COMPARISON OF V-4 AND V-5 EXERCISE/OXYGEN PREBREATHE PROTOCOLS TO SUPPORT EXTRAVEHICULAR ACTIVITY IN MICROGRAVITY

Pollock NW1, Natoli MJ1, Vann RD1, Gernhardt ML2, Conkin J3.
1Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC 27710, 2NASA, Johnson Space Center, Houston TX 77058, 3Universities Space Research Association, Houston, TX 77058.

INTRODUCTION: The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO_2peak] followed by 40 min intermittent light exercise [ILE] \textasciitilde 5.8 mL·kg-1·min-1, then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise.

METHODS: Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression.

RESULTS: The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact $p=0.029$).

CONCLUSIONS: The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.

Funded by NASA.
Presenting Author and Address
Neal W. Pollock, Ph.D.
Center for Hyperbaric Medicine and Environmental Physiology
Duke University Medical Center
P.O. Box 3823
Durham, NC 27710
919-668-0032 (o)
919-684-6002 fax
neal.pollock@duke.edu

Presentation Category: Decompression Illness

Oral: Yes
The material described in this abstract lends itself to oral delivery. The evolution and data can be most efficiently delivered as a graphic-supported timeline annotated by the speaker. This would optimize sharing the results, saving poster time for those with specific questions.

Keywords (up to five): decompression, exercise, oxygen prebreathe, space

Resident’s Competition: No

Authorizations: a) permission to tape: Yes; b) research follows Helsinki principles: Yes

Financial Disclosure: a) discussion commercial products: No; b) if 'yes' any significant financial relationship with commercial interest: N/A

Grant Supported: Yes; Originator: NASA

Disclosure Obligations Read: Y (February 16, 2007)

Attach brief CV of presenting author