Optical Phased Array Antennas Using Coupled Vertical Cavity Surface Emitting Lasers

Carl H. Mueller, Analex Corporation, 21000 Brookpark Road, M.S. 7-1; Cleveland, OH 44135; carl.h.mueller@grc.nasa.gov
Roberto A. Rojas, The Ohio State University, 1320 Kinnear Road, Columbus, OH 43212; rojas-teran.1@osu.edu.
James A. Nessel, NASA-Glenn Research Center, 21000 Brookpark Road, M.S. 54-6; Cleveland, OH 44135; james.a.nessel@grc.nasa.gov
Félix A. Miranda, NASA-Glenn Research Center, 21000 Brookpark Road, M.S. 54-6; Cleveland, OH 44135; felix.a.miranda@grc.nasa.gov

High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements, are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies.

The technology we are proposing uses coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communication systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communication links, and satellite-to-surface links.

Keywords: Coupled Oscillator, Optical Antenna, VCSEL

Oral presentation preferred
Optical Phased Array Antennas Using Coupled Vertical Cavity Surface Emitting Lasers

Carl H. Mueller, 1 Roberto A. Rojas, 2 James A. Nessel, 3 and Félix A. Miranda 3

1. Analex Corporation; 21000 Brookpark Road; M.S. 7-1; Cleveland, Ohio 44135
2. The Ohio State University, 1320 Kinnear Road, Columbus, OH 43212
3. NASA-Glenn Research Center, 21000 Brookpark Road, M.S. 54-6; Cleveland, OH 44135
Objectives

• VCSELs that emit at 1.3 and 1.55 µm are attractive low-cost sources for high-speed fiber optic communication systems because of their low operating current, high-speed modulation.

• The key objective of this study is to discern future needs of laser communication systems, evaluate existing and emerging technologies, and propose a research program to develop communication systems tailored to meets NASA’s needs.

 • High power laser sources, so as to provide high data rates
 • Gbps for satellite networks and links as far as Earth-to-Lunar
 • 100 Mbps for Earth-to-Mars communication links

 • High power laser source enables smaller diameter transmit aperture, which mitigating the pointing and tracking difficulties.
Shorter wavelength enabled by optical antenna reduces beam size at the Earth’s surface

Compare beam sizes at Earth’s surface, assuming:

a) 1550 nanometer wavelength optical link, with a 10 cm transmit aperture;

b) 30 GHz (= 1 cm wavelength) microwave link, with a 4 meter aperture.
Space-Based Optical Communication Demonstrations

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Year</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese Aerospace Exploration Agency</td>
<td>2006</td>
<td>Bi-directional communication from a LEO satellite (orbital velocity = 7 km/sec) to a ground station.</td>
</tr>
<tr>
<td>Laser Utilizing Communications Satellite (ESA/JAXA)</td>
<td>2005</td>
<td>50 megabits per second data rate from Kirari (LEO) satellite to ground station, and 2 megabits per second from Kirari to Artemis (GEO) satellite.</td>
</tr>
<tr>
<td>Capanina (European/Japanese Consortium)</td>
<td>2005</td>
<td>1.25 gigabits per second downlink from stratosphere to ground station. Maximum link distance was 64 km, and negligible transmission loss was observed.</td>
</tr>
<tr>
<td>UAV Downlink Demonstration (NASA/JPL)</td>
<td>2002</td>
<td>Up to 2.5 gigabits per second downlink from a plane and a UAV to ground station.</td>
</tr>
<tr>
<td>Semiconductor Inter-Satellite Link Experiment (ESA)</td>
<td>2001</td>
<td>Up to 450 megabits per second data link between two GEO satellites (SPOT4 and Artemis), spaced thousands of km apart.</td>
</tr>
<tr>
<td>Ground-to-Orbit Laser-Com Demonstration (NASA/JPL)</td>
<td>1995</td>
<td>Bi-directional communication from GEO satellite (ETS-6) to ground station. Data rate was 1 megabit per second.</td>
</tr>
<tr>
<td>Galileo Optical Experiment (NASA/JPL)</td>
<td>1992</td>
<td>Laser uplink detected at a distance of 6\times 10^5 \text{ km}</td>
</tr>
</tbody>
</table>
1550 nm offers superior transmittance under non-ideal atmospheric conditions

- More robust communication links
- Problems caused by attenuation, scintillation and fading are less severe than at shorter wavelengths.
- Detectors operate at quantum level sensitivity.

Conventional architecture for transmit subsystem

Master laser (low power) → Modulator → Power amplifier

- Semiconductor lasers (800 – 900 nm)
- Yb-doped multimode fiber (1030 nm)
- Er-doped single-mode fiber (1550 nm)

1 – 20 watts
Advances in long-wavelength VCSEL development suggest that high power transmitters may be feasible.

Output power = 7 mW at 20 °C
Aperture size = 20 µm
Wavelength = 1.55 µm

An array with a VCSEL linear spacing of 100 µm corresponds to 10,000 elements per cm².

If each element radiates 7 mW, the total power output from a 1 cm² aperture is 70 watts.

Structure of 1.55 µm InP-based VCSEL (from R. Shau et al., *Electronics Letters* 37, p. 1295 (2001)).
1550 nm VCSEL arrays are attractive for high bandwidth, long-distance optical communications.

Optical spectrums of a VCSEL, LED, and edge emitting laser.

J.A. Tatum and J.K. Guenter, “The VCSELs are Coming,”
http://www.advancedopticalcomponents.com

Antenna, Microwave and Optical Systems Branch
Glenn Research Center at Lewis Field
Coherent emission achieved by injection locking

VCSEL elements

Concept for a high power long-wavelength 1550 nm VCSEL with coherent emission, based on optical pumping from a 2-D array of high power incoherent 980 nm VCSELs.

Injection locking improves spur-free dynamic range

Injection locking improves frequency response of VCSEL array, thus extending the bandwidth

Injection locking improves performance of VCSEL devices for optical communications

Advantages
- High linearity
- High optical power
- Low chirp
- Low noise

Disadvantages
- High power consumption
- High cost

Advantages
- Low cost

Disadvantages
- Limited frequency response
- High nonlinearity
- High noise
- High chirp

Advantages
- Good RF bandwidth
- Good linearity
- Low noise
- Low chirp
- Low power consumption
- Low cost

Disadvantages
- Performance is not as good as externally modulated system

Beam-Steering Technology

Integrated Beam Router

Max. Steering Angle: ±5°
Max. Steering Speed: 10 kHz

Advantages:
- Does not rely on mechanical motion

Disadvantages:
- Suffers from fringing fields
- Existence of flyback region

MicroOptoElectroMechanical Systems (MOEMS)

Max. Steering Angle: ±2°
Max. Steering Speed: < 1 kHz

Advantages:
- Only micromotion necessary
- Precise focus length

Disadvantages:
- Relies on mechanical motion (vibration sensitive)
- Slow speeds
- Snap-down effect

Max. Beam Deflection: ±3°
Max. Steering Speed: 1 kHz

Implementing a combination of the above with lenses, gratings, or holographic arrays has demonstrated improved performance, in terms of maximum beam-steering angles.

Microlens

Max. Steering Angle: ±5°
Max. Steering Speed: 10 kHz

Advantages:
- Only micromotion necessary
- 2D/3D beam steering possible
- No diffraction loss

Disadvantages:
- Relies on mechanical motion (vibration sensitive)
- Slow speeds
- Difficult fabrication

Max. Beam Deflection: ±3°
Max. Steering Speed: 2 GHz

Micromirror

Max. Steering Angle: ±2°
Max. Steering Speed: < 1 kHz

Advantages:
- Only micromotion necessary
- Precise focus length

Disadvantages:
- Large crosstalk components

Max. Beam Deflection: ±3°
Max. Steering Speed: 1 kHz
Conclusions

• Optical communications offer significant benefits in terms of data rate capability and antenna aperture size, as compared to RF communication systems.
 – Data links over vast distances
 – Multi-gigabit satellite networks

• VCSEL transmit antennas operating at 1550 nm are an attractive choice for transmit antennas.
 – High efficiency
 – High transmit power, thus minimizing the need for large aperture antennas
 • Reduces demands on acquisition, pointing, and tracking systems
 – Coupled oscillator approach increases the antenna gain and maximum frequency at which the array can be modulated, thus increasing the permissible data rates.