form
with exogenous scheduling parameters V and α and state-scheduling parameter β and φ.

5.4 Quasi-LPV Model of Longitudinal Motion

To construct a quasi-LPV model of the longitudinal motion by using the new method, the
locus of equilibrium points is calculated over the flight envelope defined as

50 ≤ V ≤ 200 ft/s, 0.5 ≤ α ≤ 10 deg. (45)

The chosen equilibrium points are numbered as shown in Fig. 2 while the grid points are
defined as shown in Fig. 2. Using Eq. (4), every grid point is assigned to an equilibrium
point. The assigned equilibrium point is called a reference point for the grid point.

To apply the method, the stability information of the nonlinear longitudinal dynamics
is required. The local stability of the motion around equilibrium point is easily tested by
checking eigenvalues of the matrix A obtained by the Jacobian linearization method. The
extended local stability at every grid point can be tested by using nonlinear simulations at
the initial values of (x̄1, x̂2) using the constant input associated with the reference point.
Based on the stability test results, we conclude that the longitudinal dynamics are stable for
all the grid points.

Now, the decomposed function f(x1) of Eq. (12) is evaluated at the grid point x̄1 using
Eq. (17), the particular solutions are calculated at all grid points except the equilibrium
points. Note that the matrix Af of the quasi-LPV model at the numbered equilibrium
points is calculated by using the Jacobian linearization method. It is required to find feasible
solutions of ΦT at a grid point to solve the BMI problem. We first try to find the feasible
solution by assigning ΦT as a zero matrix. Note that the particular solution of Ap in Eq. (20)
can be the system matrix of a quasi-LPV model. The eigenvalues of the matrix Ap at every
grid point are shown in the left plot of Fig. 3. It is observed from Fig. 3 that there are
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unstable eigenvalues of Ap at some grid points. Thus, this solution is not appropriate to
represent the stable nonlinear dynamics of FASER.

Since the matrix Af in Eq. (19) can be explicitly written as ΦT , the Ruth-Hurwitz stabil-
ity [18] of the 4th-order polynomial can be used to find feasible solutions of ΦT . The stability
conditions of the 4th-order polynomial s4 + ãs3 + b̃s2 + c̃s+ d̃ are ã > 0, b̃ > 0, c̃ > 0, d̃ >
0, ãb̃ > c̃ and ãb̃c̃− c̃2 > d̃ã2. To use the stability condition, the matrix Af is rewritten as:

Af (V, α) =


ap

11(V, α) + φ1(V, α)n1(V, α) ap
12(V, α) + φ1(V, α)n2(V, α) ap

13(V, α) ap
14(V, α)

ap
21(V, α) + φ2(V, α)n1(V, α) ap

22(V, α) + φ2(V, α)n2(V, α) ap
23(V, α) ap

24(V, α)

ap
31(V, α) + φ3(V, α)n1(V, α) ap

32(V, α) + φ3(V, α)n2(V, α) ap
33(V, α) 0

0 0 1 0


(46)

where φ1, φ2, and φ3 are unknown parameters to be determined, n1 and n2 are the elements
of the null space and ap

ij is the element of the matrix Ap. For convenience, the dependence
of V and α on parameters is omitted hereafter.

After some algebraic manipulations, the conditions ã > 0, b̃ > 0, c̃ > 0, d̃ > 0 can be
rewritten as

gT
a x > 0, gT

b x > 0, gT
c x > 0, gT

d x > 0 (47)

where xT = [1 φ1 φ2 φ3] and the coefficient vectors gT
a , gT

b , gT
c , and gT

d are written in terms
of ap

ij, n1 and n2. Here, the detailed expression of the coefficients vectors are in Appendix

C. The condition ãb̃ > c̃ is relaxed by the following linear inequalities ã > 1, b̃ > 1, ã > c̃,
and b̃ > c̃. The other condition is relaxed by minimizing d̃ value.

For the smooth variation of each matrix Af element due to V and α changes, the derivatives
of each element with respect to‘ V and α are imposed by solving the following optimization
problem.

min
φ1,φ2,φ3

Wt[t εV εα]T (48)

subject to 

gT
a

gT
b

gT
c

gT
d

gT
a − gT

c

gT
b − gT

c




1

φ1

φ2

φ3

−



1

1

0

0

0

0


> 0, [1 φ1 φ2 φ3]gd < t, (49)

14



|∂(ap
11+φ1n1)

∂V
| < εV1 , |∂(ap

11+φ1n1)

∂α
| < εα1

|∂(ap
12+φ1n2)

∂V
| < εV2 , |∂(ap

12+φ1n2)

∂α
| < εα2

|∂(ap
21+φ2n1)

∂V
| < εV3 , |∂(ap

21+φ2n1)

∂α
| < εα3

|∂(ap
22+φ2n2)

∂V
| < εV4 , |∂(ap

22+φ2n2)

∂α
| < εα4

|∂(ap
31+φ3n1)

∂V
| < εV5 , |∂(ap

31+φ3n1)

∂α
| < εα5

|∂(ap
32+φ3n2)

∂V
| < εV6 , |∂(ap

32+φ3n2)

∂α
| < εα6

(50)

where Wt is a constant weighting vector to scale the parameter t, εV , and εα. The derivatives
are calculated using the first order finite differential method between grid points.

After solving the optimization problem using the LMI solver “yalmip’ [11], the eigenvalues
of the matrix Af at every grid point are shown in the right plot of Fig. 3. In Fig. 4 variation
of a11 of the matrix Af due to V and α is shown to verify the smoothness of the solution as
compared to the particular solution calculated.

For comparison of the nonlinear dynamics and the generated quasi-LPV model, the dy-
namics are simulated for the initial condition [V α q θ] = [67 6 0 6], with control
action changes such as the thrust doublet and the up-and-down elevator changes, respec-
tively. The simulations results and the control command history are shown in Figs. 5 and 6.
Note that the generated quasi-LPV model captures the time history of the original nonlinear
dynamics.

6 CONCLUSION

In this paper, a new quasi-LPV representation method is proposed to reformulate a nonlinear
mathematical model into a quasi-LPV form. The suggested method preserves the local and
global stability of the original nonlinear system over the entire parameter space including
the non-trim region. Nonlinear equations of motion for a general aircraft are formulated into
matrix form which can be converted into quasi-LPV model using this method. For prac-
tical use of quasi-LPV models, the nonlinear equations of motion are generally decoupled
into the longitudinal and lateral-directional motions. The quasi-LPV representation of the
longitudinal motion for the FASER aircraft has been developed, which has scheduling pa-
rameters: velocity and angle of attack. The lateral-directional motion for the aircraft is also
modeled as quasi-LPV representation with exogenous scheduling parameters V and α and
state-scheduling parameters β and φ. It has been shown that the longitudinal motion rep-
resented by the quasi-LPV model preserves the stability of the original nonlinear dynamics
at every grid point and represents the nonlinear dynamics over the entire parameter space.
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APPENDIX A

Matrix Form of Nonlinear Equation of Aircraft Motion
After substitution of aerodynamic coefficients of Eqs. (36)-(41) into nonlinear force equations
in Eqs.(33)-(35), the force equations are rewritten asV̇α̇

β̇

 = Aforce[V α β p q r]T +Bforce[T δe δra δla δrf δlf δr]
T + hforce (51)

where

Aforce =


0 0

qSSβCYβ

m

qSbSβCYp

2mV

qSc̄Cβ

2mV
(CXqCα + CZqSα)

qSbSβCYr

2mV

0 0 0 −CαSβ

Cβ
1 + qSc̄

2mV 2Cβ
(CZqCα − CXqSα) −SαSβ

Cβ

0 0
qSCβCYβ

mV
Sα +

qSbCβ

2mV 2CYp − qSSβ c̄

2mV 2 (CXqCα + CZqSα) −Cα +
qSbCβ

2mV 2CYr


(52)

Bforce =
[
Bf1 Bf2 Bf3

]
(53)

Bf1 =


CαCβ

m

qSCβ

m
(CXδe

Cα + CZδe
Sα)

− Sα

mV Cβ

qS
mV Cβ

(CZδe
Cα − CXδe

Sα)

−CαSβ

mV
− qSSβ

mV
(CXδe

Cα + CZδe
Sα)

 (54)

Bf2 =
qS

mV


CβV (CXδra

Cα + CZδra
Sα) + SβV CYδra

CβV (CXδla
Cα + CZδla

Sα) + SβV CYδra

(CZδra
Cα − CXδra

Sα)/Cβ (CZδla
Cα − CXδla

Sα)/Cβ

CβCYδra
− CαSβCXδra

− SβSαCZδra
CβCYδla

− CαSβCXδla
− SβSαCZδla


(55)

Bf3 =
qS

mV


CβV (CXδrf

Cα + CZδrf
Sα) + SβV CYδrf

CβV (CXδlf
Cα + CZδlf

Sα) + SβV CYδlf
SβV CYδr

(CZδrf
Cα − CXδrf

Sα)/Cβ (CZδlf
Cα − CZδlf

Sα)/Cβ 0

CβCYδrf
− CαSβCXδrf

− CZδrf
SβSα CβCYδlf

− CαSβCXδlf
− CZδlf

SβSα CYδr
Cβ


(56)

and

hforce =


qSCβ

m
(CXoCα + CZoSα)

qS
mV Cβ

(CZoCα − CXoSα)

− qSSβ

mV
(CXoCα + CZoSα)

 +


CθSφSβ − SθCαCβ + CθCφSαCβ

1
V Cβ

(CαCθCφ + SθSα)

1
V

(CθSφCβ + SβCθCα − CθCφSαSβ)

 g (57)
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Here, Sα, Cα, Sβ, Cβ, Sφ, Cφ, Sθ, and Cθ denote sinα, cosα, sin β, and so on.

The gravity term in Eq. (57) can be partitioned into θ and φ terms using polynominal
expressions of cos and sin functions. In this report,

cos(x) ∼=1 + b1x
2 + b2x

4

sin(x) ∼=a1x+ a2x
3 + a3x

5

The gravity term can be written as:
gvθg gvφg
g

V Cβ
gαθ

g
V Cβ

gαφ

g
V
gβθ

g
V
gβφ


[
θ

φ

]
+


SαCβ

1
V Cβ

Cα

− 1
V
SαSβ

 g (58)

where

gvθ = −(a1 + a2θ
2 + a3θ

4)CαCβ + (b1θ + b2θ
3)SαCβ (59)

gvφ = (a1 + a2(1 + b1θ
2)φ2 + a1b1θ

2 + a1b2θ
4)Sβ + ((b1 + b21θ

2)φ+ b2φ
3)SαCβ (60)

gαθ = (a1 + a2θ
2 + a3θ

4)Sα + (b1θ + b2θ
3)Cα (61)

gαφ = (b1φ+ b2φ
3 + b21θ

2φ)Cα (62)

gβθ = (b1θ + b2θ
3)CαSβ − (b1θ + b2θ

3)SαSβ (63)

gβφ = (a1 + a2(1 + b1θ
2)φ2 + a3φ

4 + a1b1θ
2 + a1b2θ

4)Cβ − (b1φ+ b2φ
3 + b21θ

2φ)SαSβ (64)

The moment equation is written as:ṗq̇
ṙ

 = J−1Am[V α β p q r]T + J−1Bm[T δe δra δla δrf δlf δr]
T + J−1hm (65)

where

Am =

0 0 qSbClβ
qSb2

2V
Clp + Jzxq − Jxyr Jyzq − Jzzr

qSb2

2V
Clr + Jyyq − Jyzr

0 0 0 Jzzr − Jzxp
qSc̄2

2V
Cmq + Jxyr − Jyzp Jzxr − Jxxp

0 0 qSbCnβ

qSb2

2V
Cnp + Jxyp− Jyyq Jxxp− Jxyq

qSb2

2V
Cnr + Jyzp− Jzxq


(66)

Bm = qS

b 0 0

0 c̄ 0

0 0 b




0 0 Clδra
Clδla

Clδrf
Clδlf

Clδr

0 Cmδe
Cmδra

Cmδla
Cmδrf

Cmδlf
Cmδr

0 0 Cnδra
Cnδla

Cnδrf
Cnδlf

Cnδr

 (67)
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and

hm =

 0

qSc̄Cmo

0

 (68)

Using Eqs (51) and (65), the full nonlinear equations of motion are written as:

Ẋst = A(V, α, β, p, q, r, θ, φ)Xst +B(V, α, β)U + h(V, α, β) (69)

Here,

A(Xst) =

I3×3 03×3 03×2

03×3 J−1 03×2

02×3 02×3 I2×2


Aforce Ag

Am 03×2

Atp 02×2

 (70)

where

Atp =

[
0 0 0 0 Cφ −Sφ

0 0 0 1 Sφ tan θ Cφ tan θ

]
(71)

and

Ag =


gvθg gvφg
g

V Cβ
gαθ

g
V Cβ

gαφ

g
V
gβθ

g
V
gβφ

 (72)

B =

I3×3 03×3 03×2

03×3 J−1 03×2

02×3 02×3 I2×2


Bforce

Bm

02×7

 (73)

and

h =

I3×3 03×3 03×2

03×3 J−1 03×2

02×3 02×3 I2×2


hforce

hm

02×1

 (74)
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APPENDIX B

Matrix Form of Longitudinal Motion
Consider longitudinal motion only. To extract the longitudinal motion from full equation of
motion in Eq. (69), the state values related to lateral-directional motion are set to zero and
the components (Jyx, Jyz) of inertia moment matrix J are set as zero because of symmetric
configuration about the x-z plane. The longitudinal motion is rewritten as

V̇

α̇

q̇

θ̇

 = Alon(V, α)


V

α

q

θ − θ0

 +Blon(V, α)


T

δe

δaall

δfall

 + hlon(V, α) (75)

where

Alon =


0 0 qSc̄

2mV
(CxqCα + CzqSα) g(−Cα cos θ0 − Sα sin θ0)

0 0 1 + qSc̄
2mV 2 (CzqCα − CxqSα) g(Sα cos θ0 − Cα sin θ0)/V

0 0 qSc̄2

2V Jyy
Cmq 0

0 0 1 0

 (76)

Recall that the longitudinal control surfaces of this airplane are thrust, an elevator, ailerons
and flaps. The matrix B1 and B2 are for the conventional control surface (T, δe) and for the
ailerons and flaps, respectively.

Blon = [B1 B2] (77)

where

B1 =


Cα

m
qS
m

(Cxδe
Cα + Czδe

Sα)

− Sα

mV
qS
mV

(Czδe
Cα − Czδe

Sα)

0 qSc̄
Jyy
Cmδe

0 0



B2 =


qS
m

(Cxδa
Cα + Czδa

Sα) qS
m

(Cxδf
Cα + Czδf

Sα)

qS
mV

(Czδa
Cα − Czδa

Sα) qS
mV

(Czδf
Cα − Czδf

Sα)

qSc̄
Jyy
Cmδa

qSc̄
Jyy
Cmδf

0 0


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The nonlinear components of h are rewritten as

hlon =


qS
m

(CxoCα + CzoSα) + g(−Cα sin θ0 + Sα cos θ0)
qS
mV

(CzoCα − CxoSα) + g(Sα sin θ0 + Cα cos θ0)/V
qSc̄
Jyy
Cmo(α)

0


Note that the aerodynamic stability derivatives are functions of angle of attack α.

Matrix Form of Lateral-Directional Motion
Under assumption that q is zero and V , α, and θ are at a trim condition, lateral-directional
motion can be extracted from Eq.(69). The lateral-directional motion can be rewritten as:

Ẋlat = Alat(V, α, β, θ, φ)Xlat +Blat(V, α, β)Ulat (78)

Here,

Alat =

Aβ

Apr

Aφ

 , Blat =

Bβ

Bpr

Bφ

 (79)

where

Aβ = [
qSCβCYβ

mV
(Sα +

qSbCβ

2mV 2CYp) (−Cα +
qSbCβ

2mV 2CYr)
g
V
gβφ]

Apr = J−1
sub

[
qSbClβ

qSb2

2V
Clp

qSb2

2V
Clr 0

qSbCnβ

qSb2

2V
Cnp

qSb2

2V
Cnr 0

]
Aφ = [0 1 Cφ tan θ 0]

Bβ = [ qS
mV

(CβYδaas
− CαSβCXδaas

− SβSαCZδaas
) qS

mV
(CβYδfas

− CαSβCXδfas
− SβSαCZδfas

) CβCYδr
]

Bpr = qSbJ−1
sub

Clδaas
Clδfas

Clδr

Cnδaas
Cnδfas

Cnδr


Bφ = [0 0 0]

(80)
and

Jsub =

[
Jxx −Jxz

−Jxz Jzz

]
(81)
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APPENDIX C

Characteristic Polynominal for Longitudinal Motion
The characteristic polynominal of the matrix Af described in Eq. (46) is written as

s4 + ãs3 + b̃s2 + c̃s+ d̃.

The coefficients ã, b̃, c̃ and d̃ are follows:

ã = gT
a x

where gT
a = [−(ap

11 + ap
22 + ap

33) − n1 − n2 0] and xT = [1 φ1 φ2 φ3]. Recall that n1 and
n2 are the elements of the nullspace N . The coefficient b̃ is

b̃ = gT
b x = [b̃0 b̃1 b̃2 b̃3]x

where

b̃0 = (ap
22 + ap

11)a
p
33 − ap

32a
p
23 + ap

11a
p
22 − ap

21a
p
12 − ap

31a
p
13

b̃1 = (ap
22 + ap

33)n1 − ap
21n2

b̃2 = (ap
33 + ap

11)n2 − ap
12n1

b̃3 = −ap
23n2 − ap

13n1.

The coefficient c̃ is
c̃ = gT

c x = [c̃0 c̃1 c̃2 c̃3]x

where

c̃0 = (ap
21a

p
12 − ap

11a
p
22)a

p
33 + (ap

31a
p
22 − ap

21a
p
32)a

p
13

+(ap
11a

p
23 − ap

24)a
p
32 − (ap

14 + ap
23a

P
12)a

p
31

c̃1 = (ap
32a

p
23 − ap

33a
p
22)n1 + (ap

21a
p
33 − ap

31a
p
23)n2

c̃2 = (ap
12a

p
33 − ap

32a
p
13)n1 − (ap

31a
p
13 − ap

11a
p
33)n2

c̃3 = (ap
13a

p
22 − ap

23a
p
12 − ap

14)n1

+(ap
11a

p
23 − ap

21a
p
13 − ap

24)n2.

The coefficient d̃ is
d̃ = gT

d x = [d̃0 d̃1 d̃2 d̃3]x

where

d̃0 = (ap
11a

p
32 − ap

31a
p
12)a

p
24 + (ap

31a
p
22 − ap

21a
p
32)a

p
14

d̃1 = ap
24a

p
32n1 − ap

31a
p
24n2

d̃2 = ap
31a

p
14n2 − ap

32a
p
14n1

d̃3 = (ap
22a

p
14 − ap

12a
p
24)n1 + (ap

11a
p
24 − ap

21a
p
14)n2.
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Figure 1: The FASER
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Figure 2: The numbered equilibrium points and grid points
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Figure 3: Eigenvalues of particular solution Ap and the matrix A of the quasi-LPV model

60 80 100 120
0

0.05

0.1

0.15

0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

V (ft/sec)

Q−LPV

α (rad)

a 11

60 80 100 120
0

0.05

0.1

0.15

0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

V (ft/sec)

Particular Sol

α (rad)

a 11
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Figure 5: Time responses due to the thrust level change.
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Figure 6: Time responses due to the elevator deflection change.
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