NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comprehensive Shuttle Foam Debris Reduction StrategiesThe Columbia Accident Investigation Board (CAIB) was clear in its assessment of the loss of the Space Shuttle Columbia on February 3, 2003. Foam liberated from the External Tank (ET) impacting the brittle wing leading edge (WLE) of the orbiter causing the vehicle to disintegrate upon re-entry. Naturally, the CAB pointed out numerous issues affecting this exact outcome in hopes of correcting systems of systems failures any one of which might have altered the outcome. However, Discovery s recent return to flight (RTF) illustrates the primacy of erosion of foam and the risk of future undesirable outcomes. It is obvious that the original RTF focused approach to this problem was not equal to a comprehensive foam debris reduction activity consistent with the high national value of the Space Shuttle assets. The root cause is really very simple when looking at the spray-on foam insulation for the entire ET as part of the structure (e.g., actual stresses > materials allowable) rather than as some sort of sizehime limited ablator. This step is paramount to accepting the CAB recommendation of eliminating debris or in meeting any level of requirements due to the fundamental processes ensuring structural materials maintain their integrity. Significant effort has been expended to identify root cause of the foam debris In-Flight Anomaly (FA) of STS-114. Absent verifiable location specific data pre-launch (T-0) and in-flight, only a most probable cause can be identified. Indeed, the literature researched corroborates NASNTM-2004-2 13238 disturbing description of ill defined materials characterization, variable supplier constituents and foam processing irregularities. Also, foam is sensitive to age and the exposed environment making baseline comparisons difficult without event driven data. Conventional engineering processes account for such naturally occurring variability by always maintaining positive margins. Success in a negative margin range is not consistently achieved. Looking at the ET S spray-on foam insulation as part of the structural system (e.g., glass half full mentality) will create an environment where ET debris levels as low as reasonably achievable (ALARA) can be realized. ALARA is a NASA requirements philosophy deployed for the complex, mission altering radiation exposure requirements for life safety of astronauts. In the Shuttle s case, reasonableness is established by exhaustive engineering rigor, allowable debris size/quantity, technology maturity and programmatic constraints. A more robust urethane foam thermal protection system (TPS) will enhance the hctionality of the new Ares I Crew Launch Vehicle (CLV) Upper Stage. This paper will outline the strategy for a comprehensive effort to reduce ET foam debris and outline steps leading to an improved foam TPS. The NASA must remain committed to such an approach no matter what becomes of the next flight s actual debris field lest we fall back into a false sense of security. This commitment along with full implementation of all the other CAB recommendations such as orbiter hardening will significantly improve the Shuttle system, the engineering workforce, future capabilities & alternate policy offramps, national human resource protection, high value national asset protection and increase the level of service to the overall NASA mission.
Document ID
20070013736
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Semmes, Edmund B.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2007
Subject Category
Composite Materials
Meeting Information
Meeting: 45th AIAA Aerospace Sciences Meeting
Location: Reno, NV
Country: United States
Start Date: January 8, 2007
End Date: January 11, 2007
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available